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Abstract

In extreme shock models, only the impact of the current, possibly fatal shock is usually
taken into account, whereas in cumulative shock models, the impact of the preceding
shocks is accumulated as well. In this paper we combine an extreme shock model with
a specific cumulative shock model. It is shown that the proposed setting can also be
interpreted as a generalization of the well-known Brown–Proschan model that describes
repair actions for repairable systems. For a system subject to a specific process of shocks,
we derive the survival probability and the corresponding failure rate function. Some
meaningful interpretations and examples are discussed.
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1. Introduction

Consider first a repairable system with the underlying absolutely continuous cumulative
distribution function (CDF) F(t) and the corresponding failure rate λ(t). Assume that each
repair is perfect with probability p(t) and is minimal with probability q(t) = 1 −p(t). Denote
by Fp(t) the CDF of the time between two consecutive perfect repairs. Also, let

∫ ∞

0
p(u)λ(u) du = ∞,

which ensures that Fp(t) is a proper distribution (Fp(∞) = 1). Then

Fp(t) = 1 − exp

{
−

∫ t

0
p(u)λ(u) du

}
. (1)

For the case p(t) ≡ p, this model was considered in Brown and Proschan (1983), and, therefore,
in the literature it is usually called the Brown–Proschan model.

Now consider a system subject to a nonhomogeneous Poisson process of shocks with
rate ν(t). Let it be ‘absolutely reliable’ in the absence of shocks. Assume that each shock
(regardless of its number) results in the system’s failure (and, therefore, in the termination of
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354 J. H. CHA AND M. FINKELSTEIN

the corresponding Poisson shock process) with probability p(t) and is harmless to the system
with probability q(t) = 1−p(t). Denote the corresponding time to failure of the system by TS .
It is obvious that the described setting is a mathematically equivalent reformulation of the
Brown–Proschan model and, therefore, the corresponding survival probability in this case can
be defined similar to (1), i.e.

P(TS > t) ≡ F̄S(t) = exp

{
−

∫ t

0
p(u)ν(u) du

}
. (2)

The formal proof of (1) can be found in Beichelt and Fischer (1980) and Block et al. (1985).
A ‘nontechnical proof’, based on the notion of the conditional intensity function (see Cox and
Isham (1980)) is given in, e.g. Nachlas (2005) and Finkelstein (2008). Note that the described
shocks related setting is often referred to in the literature as an extreme shock model, as only
the impact of the current, possibly fatal shock is taken into account, whereas in cumulative
shock models (see later) the impact of all shocks is accumulated (see Sumita and Shanthikumar
(1985) and Gut and Husler (2005), among others). The failure in the latter model occurs when
the corresponding accumulated value reaches the predetermined boundary.

It is clear that the extreme shock model can be easily modified to the case when a system
can also fail from causes other than shocks. Denote the corresponding CDF in the absence
of shocks by F(t) and assume that the corresponding process of failure is independent of our
shock process. It follows from the competing risks consideration that

P(TS > t) = F̄ (t) exp

{
−

∫ t

0
p(u)ν(u) du

}
. (3)

A crucial assumption for obtaining (2) and (3) is the assumption that, with probability
q(t) = 1 − p(t), a shock does not result in any changes in a system, which is an analogue
of minimal repair in the Brown–Proschan model. However, it is not often the case in practice
as shocks usually increase deterioration, wear, etc, which is analogous to ‘worse than minimal
repair’. The effect of different shocks is also usually accumulated in some way. In this paper
we will combine the extreme shock model with a specific accumulated shocks model to be
defined in the next section. Note that Gut and Husler (2005) considered asymptotic properties
(as t → ∞) for the specific combination of the accumulated shocks model with a one-shock
process that can decrease the boundary for the accumulated wear.

Taking the settings discussed in this section into account, the following model can also be
interpreted as a generalization of the Brown–Proschan model.

2. The model

Denote, for convenience of notation, a system’s lifetime in a baseline environment (without
shocks) by R. Thus, P(R ≤ t) = F(t). Here we interpret R as some initial, random resource,
which is ‘consumed’ by a system in the process of its operation with rate 1. Therefore, the
age of our system in this case is equal to a calendar time t , and a failure occurs when this age
reaches R. It is clear that as the remaining resource decreases with time, our system can be
considered to be ageing (deteriorating).

Let N(t), t ≥ 0, denote an orderly point process of shocks with arrival times Ti, i =
1, 2, . . . , and let the CDF of a system’s lifetime TS in the presence of shocks, as in Section 1,
be FS(t). Assume that the ith shock, as in the Brown–Proschan model, causes immediate
system failure with probability p(t), but in contrast to this model, with probability q(t), it now
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Terminating shock process with independent wear increments 355

increases the age of a system by a random increment Wi ≥ 0. In terms of repair actions, this
repair is worse than minimal. In accordance with this setting, the random age of a system at
time t (which corresponds to the ‘virtual age’ of Finkelstein (2007), (2008)) is

Tν = t +
N(t)∑
i=0

Wi,

where, formally, W0 = 0 corresponds to the case in which N(t) = 0 when there are no shocks
in [0, t]. Failure occurs when this random variable reaches the boundary R. Therefore,

P(TS > t | N(s), 0 ≤ s ≤ t; W1, W2, . . . , WN(t); R)

=
N(t)∏
i=0

q(Ti) 1(Tν ≤ R)

=
N(t)∏
i=0

q(Ti) 1
(N(t)∑

i=0

Wi ≤ R − t

)
, (4)

where q(T0) = 1 also corresponds to the case in which N(t) = 0 and 1(x) is the corresponding
indicator. This probability should be understood conditionally on the corresponding realizations
of N(t), Wi, i = 1, 2, . . . , N(t), and R.

Relationship (4) is very general and it is impossible to ‘integrate out’explicitly N(t), Wi, i =
1, 2, . . . , N(t), and R without substantially simplifying the assumptions. In the next section
we will consider two important specific cases.

The described model can be equivalently formulated in the following way. Let F(t) describe
the deterioration of the wearing item in the baseline environment. Failure occurs when this wear,
which in the standardized form is equal to t , reaches the resource R. Denote the random wear in a
more severe environment by Wt, t ≥ 0. Specifically, for our shock model, Wt = t + ∑N(t)

i=0 Wi ,
where the Wi, i = 1, 2, . . . , N(t), are the random increments of wear due to shocks and
W0 ≡ 0 (see Finkelstein (1999)). For convenience, in what follows we will use this wear-based
interpretation.

3. Special cases

3.1. Exponentially distributed boundary

In addition to the assumptions of Section 2, we adopt the following assumptions.

Assumption 1. N(t), t ≥ 0, is the nonhomogeneous Poisson process with rate ν(t).

Assumption 2. The Wi, i = 1, 2, . . . , are independent and identically distributed (i.i.d.)
random variables characterized by the moment generating function MW(t) and the CDF G(t).

Assumption 3. N(t), t ≥ 0; Wi, i = 1, 2, . . . ; and R are independent of each other.

Assumption 4. R is exponentially distributed with the failure rate λ, i.e. F̄ (t) = exp{−λt}.
The following result gives the survival function and the failure rate function of TS .

Theorem 1. Let m(t) ≡ E[N(t)] = ∫ t

0 ν(x) dx. Suppose that Assumptions 1–4 hold and that
the inverse function m−1(t) exists. Then the survival function of TS and the corresponding
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failure rate λS(t) are given by

P(TS > t) = exp

{
−λt −

∫ t

0
ν(x) dx + MW(−λ)

∫ t

0
q(x)ν(x) dx

}
, t ≥ 0,

and
λS(t) = λ + (1 − MW(−λ)q(t))ν(t), (5)

respectively.

Proof. Given the assumptions, we can directly ‘integrate out’ the variable R and define the
corresponding probability in the following way:

P(TS > t | N(s), 0 ≤ s ≤ t, W1, W2, . . . , WN(t))

=
(N(t)∏

i=0

q(Ti)

)
exp

{
−

∫ t+∑N(t)
i=0 Wi

0
λ du

}

= exp

{
−λt − λ

N(t)∑
i=1

Wi +
N(t)∑
i=1

ln q(Ti)

}
.

Thus, we have

P(TS > t | N(s), 0 ≤ s ≤ t)

= exp{−λt} exp

{N(t)∑
i=1

ln q(Ti)

}
E

[
exp

{
−

N(t)∑
i=1

λWi

}]

= exp{−λt} exp

{N(t)∑
i=1

ln q(Ti)

}
(MW(−λ))N(t)

= exp{−λt} exp

{N(t)∑
i=1

[ln q(Ti) + ln(MW(−λ))]
}
. (6)

Define N∗(t) ≡ N(m−1(t)), t ≥ 0, and T ∗
j ≡ m(Tj ), j ≥ 1. It is known that {N∗(t), t ≥ 0}

is a stationary Poisson process with intensity 1 (see, e.g. Çinlar (1975)), and T ∗
j , j ≥ 1, are the

times of occurrence of shocks in the new time scale. Let s = m(t). Then

E

[
exp

{N(t)∑
i=1

[ln q(Ti) + ln(MW(−λ))]
}]

= E

[
exp

{N∗(s)∑
i=1

[ln q(m−1(T ∗
i )) + ln(MW(−λ))]

}]

= E

[
E

[
exp

{N∗(s)∑
i=1

[ln q(m−1(T ∗
i )) + ln(MW(−λ))]

} ∣∣∣∣ N∗(s)
]]

. (7)

The joint distribution of (T ∗
1 , T ∗

2 , . . . , T ∗
n ) given N∗(s) = n is the same as the joint distribution

of (V(1), V(2), . . . , V(n)), where V(1) ≤ V(2) ≤ · · · ≤ V(n) are the order statistics of i.i.d. random
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variables V1, V2, . . . , Vn which are uniformly distributed in the interval [0, s] = [0, m(t)]. In
(7), the conditional expectation is given by

E

[
exp

{N∗(s)∑
i=1

(ln q(m−1(T ∗
i )) + ln(MW(−λ)))

} ∣∣∣∣ N∗(s) = n

]

= E

[
exp

{ n∑
i=1

(ln q(m−1(T ∗
i )) + ln(MW(−λ)))

} ∣∣∣∣ N∗(s) = n

]

= E

[
exp

{ n∑
i=1

(ln q(m−1(V(i))) + ln(MW(−λ)))

}]

= E

[
exp

{ n∑
i=1

(ln q(m−1(Vi)) + ln(MW(−λ)))

}]

= (E[exp{ln q(m−1(V1)) + ln(MW(−λ))}])n
= (E[exp{ln q(m−1(sU)) + ln(MW(−λ))}])n,

where U ≡ V1/s = V1/m(t) is a random variable uniformly distributed in the unit interval
[0, 1]. Therefore,

E[exp{ln q(m−1(sU)) + ln(MW(−λ))}]

=
∫ 1

0
exp{ln q(m−1(su)) + ln(MW(−λ))} du

=
∫ 1

0
exp{ln q(m−1(m(t)u)) + ln(MW(−λ))} du

= MW(−λ)

m(t)

∫ t

0
q(x)ν(x) dx.

Hence,

E

[
exp

{N∗(s)∑
i=1

(ln q(m−1(T ∗
i )) + ln(MW(−λ)))

} ∣∣∣∣ N∗(s) = n

]

=
(

MW(−λ)

m(t)

∫ t

0
q(x)ν(x) dx

)n

. (8)

From (6), (7), and (8),

P(TS > t) = exp{−λt}
∞∑

n=0

(
MW(−λ)

m(t)

∫ t

0
q(x)ν(x) dx

)n
sn

n! e−s

= exp{−λt}e−s exp

{
MW(−λ)

s

m(t)

∫ t

0
q(x)ν(x) dx

}

= exp

{
−λt −

∫ t

0
ν(x) dx + MW(−λ)

∫ t

0
q(x)ν(x) dx

}
.

Therefore, the failure rate function of the system, λS(t), is given by

λS(t) = λ + (1 − MW(−λ)q(t))ν(t).

This completes the proof.
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The following corollary defines the failure rate function of TS when the Wis are distributed
exponentially with mean µ.

Corollary 1. If the Wis are distributed exponentially with mean µ then the failure rate function
λS(t) is given by

λS(t) = λ +
(

1 − q(t)

λµ + 1

)
ν(t). (9)

Remark 1. This approach can be generalized to some extent to arbitrary λ(t) and nonidenti-
cal Wi . For instance, the diverging geometric process for increments Wi , i.e. Wi+1 = aWi, a >

1, can be considered, but it is not possible to present these results in a simple and self-explanatory
form similar to (5).

The following remark deals with a qualitative analysis of (5) and (9).

Remark 2. (i) Equation (5) suggests that the failure rate λS(t) can be interpreted as a failure
rate of a series system with dependent (via R) components.

(ii) As MW(0) = 1 for λ = 0, λS(t) for this case reduces to the failure rate of the Brown–
Proschan model, (2).

(iii) When µ → ∞, from (9), we obtain λS(t) → λ + ν(t), which means that a failure occurs
either in accordance with the baseline F(t) or as a result of the first shock (competing risks).
Note that, in accordance with the properties of Poisson processes, the rate ν(t) is equal to the
failure rate, which corresponds to the time to the first shock. Therefore, the two ‘components’
of the described series system are asymptotically independent as µ → ∞.

(iv) When µ = 0, which means that Wi = 0, i ≥ 1, (9) becomes λS(t) = λ + p(t)ν(t).
Therefore, this specific case describes the series system with two independent components. The
first component has the failure rate λ and the second component has the failure rate p(t)ν(t),
which corresponds to the failure rate in the Brown–Proschan model (see (3)).

(v) It also follows from (5) that when p(t) = p and ν(t) = ν, the failure rate λS(t) is also
constant, which is a remarkable fact.

(vi) Let q(t) = 1 (no killing shocks), and let Wi be deterministic and equal to µ. Then
MW(−λ) = exp{−µλ}, and (5) becomes

λS(t) = λ + (1 − exp{−µλ})ν(t),

which can also be obtained easily by direct derivation.

Remark 3. Equation (9) can be generalized to the case when the Wis follow the gamma
distribution with parameters α and µ, i.e.

λS(t) = λ +
(

1 − q(t)

(λµ + 1)α

)
ν(t).

3.2. Deterministic boundary

Let R = b be the deterministic boundary. Let other assumptions of Subsection 3.1
(Assumptions 1–3) hold. We consider the case in which t < b, which means that a failure
cannot occur without shocks. The following result gives the survival function of TS .
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Theorem 2. Suppose that Assumptions 1–3 hold and that the inverse function m−1(t) exists.
Furthermore, let the Wis be i.i.d. exponential with mean 1/η. Then the survival function of TS

is given by

P(TS > t) =
∞∑

n=0

( ∞∑
j=n

(η(b − t))j

j ! exp{−η(b − t)}
)(

1

m(t)

∫ t

0
q(x)ν(x) dx

)n

× m(t)n

n! exp{−m(t)}, 0 ≤ t < b. (10)

Proof. In this case, as in Subsection 3.1,

P(TS > t | N(s), 0 ≤ s ≤ t, W1, W2, . . . , WN(t))

=
(N(t)∏

i=1

q(Ti)

)
1
(

t +
N(t)∑
i=1

Wi ≤ b

)
.

Thus, we have

P(TS > t | N(s), 0 ≤ s ≤ t) =
(N(t)∏

i=1

q(Ti)

)
P

(N(t)∑
i=1

Wi ≤ b − t

)

=
(N(t)∏

i=1

q(Ti)

)
G(N(t))(b − t),

where G(n)(t) is the n-fold convolution of G(t) with itself.
As a special case, when the Wis are i.i.d. exponential with mean 1/η,

P(TS > t | N(s), 0 ≤ s ≤ t) =
(N(t)∏

i=1

q(Ti)

)
�(N(t)),

where

�(N(t)) ≡
∞∑

j=N(t)

(η(b − t))j

j ! exp{−η(b − t)},

and

P(TS > t) = E

[(N(t)∏
i=1

q(Ti)

)
�(N(t))

]

= E

[
E

[(N(t)∏
i=1

q(Ti)

)
�(N(t))

∣∣∣∣ N(t)

]]
,

where

E

[(N(t)∏
i=1

q(Ti)

)
�(N(t))

∣∣∣∣ N(t) = n

]
= �(n) E

[(N(t)∏
i=1

q(Ti)

) ∣∣∣∣ N(t) = n

]
.
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Using the same notation and properties as those of the previous subsection, we have

E

[(N(t)∏
i=1

q(Ti)

) ∣∣∣∣ N(t) = n

]
= E

[(N∗(s)∏
i=1

q(m−1(T ∗
i ))

) ∣∣∣∣ N∗(s) = n

]

= E

[( n∏
i=1

q(m−1(V(i)))

)]

= [E(q(m−1(sU)))]n

and

E(q(m−1(sU))) = 1

m(t)

∫ t

0
q(x)ν(x) dx.

Therefore,

E

[(N(t)∏
i=1

q(Ti)

)
�(N(t))

∣∣∣∣ N(t) = n

]
= �(n)

(
1

m(t)

∫ t

0
q(x)ν(x) dx

)n

.

Finally, we obtain a rather cumbersome relationship:

P(TS > t) =
∞∑

n=0

�(n)

(
1

m(t)

∫ t

0
q(x)ν(x) dx

)n
m(t)n

n! exp{−m(t)}

=
∞∑

n=0

( ∞∑
j=n

(η(b − t))j

j ! exp{−η(b − t)}
)(

1

m(t)

∫ t

0
q(x)ν(x) dx

)n

× m(t)n

n! exp{−m(t)}.

It can be easily shown that the survival function in (10) can be written in the following
compact form:

P(TS > t) = exp

{
−

∫ t

0
p(x)ν(x) dx

} ∞∑
n=0

P(Z1 ≥ n) P(Z2 = n), (11)

where Z1 and Z2 are two Poisson random variables with parameters η(b−t) and
∫ t

0 q(x)ν(x) dx,
respectively.

The following remark presents a qualitative analysis for two marginal cases of (11) for each
fixed t < b.

Remark 4. (i) When η = 1/µ → ∞, which means that the mean of the increments Wi tends
to 0, (11) ‘reduces’ to the Brown–Proschan model, (2). Indeed, as η → ∞,

∞∑
n=0

P(Z1 ≥ n) P(Z2 = n) →
∞∑

n=0

P(Z2 = n) = 1,

because P(Z1 ≥ n) → 1 for all n ≥ 1 and P(Z1 ≥ 0) = 1. From ‘physical considerations’, it
is also clear that as increments vanish, their impact on the model also vanishes, and, therefore
it should reduce to the Brown–Proschan model.
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(ii) Now consider another marginal case when η → 0, which means that the mean of the
increments tends to ∞, and, therefore, the first shock will kill the system with probability
tending to 1 as η → 0. The infinite sum on the right-hand side of the following equation
vanishes in this case:

∞∑
n=0

P(Z1 ≥ n) P(Z2 = n) = P(Z1 ≥ 0) P(Z2 = 0) +
∞∑

n=1

P(Z1 ≥ n) P(Z2 = n)

→ P(Z2 = 0),

as P(Z1 ≥ 0) = 1 and P(Z1 ≥ n) → 0 for all n ≥ 1 when η → 0. Therefore, finally,

P(TS > t) → exp

{
−

∫ t

0
p(x)ν(x) dx

}
exp

{
−

∫ t

0
q(x)ν(x) dx

}

= exp

{
−

∫ t

0
ν(x) dx

}
,

which is a probability that no shocks have occurred in [0, t]. This is what we also expect from
general considerations for η → 0, as the system can survive for t < b only without shocks.

4. Concluding remarks

In this paper, a new shock model that combines an extreme shock model with a specific
cumulative shock model was proposed and analyzed. The considered setting can also be
interpreted as a generalization of the well-known Brown–Proschan model that describes the
corresponding repair process in terms of perfect and minimal repairs.

Although mathematical derivations are relatively cumbersome, the explicit self-explanatory
relationships for the probability of nontermination of the nonhomogeneous Poisson process
(and for the corresponding failure rate) have been derived for important special cases. Expo-
nentially distributed and deterministic boundary cases were considered and some meaningful
interpretations and remarks were discussed.

The considered approach can be generalized to the nonidentically distributed sequence
of wear increments (e.g. forming a geometric process). Another possibility is to extend the
perfect-minimal repair reasoning in Cha (2001) to the case when repair is worse than minimal.
The assumption of an exponentially distributed boundary seems to be rather restrictive, but it
allows for simple self-explanatory results. The case of a deterministic boundary considered in
Subsection 3.2 is probably more realistic in this context.
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