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AN ESCAPE FROM VARDANYAN’S THEOREM

ANA DE ALMEIDA BORGES AND JOOST J. JOOSTEN

Abstract. Vardanyan’s Theorems [36, 37] state that QPL(PA)—the quantified provability logic of
Peano Arithmetic—is Π0

2 complete, and in particular that this already holds when the language is restricted
to a single unary predicate. Moreover, Visser and de Jonge [38] generalized this result to conclude that it is
impossible to computably axiomatize the quantified provability logic of a wide class of theories. However,
the proof of this fact cannot be performed in a strictly positive signature. The system QRC1 was previously
introduced by the authors [1] as a candidate first-order provability logic. Here we generalize the previously
available Kripke soundness and completeness proofs, obtaining constant domain completeness. Then we
show that QRC1 is indeed complete with respect to arithmetical semantics. This is achieved via a Solovay-
type construction applied to constant domain Kripke models. As corollaries, we see that QRC1 is the
strictly positive fragment of QGL and a fragment of QPL(PA).

§1. Introduction. Provability is a fundamental concept in mathematics, logic,
and philosophy alike. Gödel proved his famous incompleteness results in [22] by
formalizing provability. Thus, for formal theories like Peano Arithmetic (PA), we
have a natural arithmetical predicate �PA(·) that is true exactly for the Gödel
numbers of PA-provable sentences:

PA � A ⇐⇒ N � �PA(�A�). (1)

For readability we shall not distinguish formulas from their Gödel numbers or from
syntactic terms (numerals) denoting these Gödel numbers in the future.

Gödel observed various provable structural properties of the provability predicate.
For example, for any formula A, if PA � A then PA � �PAA. Moreover, this can
be formalized itself: for any formula A, PA � �PAA→ �PA�PAA. Using such
properties, and after showing how self-reference can be obtained in PA, Gödel
derived his first incompleteness theorem (here presented in a slightly weakened
form for PA) by observing that the sentence B such that PA � B ↔ ¬�PAB can
neither be proved nor refuted in PA, provided that PA only proves true theorems.

In light of this, it makes sense to design a system that collects all provable structural
properties of the provability predicate. The languageL� of propositional modal logic
is optimally suited for this purpose. The formulas of this language are as the ones
of propositional logic together with a unary modality � that is syntactically treated
as negation. Thus we can write Form� ::= ⊥ | Prop | Form� → Form� | �Form�,
where Prop represents propositional symbols.
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1614 ANA DE ALMEIDA BORGES AND JOOST J. JOOSTEN

The modal logical formulas are linked to arithmetic using so-called realizations.
A particular realization ·∗ maps propositional variables to sentences in the language
of PA and this map is extended to any formula by stipulating that it commutes
with implication, ⊥ is mapped to (0 = 1), and the modal operator is mapped to
formalized provability, i.e., (�A)∗PA = �PAA

∗PA .
We can now express what it means to be a provable structural property.

For example, for any realization ·∗ we have PA � (�(p → q) → (�p → �q))∗PA ,
since PA � �PA(p∗ → q∗) → (�PAp

∗ → �PAq
∗) for any formulas p∗ and q∗. The

structural properties are thus captured by the modal formulas that are provable
under any realization. We call this PL(PA), the provability logic of PA, and write

PL(PA) := {A ∈ L� | for any ·∗, we have PA � A∗PA}.
Via (1) we know that (PA � A∗PA for any ·∗) if and only if (N � �PAA

∗PA for
any ·∗). Clearly A∗PA only depends on the value of ·∗ for the finitely many
propositional variables that occur in A, and so the universal quantifier “for any
·∗” can be coded and made internal, making it possible to characterize PL(PA)
by {A | N � ∀ ·∗ �PAA

∗PA}. We now observe that �PAB is a Σ0
1 formula. That is,

�PAB is of the form ∃p PrfPA(p,B), where PrfPA(·, ·) is a decidable predicate. Thus,
PL(PA) = {A | N � ∀ ·∗ �PAA

∗PA} has a Π0
2 definition. If we moreover realize that

�PA(·) is Σ0
1 complete in that any computably enumerable1 set U can be defined

using a formula AU as {n | N � �PA(AU (n))}, then it seems that there is little hope
that the Π0

2 set PL(PA) allows for a simple characterization.
However, a little miracle happens and by Solovay’s Completeness Theorem [34] we

know that PL(PA) is decidable, corresponding to what we nowadays call the Gödel–
Löb provability logic GL. Likewise, Solovay proved that the set of true structural
provability principles

TPL(PA) := {ϕ ∈ L� | for any ·∗, we have N � ϕ∗PA}
is also decidable and described by the well-behaved modal logic GLS. We observe
that, a priori, TPL(PA) falls outside the arithmetical hierarchy due to Tarski’s [35]
result on the undefinability of arithmetical truth.

After these positive results, there was hope that the nice characterizations could
be extended to the realm of quantified modal logic. Thus, the focus switched to the
language L�,∀ of quantified modal logic without identity, which contains ⊥, relation
symbols, Boolean connectives, ∀x, and �, as well as the usual abbreviations such as
� and ∃x. We define arithmetical realizations ·∗ for L�,∀ formulas as before with the
only difference that we now map n-ary relation symbols to arithmetical formulas with
n free variables and set (∀x ϕ)∗PA := ∀y ϕ∗PA , where y is the arithmetical variable
corresponding to x. The quantified provability logic of PA can now be defined by
analogy (cf. [11]):2

QPL(PA) := {A ∈ L�,∀ | for any ·∗, we have PA � A∗PA}

1Also known as c.e., recursively enumerable, or computably axiomatizable.
2In general, QPL(T ) may change depending on the chosen axiomatization � for T (see [3, 28, 29]),

but here we omit the axiomatization for simplicity.
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AN ESCAPE FROM VARDANYAN’S THEOREM 1615

as well as

TQPL(PA) := {A ∈ L�,∀ | for any ·∗, we have N � A∗PA}.
It is not hard to see that �∀x A→ ∀x �A is in QPL(PA), and for some time it

was believed that one could obtain QPL(PA) by adding such principles together
with predicate logical reasoning to GL. A first wrinkle in this hope appeared
when Montagna [32] published a new always provable principle falling outside
this easily generated set. Soon after, Artemov [2] proved that TQPL(PA) is not
even arithmetically definable. Last hopes were scattered when Vardanyan [36] and
McGee [31] independently proved that QPL(PA) is as complex as it can possibly be:
Π0

2 complete. Moreover, Boolos and McGee [12] showed that TQPL(PA) is also as
complex as possible: Π0

1 complete in the set of true arithmetic.
These negative results are quite robust in various ways. For example, Vardanyan

[37] showed that restricting the language to the fragment with a single unary
predicate and without any modality nesting doesn’t break the Π0

2 completeness.
Restricting the complexity of the realizations to, for example, Σ0

1 formulas doesn’t
help either: the corresponding set is still Π0

2 complete, as shown by Berarducci [10].
One can consider QPL(T ) for an arbitrary c.e. theory T. It is easy to see that the

degenerate case of QPL(PA + �PA⊥) is axiomatized by predicate logic together with
�⊥. However, Visser and de Jonge [38] proved that for most theories T, QPL(T ) is
indeed Π0

2 complete. The title of their paper is No Escape from Vardanyan’s Theorem.
Be that as it may, there have already been some “escapes” from Vardanyan’s

Theorem. For example, the one-variable fragment ofQPL(PA) is decidable, as shown
by Artemov and Japaridze [4]. Furthermore, an arithmetically complete quantified
modal logic was proposed by Yavorsky [40] (see also [24]). This logic, called QGLb ,
assumes that in �A every free variable of A is bound under the box. In other words,
QGLb is roughly QGL extended with the axiom schema �A→ �∀x A.

Our proposed fragment includes countably many variables and allows for open
variables under the box. In order to “escape,” we restrict the language to its strictly
positive fragment instead. This work already began in [1], where we described
the system QRC1 and proved its decidability. Here we improve on the modal
results presented there and prove the arithmetical completeness theorem for QRC1,
previously left as a conjecture.

There is an ongoing formalization3 of this paper in the Coq Proof Assistant [14],
covering Sections 3 and 4 (and part of Section 5) as of May 2022.

1.1. Overview of the paper. We start with a brief overview of strictly positive
logics in Section 2, followed by the definition of QRC1, our main object of study, in
Section 3.

After that the paper is divided into two parts, the first dealing with purely modal
results (Sections 4–6), and the second delving into arithmetic (Sections 7–10). The
two parts are not completely independent, but a reader who wishes to skip to
Section 7 need only be familiar with the definition of Kripke model with constant
domain (Definition 4.1) and the constant domain completeness theorem for QRC1

(Theorem 5.11).

3https://gitlab.com/ana-borges/QRC1-Coq.
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1616 ANA DE ALMEIDA BORGES AND JOOST J. JOOSTEN

In the first part, Section 4 starts by presenting an extended definition of Kripke
model that does not depend on inclusive models, with a respective soundness proof
for QRC1. Then in Section 5 we show that QRC1 is complete with respect to constant
domain Kripke models. Section 6 remarks thatQRC1 is the strictly positive fragment
of every logic between QK4 and QGL, and also of other quantified modal logics such
as QK4 + BF, where BF = ∀x �A→ �∀x A is the well-known and arithmetically
unsound Barcan Formula.

In the second part, Section 7 explains our arithmetic reading of strictly positive for-
mulas, followed by Section 8, where we prove the arithmetical completeness ofQRC1.
Section 9 then makes use of the arithmetical completeness theorem to show that
QRC1 is a fragment of QPL(PA). Section 10, which can be read right after Section 7,
shows the arithmetical soundness of QRC1 with respect to Heyting Arithmetic.

We end with some proposed avenues for future work in Section 11.

§2. Strictly positive logics. A key feature of our escape is given by restricting the
language. Given variables x, xi , ... and a signature Σ fixing the constants c, ci , ... and
relation symbols S, Si , ..., the formulas of QRC1 are built up from �, n-ary relation
symbols applied to n terms (which are either variables or constants), the binary ∧,
the unary �, and the quantifier ∀x. The provable judgments in QRC1 are all of the
form ϕ � � with ϕ and � in the above language.

Our formulas are related to arithmetic through realizations ·◦ that map n-ary
predicate symbols to c.e. axiomatizations of theories indexed by n parameters (details
can be found in Section 7). Given a Σ0

1 axiomatization � of some theory T, we
extend ·◦ to non-predicate formulas such that conjunctions are interpreted as the
unions of the corresponding axiom sets ((ϕ ∧ �)◦� := ϕ◦� ∨ �◦� ), and universal
quantification corresponds to an infinite union ((∀x ϕ)◦� := ∃y ϕ◦� , where y is the
arithmetical variable corresponding to the modal variable x).

This interpretation is common in the study of reflection calculi [7] and is more
general than the usual, finitary one, mentioned in the previous section as ·∗. In the
latter case, conjunctions of modal formulas are simply interpreted as conjunctions
of their arithmetical counterparts. We further define and make use of this finitary
notion in Section 8. While it is possible to represent finite extensions of a base theory
through the finitary ·∗-style realizations, the ·◦ approach allows for the possibility
of infinitary extensions.

Using this restricted fragment and infinitary arithmetical interpretation, we define
the Strictly Positive Quantified Provability Logic of a theory T as follows.

QPLSP(T ) := {〈ϕ,�〉 | ∀ ·◦ T � ∀� (��◦� � → �ϕ◦� �)}.
The main result of this paper is that, for a large class of theories T, the logic
QPLSP(T ) is decidable and given by the system QRC1 as introduced in [1]. As such
our paper was inspired by and contributes to three recent developments in the
literature: strictly positive logics, reflection calculi, and polymodal logics.

The quintessential polymodal provability logic is GLP, introduced by Japaridze in
1986 [26]. The Reflection Calculus, RC, was first introduced by Dashkov [16] as the
set of GLP-equivalences between strictly positive formulas. It was then axiomatized
by Beklemishev [6], and it is the latter formulation that appears in most of the
ensuing literature.
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Even thoughRC has a strictly positive language, it is remarkably expressive, giving
rise to an ordinal notation system [19] and being an appropriate tool for Π0

1 ordinal
analysis [9]. This is remarkable because, while GLP is PSPACE complete [33], RC has
a polynomial-time decision procedure. Thus, at least in the case of GLP, restricting
the language to the strictly positive fragment is very worthwhile.

QRC1 was inspired by RC1, which is the unimodal fragment of RC. We hoped
to emulate RC’s success in these two dimensions, obtaining a useful calculus with
a simpler complexity than the original (QPL(PA) in this case). We already see in
this paper that the latter goal was achieved, since QRC1 is decidable while QPL(PA)
is Π0

2 complete. However, the main expressibility tool available in RC, the iterated
consistency statements (also known as worms [5]), are not very interesting when
there is only one modality. Thus we plan to extend QRC1 to QRCΛ in the future.

When considering a strictly positive logic P, one may ask whether there is some
modal logic L whose strictly positive fragment LSP coincides with P (cf. [8]). In that
case we would have

ϕ �P � ⇐⇒ ϕ �LSP � ⇐⇒ L � ϕ → �, (2)

where ϕ and � are strictly positive formulas.
We know that RC is the strictly positive fragment of GLP (in the sense of (2)), and

in Section 6 we show that QRC1 is the strictly positive fragment of QGL. However,
there are strictly positive logics with no such counterpart, such as RC together with
the persistence axiom 〈�〉ϕ � ϕ. This system was described in [7] as RC�.

The study of strictly positive logics has also been developed in other communities,
most notably in the field of description logics, as in [27, 30]. Furthermore, there is a
significant body of work done about (non-strictly) positive logics (see [13, 17]).

§3. Quantified Reflection Calculus with one modality. The Quantified Reflection
Calculus with one modality, or QRC1, is a sequent logic in a strictly positive predicate
modal language introduced in [1].

The free variables of a formula ϕ are defined as usual, and denoted by fv(ϕ). The
expression ϕ[x←t] denotes the formula ϕ with all free occurrences of the variable x
simultaneously replaced by the term t. We say that t is free for x inϕ if no occurrence
of a free variable in t becomes bound in ϕ[x←t].

The axioms and rules of QRC1 are listed in the following definition from [1]. Here
we removed the axiom �∀x ϕ � ∀x�ϕ because it is an easy consequence of the
calculus without it.

Definition 3.1 (QRC1 [1]). Let Σ be a signature and ϕ,�, and � be any formulas
in that language. The axioms and rules of QRC1 are the following:

(i) ϕ � � and ϕ � ϕ;
(ii) ϕ ∧ � � ϕ and ϕ ∧ � � �;

(iii) if ϕ � � and ϕ � �, then
ϕ � � ∧ �;

(iv) if ϕ � � and � � �, then ϕ � �;
(v) if ϕ � �, then �ϕ � ��;

(vi) ��ϕ � �ϕ;

(vii) if ϕ � �, then ϕ � ∀x �
(x /∈ fv(ϕ));

(viii) if ϕ[x←t] � �, then ∀x ϕ � �
(t free for x in ϕ);

(ix) if ϕ � �, then ϕ[x←t] � �[x←t]
(t free for x in ϕ and �);

(x) if ϕ[x←c] � �[x←c], then ϕ � �
(c not in ϕ nor �).
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1618 ANA DE ALMEIDA BORGES AND JOOST J. JOOSTEN

If ϕ � �, we say that � follows from ϕ in QRC1. When the signature is not clear
from the context, we write ϕ �Σ � instead.

We observe that our axioms do not include universal quantifier elimination.
However, this and various other rules are readily available via the following easy
lemma.

Lemma 3.2. The following are theorems (or derivable rules) of QRC1:
1. ∀x ∀y ϕ � ∀y ∀x ϕ;
2. ∀x ϕ � ϕ[x←t] (t free for x in ϕ);
3. �∀x ϕ � ∀x�ϕ;4

4. ∀x ϕ � ∀y ϕ[x←y] (y free for x in ϕ and y /∈ fv(ϕ));
5. if ϕ � �, then ϕ � �[x←t] (x not free in ϕ and t free for x in �);
6. if ϕ � �[x←c], then ϕ � ∀x � (x not free in ϕ and c not in ϕ nor �).

The following are two useful complexity measures on the formulas of QRC1.

Definition 3.3 (d�, d∀ [1]). Given a formula ϕ, its modal depth d�(ϕ) is defined
inductively as follows:

• d�(�) := d�(S(x0, ... , xn–1)) := 0;
• d�(� ∧ �) := max{d�(�),d�(�)};
• d�(∀x �) := d�(�);
• d�(��) := d�(�) + 1.

Given a finite set of formulas Γ, its modal depth is d�(Γ) := maxϕ∈Γ{d�(ϕ)}.
The definition of quantifier depth d∀ is analogous except for:

• d∀(∀x �) := d∀(�) + 1 and
• d∀(��) := d∀(�).

The modal depth provides a necessary condition for derivability, which in
particular implies irreflexivity.

Lemma 3.4 [1]. Let ϕ and � be formulas in the language of QRC1.
• If ϕ � �, then d�(ϕ) ≥ d�(�).
• ϕ �� �ϕ.

Finally, the signature ofQRC1 can be extended without strengthening the calculus.

Lemma 3.5 [1]. Let Σ be a signature and let C be a collection of constants not
yet occurring in Σ. By ΣC we denote the signature obtained by including these new
constants C in Σ. Let ϕ,� be formulas in the language of Σ. Then, if ϕ �ΣC �, so does
ϕ �Σ �.

§4. Relational semantics. QRC1 was proven sound and complete with respect to
relational semantics in [1]. Here we extend both of those results in the following
ways: we relax the requirement for the adequateness of a frame, and we prove
constant domain completeness: that if ϕ �� � then there exists a counter model that,
in addition to being finite and irreflexive, also has a constant domain.

4In [1] this was presented as an axiom ofQRC1, but it is easily provable through the two ∀ introduction
rules and necessitation.
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We begin by slightly changing the definition of frame and relational model
presented in [1]. There, models for QRC1 were described as a number of first-order
models (the worlds) connected through a transitive relation R. We additionally
required inclusiveness: that whenever w and u are worlds connected through R, the
domain of w be included in the domain of u. We then used the inclusion (identity)
function �w,u to refer to the element of the domain of u corresponding to an element
in the domain of w.

Here, we no longer have the inclusiveness restriction. In fact, as we will see bellow,
any configuration of domains is sound as long as the functions 	w,u relating the
domain of w with the domain of u respect the transitivity of R. This is clearly the
case if the frame is inclusive and 	w,u = �w,u , so the definitions presented in [1] are a
particular case of the ones presented here.

Definition 4.1. A relational model M in a signature Σ is a tuple
〈W,R, {Mw}w∈W , {	w,v}wRv, {Iw}w∈W , {Jw}w∈W 〉 where:

• W is a non-empty set (the set of worlds, where individual worlds are referred
to as w, u, v, etc.);

• R is a binary relation on W (the accessibility relation);
• eachMw is a finite set (the domain of the world w, whose elements are referred

to as d, d0, d1, etc.);
• if wRv, then 	w,v is a function fromMw toMv ;
• for each w ∈W , the interpretation Iw assigns an element of the domainMw

to each constant c ∈ Σ, written cIw ; and
• for each w ∈W , the interpretation Jw assigns a set of tuples SJw ⊆ ℘((Mw)n)

to each n-ary relation symbol S ∈ Σ.
The 〈W,R, {Mw}w∈W , {	w,v}wRv〉 part of the model is called its frame. We say

that the frame (or model) is finite if W is finite, and that it is constant domain if all
theMw coincide and all the 	w,u are the identity function.

The relevant frames and models will need to satisfy a number of requisites.

Definition 4.2. A frame F is adequate if:
• R is transitive: if wRu and uRv, then wRv; and
• 	 functions respect transitivity: if wRu and uRv, then 	w,v = 	u,v ◦ 	w,u .5

A model is adequate if it is based on an adequate frame and it is:
• concordant: if wRu, then cIu = 	w,u(cIw ) for every constant c.

Note that in an adequate and rooted model the interpretation of the constants is
fully determined by their interpretation at the root.

As in [1], we use assignments to define truth at a world in a first-order model. A
w-assignment g is a function assigning a member of the domainMw to each variable
in the language. Any w-assignment can be seen as a v-assignment as long as wRv,
by composing it with 	w,v on the left. We write gv to shorten 	w,v ◦ g whenw is clear
from the context.

Two w-assignments g and h are x-alternative, written g ∼x h, if they coincide
on all variables other than x. A w-assignment g is extended to terms by defining

5We only require extensional equality.

https://doi.org/10.1017/jsl.2022.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.38


1620 ANA DE ALMEIDA BORGES AND JOOST J. JOOSTEN

g(c) := cIw for any constant c. Note that this meshes nicely with the concordant
restriction of an adequate model: for any term t, if wRv then gv(t) = 	w,v(g(t)).

We are finally ready to define satisfaction at a world. This definition is a
straightforward adaptation of the one presented in [1] to our current definition
of model. The only difference is in the case of �ϕ, where we use gv instead of g� .

Definition 4.3. Let M = 〈W,R, {Mw}w∈W , {	w,u}wRu, {Iw}w∈W , {Jw}w∈W 〉 be
an adequate model in some signature Σ, and let w ∈W be a world, g be a w-
assignment, S be an n-ary relation symbol, andϕ,� be formulas in the language of Σ.

We define M, w �g ϕ (ϕ is true at w under g) by induction on ϕ as follows.

• M, w �g �;
• M, w �g S(t0, ... , tn–1) iff 〈g(t0), ... , g(tn–1)〉 ∈ SJw ;
• M, w �g ϕ ∧ � iff both M, w �g ϕ and M, w �g �;
• M, w �g �ϕ iff there is a v ∈W such that wRv and M, v �gv ϕ;
• M, w �g ∀x ϕ iff for all w-assignments h such that h ∼x g, we have
M, w �h ϕ.

Theorem 4.4 (Relational soundness). If ϕ � �, then for any adequate model M,
for any world w ∈W , and for any w-assignment g,

M, w �g ϕ =⇒ M, w �g �.

Proof. By induction on the proof of ϕ � �, making the same arguments as in
[1]. Here we highlight only the transitivity axiom, where the transitivity of the 	
functions comes into play, and also remark on the generalization on constants rule.

The transitivity axiom is ��ϕ � �ϕ, so assume that M, w �g ��ϕ. Then there
is a world v such that wRv and M, v �	w,v◦g �ϕ, and also a subsequent world u
such that vRu and M, u �	v,u◦(	w,v◦g) ϕ. Since R is transitive, we know that wRu
and thus that 	v,u ◦ (	w,v ◦ g) coincides with 	w,u ◦ g. Then M, u �	w,u◦g �, and
consequently M, w �g �ϕ, as desired.

The soundness of the generalization on constants rule, Rule 3.1(x), is the most
involved part of the proof presented in [1] and depends on the construction of a
model where the interpretation of a constant is changed. Building that model in
this context is a simple matter of taking care to propagate that change to all future
worlds using the 	 functions. �

We end this section by noting that, even though the language of QRC1 is
quite restricted, even its ∀ fragment requires counter-models with arbitrarily large
domains. For example, the sequent

∀x, y S(x, x, y) ∧ ∀x, y S(x, y, x) ∧ ∀x, y S(y, x, x) � ∀x, y, z S(x, y, z)

is unprovable in QRC1, but satisfied by every world with at most two domain
elements. This reasoning can be extended to any n: if S is an n-ary predicate
symbol, let ϕn be the conjunction of the n(n – 1)/2 formulas of the form
∀x0, ... , xn–2 S(... , x0, ... , x0, ...), with x0 appearing in every possible pair of
positions and every other position filled by a unique variable. Then ϕn does not
entail �n := ∀x0, ... , xn–1 S(x0, ... , xn–1) but any world with at most n – 1 domain
elements that satisfies ϕn must also satisfy �n.

https://doi.org/10.1017/jsl.2022.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.38


AN ESCAPE FROM VARDANYAN’S THEOREM 1621

§5. Constant domain completeness. In [1] we proved relational completeness by
building a term model that satisfies ϕ and doesn’t satisfy � when ϕ �� �. That
construction provides a finite, irreflexive, and rooted model with increasing domains.
Here we show that it is possible to build a constant domain model instead, that is, a
model where the domain of every world is exactly the same. This is extremely useful
to prove the arithmetical completeness theorem in Section 8.

Before starting the formal proof, we briefly describe the main idea. The term
models we build are such that each world is a pair of sets of closed formulas
p = 〈p+, p–〉. The first set, p+, is the set of formulas that will be satisfied at that
world, or the positive part. The second set, p–, is the set of formulas that will not
be satisfied at that world, or the negative part. All worlds must be well-formed with
respect to some finite set of closed formulas Φ, which means that:

• p is closed: every formula in p+ and every formula in p– is closed;
• p is Φ-maximal: every formula of Φ is in either p+ or p– (and there are no

formulas in p but not in Φ);
• p is consistent: if � ∈ p– then

∧
p+ �� �; and

• p is fully-witnessed: if ∀x ϕ ∈ p– then there is a constant c such that
ϕ[x←c] ∈ p–.

In that case we say that p is Φ-maximal consistent and fully witnessed, or Φ-MCW
for short (the closeness condition is included in the concept, although in practice
almost every formula in this section will be closed). If p and q are pairs, we write
p ⊆ q when p+ ⊆ q+ and p– ⊆ q–. Furthermore, if Γ is a set of formulas we write
p ⊆ Γ instead of p+ ∪ p– ⊆ Γ.

We want to have Φ-MCW pairs where Φ is closed under subformulas. However,
the naive subformulas of ∀x ϕ might be open. In order to avoid that, we use the
notion of closure with respect to a set of constants C defined in [1], where ϕ[x←c]
is a valid subformula of ∀x ϕ as long as c ∈ C .

Definition 5.1 (C�C [1]). Given a set of constants C, the closure of a
formula ϕ under C, written C�C (ϕ), is defined by induction on the formula
as such: C�C (�) := {�}; C�C (S(t0, ... , tn–1)) := {S(t0, ... , tn–1),�}; C�C (ϕ ∧ �) :=
{ϕ ∧ �} ∪ C�C (ϕ) ∪ C�C (�); C�C (�ϕ) := {�ϕ} ∪ C�C (ϕ); and

C�C (∀x ϕ) := {∀x ϕ} ∪
⋃
c∈C

C�C (ϕ[x←c]).

The closure under C of a set of formulas Γ is the union of the closures under C
of each of the formulas in Γ:

C�C (Γ) :=
⋃
∈Γ

C�C ().

The closure of a pair p is defined as the closure of p+ ∪ p–.

Going back to the overview of the completeness proof, suppose that ϕ �� �,
(assuming for now that ϕ and� are closed). Defining p := 〈{ϕ}, {�}〉, the counter-
model will be rooted on a C�C (p)-MCW extension of p, where C is a set of constants
to determine. The set of constants C will be used as the domain of the root. Note that
p is already closed and consistent, so taking the step to maximality is as simple as
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deciding whether to add each � ∈ C�C (p) to the positive or negative part of the root
without ruining its consistency. The hard part is doing so in a way that guarantees
that the resulting pair is fully witnessed.

The completeness proof shown in [1] uses the observation that if
∧
p+ �� ∀x �,

then also
∧
p+ �� �[x←c], as long as c does not appear in either p+ or � (Lemma

3.2.6). This suggests a way of sorting the formulas of C�C (p) into positive and
negative: mark a formula as positive if and only if it is a consequence of p+. This
guarantees that there are witnesses for the negative universal formulas as long as
there are enough constants to go around. The way to make sure that there are
enough constants is precisely the difference between the proof presented in [1] and
the proof presented here. To that end, we introduce the following definition.

Definition 5.2 (dconst). The number of different constants in a formula ϕ is
represented by dconst(ϕ). The maximum number of different constants per formula
in a set of formulas Γ is defined as dconst(Γ) := maxϕ∈Γ{dconst(ϕ)}.

Note that dconst(Γ) is not the number of different constants appearing in Γ, but the
maximum number of different constants in any single formula of Γ. For example,
dconst({S0(c0, c1), S1(c2)}) = 2.

We observe that the maximum number of distinct constants per formula in the
closure under C of a set of formulas can be bounded by a number that does not
depend on C.

Fact 5.3. For any formula ϕ, set of formulas Φ, and set of constants C:

• dconst(ϕ) ≤ dconst(ϕ[x←c]) ≤ dconst(ϕ) + 1;
• dconst(ϕ) ≤ dconst(C�C (ϕ)) ≤ dconst(ϕ) + d∀(ϕ);
• dconst(Φ) ≤ dconst(C�C (Φ)) ≤ dconst(Φ) + d∀(Φ).

We are now ready to prove a Lindenbaum-like lemma.

Lemma 5.4. Given a finite signature Σ with constants C and a finite set of closed
formulas Φ in the language of Σ such that |C | > 2dconst(Φ) + 2d∀(Φ), if p ⊆ C�C (Φ)
is a closed consistent pair and p+ is a singleton, then there is a pair q ⊇ p in the
language of Σ such that q is C�C (Φ)-MCW, and d�(q+) = d�(p+).

Proof. Like in [1], we start by defining a pair q ⊇ p such that for each � ∈
C�C (Φ), � ∈ q+ if and only if p+ � � (otherwise � ∈ q–). It is easy to see that this
pair q is C�C (Φ)-maximal consistent, and we have d�(q+) = d�(p+) by Lemma 3.4.

It remains to show that q is fully witnessed. Let ∀x � be a formula in q–. We
claim that there is d ∈ C such that d does not appear either in p+ or in ∀x �. For
this it is enough to see that |C | > dconst(

∧
p+) + dconst(∀x �), which is the same as

|C | > dconst(p+) + dconst(∀x �) becausep+ is a singleton by assumption. Sincep+ ⊆
C�C (Φ), we know that dconst(p+) ≤ dconst(C�C (Φ)), and similarly for ∀x �. Then
by Fact 5.3 we may conclude that dconst(p+) + dconst(∀x �) ≤ 2dconst(Φ) + 2d∀(Φ),
which suffices by our assumption on the size of C.

Since d ∈ C does not appear in eitherp+ or ∀x �, we conclude thatp+ �� �[x←d ]
by Lemma 3.2.6, and consequently �[x←d ] ∈ q– as desired. �

We now recall the definition of R̂ from [1], which is the relation we use to connect
the worlds of the term model.
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Definition 5.5 (pR̂q [1]). The relation R̂ between pairs is such that pR̂q if and
only if both of following hold:

• for any formula �ϕ ∈ p– we have ϕ,�ϕ ∈ q–; and
• there is some formula �� ∈ p+ ∩ q–.

Lemma 5.6 [1]. The relation R̂ restricted to consistent pairs is transitive and
irreflexive.

We now see that if w is a C�C (Φ)-MCW pair with �ϕ ∈ w+, we can find a
C�C (Φ)-MCW pair v with ϕ ∈ v+ and wR̂v. The proof is the same as in [1], except
that we now use Lemma 5.4 to obtain constant domains throughout the model.

Lemma 5.7 (Pair existence). Let Σ be a signature with a finite set of constants
C, and Φ be a finite set of closed formulas in the language of Σ such that |C | >
2dconst(Φ) + 2d∀(Φ). If p is a C�C (Φ)-MCW pair and �ϕ ∈ p+, then there is a
C�C (Φ)-MCW pair q such that pR̂q, ϕ ∈ q+, and d�(q+) < d�(p+).

Proof. Consider the pair r defined as r+ := {ϕ} and r– := {�,�� | �� ∈ p–} ∪
{�ϕ}. It is easy to check that r is consistent and that pR̂r (details can be found in
[1]), and clearly r ⊆ C�C (Φ). We then use Lemma 5.4 to obtain a C�C (Φ)-MCW
pair q ⊇ r such that d�(q+) = d�(r+) = d�(ϕ) < d�(p+). We obtain pR̂q as a
straightforward consequence of pR̂r. �

We can now define an adequate and constant domain model M[p] from any
given finite and consistent pair p such that M[p] satisfies the formulas in p+ and
doesn’t satisfy the formulas in p–. The idea is exactly the same as in [1]: build a term
model where each world w is a C�M (p)-MCW pair, and the worlds are related by (a
sub-relation of) R̂.

Definition 5.8. Let Σ be a signature. Given a finite consistent pair p of closed
formulas in Σ such that p+ is a singleton,6 we define an adequate model M[p]. Here
we will use Φ := p+ ∪ p–.

Let C be a set of at least 2dconst(Φ) + 2d∀(Φ) + 1 different constants, including
all of the ones appearing in Σ and adding more if necessary. The pairs of formulas
we work with are in the signature Σ extended by C.

We start by defining the underlying frame in an iterative manner. The root is given
by Lemma 5.4 applied to C and p, obtaining the C�C (Φ)-MCW pair q. Frame F0 is
then defined such that its set of worlds isW 0 := {q}, its relation R0 is empty, and
the domain of q isM 0

q := C .
Assume now that we already have a frame F i , and we set out to define F i+1 as

an extension of F i . For each leaf w of F i , i.e., each world such that there is no
world v ∈ F i with wRiv, and for each formula �ϕ ∈ w+, use Lemma 5.7 to obtain
a C�C (Φ)-MCW pair v such that wR̂v, ϕ ∈ v+, and d�(v+) < d�(w+). Now add
v to Wi+1, add 〈w, v〉 to Ri+1, define Mi+1

v as C, and define 	w,v as the identity
function.

The process described above terminates because each pair is finite and the modal
depth of C�C (Φ) (and consequently of w+, for any w ⊆ C�C (Φ)) is also finite. Thus

6This is without loss of generality, as otherwise we could take the conjunction of every formula in p+

as the new p+.

https://doi.org/10.1017/jsl.2022.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.38


1624 ANA DE ALMEIDA BORGES AND JOOST J. JOOSTEN

there is a final frame Fm, for some natural number m. This frame is constant domain
by construction, but not transitive. We obtain F [p] as the transitive closure of Fm,
which is clearly still constant domain. The 	 functions are all the identity in C, thus
satisfying the transitivity condition. We conclude that the frame F [p] is adequate.

In order to obtain the model M[p] based on the frame F [p], let Iq take constants
in Σ to their corresponding version as domain elements. If w is any other world, let
Iw coincide with Iq . This is necessary to make sure that the model is concordant,
because q sees every other world, and is sufficient to see that M[p] is adequate.
Finally, given an n-ary predicate letter S and a world w, define SJw as the set of
n-tuples 〈d0, ... , dn–1〉 ⊆ (Mw)n such that S(d0, ... , dn–1) ∈ w+.

Since everything up until now was meant for closed formulas, and furthermore
we are potentially adding new constants to the signature of the formulas we care
about, we provide a way of replacing the free variables of a formula with constants.

Definition 5.9 (ϕg [1]). Given a formula ϕ in a signature Σ and a function g
from the set of variables to a set of constants in some signature Σ′ ⊇ Σ, we define
the formula ϕg in the signature Σ′ as ϕ with each free variable x simultaneously
replaced by g(x).

The constant domain model defined above coincides with the non-constant
domain definition provided in [1] in everything other than that it refers to the
stronger Lemmas 5.4 and 5.7 that keep the domain constant. Thus the Truth Lemma
holds with exactly the same proof.

Lemma 5.10 (Truth Lemma [1]). Let Σ be a signature. For any finite non-empty
consistent pair p of closed formulas in the language of Σ, world w ∈ M[p], w-
assignment g, and formula ϕ in the language of Σ such that ϕg ∈ C�Mw (p), we have
that

M[p], w �g ϕ ⇐⇒ ϕg ∈ w+.

We are now ready to prove the constant domain completeness theorem.

Theorem 5.11 (Constant domain completeness). Let Σ be a signature and ϕ,�
be formulas in Σ. If ϕ �� �, then there is an adequate, finite, irreflexive, and constant
domain model M, a world w ∈W , and a w-assignment g such that

M, w �g ϕ and M, w ��g �.

Proof. As in the original proof of relational completeness presented in [1], define
a new constant cx for each free variable x of ϕ and � and let Σ′ be the signature
Σ augmented with these new constants and a dummy constant c0. Let g be the
assignment taking each free variable x ofϕ and� to cx and every other variable to c0.
Note that ϕg ��Σ′ �g by Rule 3.1(x) and Lemma 3.5. Build M := M[〈{ϕg}, {�g}〉]
as described in Definition 5.8, with root w. Then by Lemma 5.10 we have both
M, w �g ϕ and M, w ��g �, as desired. �

§6. The strictly positive fragment of QK4 and QGL. Consider the language of full
quantified modal logic with no equality nor constant nor function symbols, L�,∀.
We use upper case letters to refer to formulas in this language. A propositional
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modal logic S can be extend to a quantified modal logic QS as described in [25] by
extending the language and adding the following axiom schema and rule:

• [∀E] ∀x A→ A[x←y] (y free for x in A);
• [∀I] if QS � A→ B , then QS � A→ ∀x B (x /∈ fv(A)).

The logic K4 is obtained from the smallest normal modal logic K by adding the 4
Axiom �A→ ��A. The logic GL is K4 extended with Löb’s Axiom �(�A→ A) →
�A. Dashkov [16] showed that RC1 is the strictly positive fragment of both K4 and
GL (and of any logic between them), in the sense that, if ϕ and � are built up from
�, propositional symbols, conjunctions, and diamonds, then ϕ �RC1 � if and only
if K4 � ϕ → �, and similarly for GL. In this section we show that this equivalence
is maintained in the predicate case.

Since QRC1 includes constants in its language and predicate modal logics are
often presented without them, we define a map from the language of QRC1 to its
constant-free subset, replacing constants with fresh variables. Thus, given a finite
set of QRC1 formulas Φ where the constants appearing in Φ are c = c0, ... , cn–1,
let x = x0, ... , xn–1 be fresh variables with respect to Φ. Then we define ϕΦ :=
ϕ[c0←x0] ··· [cn–1←xn–1] for each ϕ ∈ Φ, and abbreviate this long substitution with
the notation ϕ[c←x]. Thus we also have ϕ = ϕΦ[x←c].

It is straightforward to iterate Rules 3.1(x) and 3.1(ix) in order to confirm that
the above translation is harmless when it comes to provability.

Fact 6.1. Let Φ be a finite set of QRC1 formulas such that ϕ,� ∈ Φ. Then

ϕ � � ⇐⇒ ϕΦ � �Φ.

The semantics presented here for QRC1 is a generalization of more traditional
semantics for quantified modal logics, since it uses maps between domains. However,
for this section, we will only need constant domain models. These can be easily
interpreted in the usual framework as described in [25]. The following is a well-
known (and easily provable) result.

Theorem 6.2 (Soundness for QS [25]). If F = 〈W,R〉 satisfies every theorem of S,
then any constant domain model based on F satisfies every theorem of QS.

Thus any transitive constant domain model is a QK4 model, and any transitive
and conversely well-founded constant domain model is a QGL model.7

We are now ready to show the main theorem of this section.

Theorem 6.3. Let ϕ and � be QRC1 formulas and let QS be any logic between
QK4 and QGL. Then ϕ � � if and only if there is a finite set Φ such that ϕ,� ∈ Φ and
QS � ϕΦ → �Φ.

Proof. For the left-to-right implication, let Φ be the set of formulas appearing
in the proof of ϕ � �. It is easy to see by induction on the length of the QRC1 proof
that QK4 � ϕΦ → �Φ, which then implies that QS � ϕΦ → �Φ.

For the right-to-left implication, we prove the contrapositive. If ϕ �� �, then by
Fact 6.1 we know that ϕΦ �� �Φ for any Φ including both ϕ and �. Let M be a
QRC1 model satisfying ϕΦ and not satisfying �Φ, as given by Theorem 5.11. This

7We assume constant domain models for simplicity, but these results also hold in the inclusive case.
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model is transitive, irreflexive, and has finitely-many worlds, which means it is a
QGL model by Theorem 6.2. We conclude that QGL �� ϕΦ → �Φ, and consequently
that QS �� ϕΦ → �Φ. �

We end with the following observation. The proof of Theorem 6.3 holds for
any quantified modal logic that extends QK4 and is sound for any combination
of constant-domain, finite, transitive, and irreflexive models. The Barcan Formula
(BF), ∀x �A→ �∀x A, is popular in the world of quantified modal logic and is
always sound in constant-domain models. Thus the proof of Theorem 6.3 also
serves to see that, for example, ϕ � � if and only if QK4 + BF � ϕΦ → �Φ. This
is curious because BF does not hold in QGL and is in fact unsound with the usual
provability interpretation of �. From this we conclude that it would be worthwhile
to study QRC1 from points of view unrelated to provability.

§7. Arithmetical semantics. Recall that the language of arithmetic is that of first-
order logic together with the symbols {0, 1,+,×,≤,=} with their usual arities (see
[23] for details). We will rely on Σ0

1 collection throughout the sections on arithmetic,
so we take IΣ1 as our base theory.

Let T be an elementary presented extension of IΣ1, meaning that there is a
bounded formula AxT (u) that is true in the standard model if and only if u is (the
Gödel number of) an axiom of T. In this setting it is traditional to define Gödel’s
provability predicate �Tϕ as ∃p PrfT (p, �ϕ�), where

PrfT (p, n) := sequence(p) ∧ p|p|–1 = n ∧
∀k < |p| (AxT (pk) ∨ ∃i, j < kMP(pi , pj, pk) ∨ ∃i < kGen(pi , pk)).

Roughly, �Tϕ formalizes that there is a Hilbert-style proof of ϕ, that is, a finite
sequence p0, ... , pm such that pm is ϕ and that each pk is either (the Gödel number
of) an axiom of T or follows from previous elements of the sequence through either
modus ponens or generalization.

Note that all the functions used in the definition of PrfT can be naturally defined
as bounded formulas in IΣ1, and thus PrfT is itself a bounded formula. This means
that �Tϕ is Σ0

1. We write �Tϕ as shorthand for ¬�T¬ϕ.
In what follows we will be interested in c.e. theories, which are theories whose

axioms can be defined by a Σ0
1 formula. It is known by Craig’s Trick [15, 18] that

any such theory has an equivalent elementary presentation, allowing us to use the
regular definition of �T . However, we will work with specific axiomatizations and
thus it is sometimes more convenient to allow Prf to be a Σ0

1 formula. For a given
Σ0

1 axiomatization � of T, we define ��ϕ := ∃p Prf�(p, �ϕ�), where

Prf�(p, n) :=sequence(p) ∧ p|p|–1 = n∧
∀k < |p| (�(pk) ∨ ∃i, j < kMP(pi , pj, pk) ∨ ∃i < kGen(pi , pk)),

the only difference from PrfT being that we use the Σ0
1 formula � instead of the

bounded AxT . Thus Prf� is equivalent to a Σ0
1 formula (provably in IΣ1), and so

��ϕ is still Σ0
1. We define ��ϕ as ¬��¬ϕ, as usual.
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We wish to interpret the strictly positive formulas in the language of QRC1 as
parameterized axiomatizations of arithmetical theories extending IΣ1. Let � be a
bounded axiomatization of a sound c.e. base theory T extending IΣ1.

A realization ·◦ interprets each n-ary relation symbol S(x, c) as an (n + 1)-ary
Σ0

1 formula �(u, y , z) in the language of arithmetic, where y matches with x and z
matches with c .8 We then extend this notion to any formula as follows (we add �(u)
to the axioms of the interpretation of any relation symbol to guarantee that every
theory is an extension of T).

Definition 7.1 (·◦� [1]). Let ·◦ be a realization such that, for a given n-ary
predicate S and terms t , S(t)◦ is an (n + 1)-ary Σ0

1 arithmetical formula where
modal variables xk are interpreted as yk and modal constants ck are interpreted as
zk . We extend this realization to QRC1 formulas as follows:

• �◦� := �(u);
• S(x, c)◦� := S(x, c)◦ ∨ �(u);
• (� ∧ �)◦� := �◦� ∨ �◦� ;
• (♦�)◦� := �(u) ∨ (u = ���◦���);
• (∀xi �)◦� := ∃yi �◦� .

We remark that, if the free variables of ϕ are x0, ... , xn–1 and the constants
appearing in ϕ are c0, ... , cm–1, then the free variables of ϕ◦� are u, y0, ... , yn–1,
z0, ... , zm–1. For example, if S(x0, c1)◦� = �(u, y0, z1) ∨ �(u), then

(�S(x0, c1))◦� = �(u) ∨ (u = ���(u,ẏ0,ż1)∨�(u)��).

The dotted variables ẏ0 and ż1 in the expression u = ���(u,ẏ0,ż1)∨�(u)�� indicate
that y0 and z1 are free variables of this expression that, upon being instantiated by
natural numbers n and m, shall be replaced by the numerals n̄ and m̄ instead.

Since we have Σ0
1 collection, ϕ◦� is always provably equivalent to a Σ0

1 formula,
and it represents the axiomatization of an extension of T.

We briefly inspect our intuitions regarding this arithmetic interpretation and the
interaction between ∀ and �. As mentioned in Lemma 3.2, the sequent �∀x ϕ �
∀x�ϕ is provable in QRC1. In the arithmetical reading it says that if the union of
many theories (the ∀x ϕ part) is consistent, then so is each individual theory. The
converse, on the other hand, must not be a consequence of QRC1, for it is not in
general the case that the union of many consistent theories is itself consistent.

We can now define QRC1(T ):

QRC1(T ) := {ϕ(x, c) � �(x, c) | ∀ ·◦ T � ∀� ∀y , z (��◦� � → �ϕ◦� �)},
where � is a closed formula and ϕ◦� , �◦� in general depend on y and z .

We will show that

QRC1 = QRC1(T )

for any sound c.e theory T extending IΣ1. The left-to-right inclusion was already
proved in [1] for IΣ1, and the same proof goes through for any such T. The most

8In the sections on arithmetic, we always use x for variables of QRC1 and y, z, u for variables of
arithmetic. Furthermore, u is reserved for the Gödel numbers of axioms of theories.
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notable part of the proof is the case of Rule 3.1(vii) (∀ introduction on the right),
which uses Σ0

1 collection. We go into detail on the very similar proof of Theorem 10.3.

Theorem 7.2 (Arithmetical soundness [1]). QRC1 ⊆ QRC1(T ).

We dedicate the next section to the proof of the other inclusion.

§8. Arithmetical completeness. The proof of arithmetical completeness closely
follows the proof of Solovay’s Theorem found in [11]. The arithmetical semantics
used there is different from the one presented in the previous section, allowing only
for finite extensions of the base theory instead of arbitrary c.e. ones. This is not a
problem because finite axiomatizations are enough to show completeness. We use ·◦
in the general setting and ·∗ in the finite one. The base theory T considered here is
any sound c.e. extension of IΣ1. Note that we use the bounded PrfT formula in the
definition of ·∗T (depending on an elementary axiomatization � of T), as otherwise
Solovay’s proof wouldn’t go through.

Definition 8.1 (·∗T ). Let ·∗ be a realization such that, for a given predicate S
and terms t , S(t)∗ is an arithmetical formula with the same arity as S where modal
variables xk are interpreted as yk and modal constants ck are interpreted as zk . We
extend this realization to QRC1 formulas as follows:

• �∗T := �;
• S(t)∗T := S(t)∗;
• (ϕ ∧ �)∗T := ϕ∗T ∧ �∗T ;
• (�ϕ)∗T := �Tϕ

∗T ;
• (∀xk ϕ)∗T := ∀yk ϕ∗T .

The idea of Solovay’s proof is to embed a Kripke model not satisfying the desired
unprovable formula in the language of arithmetic. If the embedding is done correctly,
it is possible to prove that a formula is satisfied at a world of the Kripke model exactly
when it is a consequence of the representation of that world in the desired theory T.

Given two strictly positive formulas ϕ and � such that ϕ �� � in QRC1, let Mϕ,�

be a finite, irreflexive, and constant domain adequate model satisfying ϕ and not
satisfying � at the root 1 under a 1-assignment gϕ,�. This model and assignment
exist by Theorem 5.11. Since Mϕ,� has constant domain, we refer to gϕ,� and any
other i-assignments as just assignments, omitting the relevant world.

We assume that the worlds of Mϕ,� are W = {1, 2, ... , N}, where 1 is the root.
We define a new (adequate) model M that is a copy of Mϕ,�, except that it has
an extra world 0 as the new root. This world 0 is connected to all the other worlds
through R and has the same domain, constant interpretation, and relational symbol
interpretation as 1. The functions 	0,i with 0 < i ≤ N are all defined as the identity
function.

Let �i be the Solovay sentences for T as defined in [11], satisfying the following
Embedding Lemma.

Lemma 8.2 (Embedding [11]).
1. N � �0;
2. T �

∨
i≤N �i ;

3. T � �i →
∧
j≤N,j 	=i ¬�j , for i ≤ N ;
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4. T � �i →
∧
j≤N,iRj �T �j , for i ≤ N ;

5. T � �i → �T
∨
j≤N,iRj �j , for 0 < i ≤ N .

The domain of every world is M. Let m be the size of M, and v·w be a bijection
between M and the set of numerals {0, ... , m – 1}.

We now define for a given n-ary predicate symbol S and terms t = t0, ... , tn–1

the ·� interpretation as follows:

S(t)� :=
∨
i≤N

(
�i ∧ ΦS(t)

i

)
, where

ΦS(t)
i :=

∨
〈a0,...,an–1〉∈SJi

∧
l<n

(
val w =

{
yk mod m if tl = xk
zk mod m if tl = ck

)
.

Here xk is any QRC1 variable, yk is the corresponding T variable, ck is any QRC1

constant, zk is the corresponding T variable, and ·Ji is the denotation of a predicate
symbol at world i. Note that xk ∈ fv(S(t)) if and only if yk ∈ fv(S(t)�) and ck
appears in S(t) if and only if zk ∈ fv(S(t)�). The ·� interpretation is extended to
non-predicate formulas as described in Definition 8.1.

Fact 8.3. For any QRC1 formula ϕ, variable xk , and constant ck , we have that
xk ∈ fv(ϕ) if and only if yk ∈ fv(ϕ�T ) and that ck appears in ϕ if and only if zk ∈
fv(ϕ�T ).

We further note that ϕ�T is invariant under replacing variables by themselves
modulo m, provably in T.

Lemma 8.4. For any QRC1 formula ϕ and any arithmetical variable y:
1. T � ϕ�T ↔ ϕ�T [y←y mod m];
2. T � ∀y ϕ�T ↔ ∀y < mϕ�T .

Proof. The second item is a straightforward consequence of the first, which
is proved by an external induction on the complexity of ϕ, noting that T proves
(y mod m) mod m = y mod m for any y. �

We now prove two versions of a Truth Lemma, one for when ϕ is forced at a world
i of M, and one for when it isn’t. We wish to show that T proves ϕ�T (respectively
¬ϕ�T ) as a consequence of �i , as long as the free variables of ϕ are interpreted in
the same way in both settings.

In order to use concise notation, we shall say y instead of y0, ... , yn–1, and similarly
for other terms. We also abbreviate iterated substitutions, writing ϕ�T [y←vg(x)w]
instead of ϕ�T [y0←vg(x0)w] ··· [yn–1←vg(xn–1)w] and writing ϕ�T [z←vcI0 w] instead
of ϕ�T [z0←v(c0)I0 w] ··· [zn′–1←v(cn′–1)I0 w].

Lemma 8.5 (Truth Lemma: positive). Let ϕ be a QRC1 formula with free variables
x = x0, ... , xn–1 and constants c = c0, ... , cn′–1. Then for any world i ≤ N and any
assignment g,

M, i �g ϕ =⇒ T � �i → ϕ�T [y←vg(x)w][z←vcI0 w].

Proof. By external induction on the complexity of ϕ. The cases of � and ∧ are
straightforward.

https://doi.org/10.1017/jsl.2022.38 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.38


1630 ANA DE ALMEIDA BORGES AND JOOST J. JOOSTEN

In the case of relational symbols, we assume without loss of generality that the
relevant formula isS(x0, c0). IfM, i �g S(x0, c0), then 〈g(x0), (c0)Ii 〉 ∈ SJi . Reason
in T and assume �i . It suffices to prove

ΦS(x0,c0)
i [y0←vg(x0)w][z0←v(c0)I0 w],

which implies S(x0, c0)�[y0←vg(x0)w][z0←v(c0)I0 w] under the assumption of �i .
We need to find 〈a0, a1〉 ∈ SJi such that va0w = vg(x0)w mod m and va1w =
v(c0)I0 w mod m. Noting that vbw mod m is provably equal to vbw for any b, we
pick a0 := g(x0) and a1 := (c0)I0 . This concludes this step of the proof because
(c0)I0 is equal to (c0)Ii , for any world i.

For ∀x0 ϕ, assume without loss of generality that the free variables of ϕ are x0

and x1. If M, i �g ∀x0 ϕ then for every assignment h ∼x0 g we have M, i �h ϕ. We
wish to show

T � �i → (∀y0 ϕ
�T )[y1←vg(x1)w][z←vcI0 w].

Reason in T and assume �i . By Lemma 8.4, it is enough to show

(∀y0 < mϕ
�T )[y1←vg(x1)w][z←vcI0w].

Since y0, y1, and z are all different, we can push the substitutions inside and prove

∀y0 < mϕ
�T [y1←vg(x1)w][z←vcI0 w]

instead. Let y0 < m be arbitrary. Since v·w is a bijection, there is a ∈M such
that vaw = y0. We define an assignment h such that h ∼x0 g and h(x0) := a. By
assumption, M, i �h ϕ, so by the induction hypothesis we obtain

ϕ�T [y0←vh(x0)w][y1←vh(x1)w][z←vcI0 w].

This concludes the argument because vh(x0)w = y0 and h(x1) = g(x1).
Finally, consider the case of �ϕ. If M, i �g �ϕ, then there is j ≤ N such

that iRj and M, j �g ϕ. Reason in T and assume �i . By Lemma 8.2.4, we
obtain �T �j . Then the induction hypothesis under the box gives us the desired
�T (ϕ�T [y←vg(x)w][z←vcI0 w]). �

Lemma 8.6 (Truth Lemma: negative). Letϕ be a QRC1 formula with free variables
x = x0, ... , xn–1 and constants c = c0, ... , cn′–1. Then for any world 0 < i ≤ N and any
assignment g,

M, i ��g ϕ =⇒ T � �i → ¬ϕ�T [y←vg(x)w][z←vcI0 w].

Proof. By external induction on the complexity of ϕ. The cases of � and ∧ are
straightforward.

For the relational symbols, consider S(x0, c0) without loss of generality.
If M, i ��g S(x0, c0), then 〈g(x0), (c0)Ii 〉 /∈ SJi . Reason in T and assume �i .
We obtain ¬�j for every j �= i by Lemma 8.2.3, and hence need only show

¬ΦS(x0,c0)
i [y0←vg(x0)w][z0←v(c0)I0 w]. In other words, we need to check that if

〈a0, a1〉 ∈ SJi , either va0w �= vg(x0)w mod m, or va1w �= v(c0)I0 w mod m. This follows
from our observation that 〈g(x0), (c0)Ii 〉 /∈ SJi , taking into account that vbw modm
is equal to vbw for any b, that v·w is injective, and that (c0)I0 = (c0)Ii .
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Consider now the case of ∀x0 ϕ. We assume without loss of generality
that fv(ϕ) = {x0, x1}. If M, i ��g ∀x0 ϕ, then there is an assignment h ∼x0

g such that M, i ��h ϕ. Reason in T and assume �i . From the induction
hypothesis we obtain¬ϕ�T [y0←vh(x0)w][y1←vh(x1)w][z←vcI0 w], which then implies
¬∀y0 ϕ

�T [y1←vh(x1)w][z←vcI0 w]. This is what we wanted, taking into account that
h(x1) = g(x1).

Finally, in the case of �ϕ, assume that M, i ��g �ϕ. Then for every j such
that iRj, we have M, j ��g ϕ and thus for each such j the induction hypothesis
gives us T � �j → ¬ϕ�T [y←vg(x)w][z←vcI0 w], which put together implies T �∨
iRj �j → ¬ϕ�T [y←vg(x)w][z←vcI0 w]. Reason in T and assume �i . By Lemma

8.2.5 and our assumption, we obtain �T
∨
iRj �j . Taking the previous observation

under the box, we conclude �T¬ϕ�T [y←vg(x)w][z←vcI0 w], which is precisely
¬(�ϕ)�T [y←vg(x)w][z←vcI0 w]. �

We are ready to prove something analogous to Solovay’s Theorem, which is the
precursor to our desired completeness theorem.

Theorem 8.7. If ϕ,� are QRC1 formulas with free variables x and constants c
such that ϕ �� �, we have T �� (ϕ�T → ��T )[y←vgϕ,� (x)w][z←vcI0 w].

Proof. Recall that M satisfies ϕ and not � at world 1 under the assignment
g := gϕ,�.

Since M, 1 �g ϕ, we obtain T � �1 → ϕ�T [y←vg(x)w][z←vcI0 w] from
Lemma 8.5. Since M, 1 ��g �, we obtain T � �1 → ¬��T [y←vg(x)w][z←vcI0 w]
from Lemma 8.6. Thus T � �1 → ¬(ϕ�T → ��T )[y←vg(x)w][z←vcI0 w].

By Lemma 8.2.4 and the fact that 0R1, we obtain T � �0 → �T �1, so putting
this together with the previous observation under the box, T � �0 → �T¬(ϕ�T →
��T )[y←vg(x)w][z←vcI0 w].

By Lemma 8.2.1, we know that N � �0, and thus by the soundness of T, we know
that N � �T¬(ϕ�T → ��T )[y←vg(x)w][z←vcI0 w]. Then it must be the case that
T �� (ϕ�T → ��T )[y←vg(x)w][z←vcI0 w]. �

We now define an arithmetical realization ·� in the style of Section 7 that behaves
like ·�. Recall that if � is a Σ0

1 formula axiomatizing T, the realization ·◦� sends QRC1

formulas to Σ0
1 axiomatizations of theories extending T. So in particular we always

have (ϕ ∧ �)◦� = ϕ◦� ∨ �◦� , because � is an axiom of the union of the theories
axiomatized by ϕ◦� and �◦� precisely when � is an axiom of one of them. This is
different from ·∗T realizations such as ·�T , which send QRC1 formulas to generic
arithmetical formulas. We then interpret these formulas as finite extensions of T, so
in particular (ϕ ∧ �)∗T = ϕ∗T ∧ �∗T , because the union of T + ϕ∗T and T + �∗T

is the same as T + ϕ∗T ∧ �∗T .
We define ·� such that S(t)� := �(u) ∨ (u = �S(t)��), and extend it to non-

atomic formulas as described in Definition 7.1. Note that xk ∈ fv(ϕ) if and only if
yk ∈ fv(ϕ�� ) and ck appears in ϕ if and only if zk ∈ fv(ϕ�� ).

Lemma 8.8. For any QRC1 formula ϕ with free variables x and constants c ,

T � ∀� ∀y , z (�ϕ�� � ↔ �T (ϕ�T → �)),

where � is (the Gödel number of ) a closed formula.
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Proof. By external induction onϕ. There is nothing to show for�, because since
� is a bounded formula, �� is the same as �T .

The case of relational symbols is a straightforward consequence of the formalized
Deduction Theorem [18].

In the case of ∧, we take ϕ = � ∧ �, and we omit the variables y and z , as they
introduce visual clutter but don’t make the proof any more complex.

(→) Reason in T and fix an arbitrary �, assuming����∨��� �. Then there is a finite
sequence � = �0, ... , �n with �n = � that is a proof of � in the theory axiomatized
by ��� ∨ ��� . Each formula �i occurring in � that is not a consequence of previous
formulas in the sequence through a rule satisfies either ��� or ��� . Then we have in
particular that either ���� �i or ���� �i for each such �i , whence by the induction
hypothesis either �T (��T → �i) or �T (��T → �i) holds. In both cases we have
�T (��T ∧ ��T → �i), and thus the proof of � can be repeated in T under the
assumption of (� ∧ �)�T , as desired.

(←) Fix �, y , and z . By the induction hypothesis (taking � to be ��T ) we see
that ���� �

�T and likewise ���� �
�T . Thus ����∨��� (�

�T ∧ ��T ). By assumption
we have �T (��T ∧ ��T → �), and since ϕ�� extends T, we may conclude �ϕ�� � as
desired.

The ∀ case follows the same idea as the ∧ case. Consider ϕ = ∀x0 �, with fv(�) =
{x0, x1} without loss of generality. Note that x0 is represented by y0 in T, and this
is always a different variable from any z used to represent QRC1 constants. As there
is no further complication with constants, we omit them. Let � and l be arbitrary
and reason in T.

(→) If �∃y0 �
�� [y1←l ]�, then there is a proof � = �0, ... , �n where �n = � and each

axiom �i in � satisfies ��� [y1←l ][y0←ki ] for some number ki , and consequently
�T (��T [y1←l ][y0←ki ] → �i) by the induction hypothesis for each i. Then by
weakening we conclude �T (∀y0 �

�T [y1←l ] → �i) for each i, and we are done.
(←) Assume �T (∀y0 �

�T [y1←l ] → �). By Lemma 8.4 under the box, we obtain
�T (∀y0 < m�

�T [y1←l ] → �), where m is the size of the domain of M. Using
the induction hypothesis for each k < m with � := ��T [y1←l ][y0←k], y0 := k,
and y1 := l , we get ∀k < m���� [y1←l ][y0←k]�

�T [y1←l ][y0←k], and in particular
∀k < m�∃y0 �

�� [y1←l ]�
�T [y1←l ][y0←k]. Then by Σ0

1 collection we can change the
order of the quantifier and the box, concluding �∃y0 �

�� [y1←l ]∀y0 < m�
�T [y1←l ],

which is enough to conclude this part of the proof.
Finally, for the case of ϕ = ��, we start by observing that applying the induction

hypothesis to ⊥ yields T � ∀y , z (�ϕ��� ↔ �Tϕ
�T ). Note that (��)�� = �(u) ∨

(u = �������), and thus �(��)�� � is equivalent to �T (����� → �) by the
formalized Deduction Theorem. The previous observation under the box then
suffices to finish the proof. �

We are finally ready to prove arithmetical completeness for any sound c.e. theory
extending IΣ1.

Theorem 8.9 (Arithmetical completeness). QRC1 ⊇ QRC1(T ).

Proof. Recall the definition of QRC1(T ):

QRC1(T ) = {ϕ(x, c) � �(x, c) | ∀ ·◦ T � ∀� ∀y , z (��◦� � → �ϕ◦� �)},
where � is closed.
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We show that if ϕ �� �, then the realization ·� defined above is such that

T �� ∀� ∀y , z (���� � → �ϕ�� �).

Suppose towards a contradiction that T does prove this formula. Then by
Lemma 8.8,

T � ∀� ∀y , z (�T (��T → �) → �T (ϕ�T → �)).

Taking � := ��T [y←vgϕ,� (x)w][z←vcI0 w], y := vgϕ,� (x)w, and z := vcI0 w, we con-
clude

T � �T (ϕ�T → ��T )[y←vgϕ,� (x)w][z←vcI0w].

This together with the soundness of T contradicts Theorem 8.7. �

We have seen that QRC1 = QRC1(T ) for any sound c.e. theory T extending IΣ1.
Thus QRC1(T ) is constant over a large class of theories, and for these theories
it does not depend on the specific axiomatization � chosen. This is similar to the
propositional case, but simpler than the full predicate case, where QPL(T ) is known
to depend on both T (as shown by Montagna [32]) and � (as shown by Artemov
[3]; see also [28, 29]).

§9. A decidable fragment of QPL(PA). As we mentioned before, Vardanyan’s
results are very robust and Π0

2 completeness can already be obtained for the language
with just one unary predicate symbol and no nested occurrences of �, as shown
in [37]. However, Artemov and Japaridze [4] managed to carve out a non-trivial
decidable fragment of QPL(PA): all formulas that are decidable on finite Kripke
frames correspond directly to a fragment of QPL(PA). They further observed that
as a corollary one can conclude the decidability of the one variable fragment of
QPL(PA).

The above may seem contradictory with Vardanyan’s result on Π0
2 completeness of

the fragment of QPL(PA) with just one unary predicate symbol. However, although
it is easy to see that in predicate logic any sentence with just one unary predicate is
equivalent to one in the one-variable fragment, this does not hold when modalities
are involved, as exhibited by the formula ∀x ∀y �(P(x) ∨ ¬P(y)).

In this section we shall see that QRC1 gives rise to a new decidable fragment of
QPL(PA). Let L�,∀ be the language of full quantified modal logic, based on the same
signatures as the language ofQRC1 and extending the latter with→,⊥, and the usual
abbreviations. We extend the notion of finite arithmetical realization described in
Definition 8.1 to L�,∀ as follows:

• ⊥∗PA := ⊥;
• (A→ B)∗PA := A∗PA → B∗PA .

We now define the quantified provability logic of PA as the set of always provable
L�,∀ formulas:

QPL(PA) := {A(x, c) ∈ L�,∀ | for any ·∗, we have PA � ∀y , z A∗PA},

where y are the arithmetical counterpart of x and z the arithmetical counterpart of
c , as before.
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Theorem 9.1. Let ϕ and � be QRC1 formulas. Then

ϕ � � ⇐⇒ ϕ → � ∈ QPL(PA).

Proof. The left-to-right implication is proved by induction on ϕ � �. We note
that the formalized converse Barcan formula is used in the case of the necessitation
rule and provable Σ0

1 completeness is used in the case of the transitivity axiom (see
[11] for details on these results).

For the right-to-left implication, we take the contrapositive. Thus, let ϕ and � be
strictly positive formulas with free variables x and constants c such that ϕ �� �. By
Theorem 8.7, we have

PA �� (ϕ�PA → ��PA)[y←vgϕ,� (x)w][z←vcI0 w],

and thus ϕ → � /∈ QPL(PA). �

§10. Heyting Arithmetic. We end this paper with a foray into intuitionistic
arithmetic. We show that QRC1 is sound with respect to Heyting Arithmetic (HA)
and conjecture that it is complete as well.

Let 	(u) be a Σ0
1 formula naturally axiomatizing HA.9 The HA-provability of ϕ

can thus be expressed by �	ϕ, as defined in Section 7.
We observe that a number of standard results in the realm of classical provability

logic still hold in the intuitionistic case.

Lemma 10.1 (Derivability conditions [39]). Let � be a Σ0
1 axiomatization of an

arithmetical theory T extendingHA, andϕ,� be formulas in the language of arithmetic.
Then:

1. if T � ϕ then HA � ��ϕ;
2. HA � ��(ϕ → �) → (��ϕ → ���);
3. HA � ��ϕ → �	��ϕ.

Lemma 10.2 (Collection [21, Proposition 5.13]). Let ϕ be an arithmetical formula
without x as a free variable. Then

HA � ∀y < x ∃z ϕ → ∃w ∀y < x ∃z < w ϕ.

Note that, since HA proves full collection, Prf	 is equivalent to a Σ0
1 formula,

provably in HA.
As in the classical case, we define ��ϕ as ¬��¬ϕ when � is an axiomatization of

an extension of HA.
We extend a generic realization ·◦ to non-predicate formulas as in the classical

case (cf. Definition 7.1). Note that ϕ◦	 is equivalent to a Σ0
1 formula and extends

HA, both of these provably in HA.

Theorem 10.3 (Arithmetical soundness w.r.t. HA).

QRC1 ⊆ {ϕ � � | ∀ ·◦ HA � ∀�, y , z (��◦	 � → �ϕ◦	 �)}.

9HA has less complex axiomatizations, but Σ0
1 suffices for this section.
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Proof. Let ϕ and � be formulas such that ϕ � �. The proof is similar to the
classical case, and proceeds by external induction on ϕ � �.

The soundness of ϕ � � states that ϕ◦	 extends HA, which can readily be checked
by induction on ϕ. The soundness of ϕ � ϕ and of the cut rule are straightforward,
and the soundness of ϕ ∧ � � ϕ is a simple weakening.

We proceed with the soundness of the conjunction introduction rule, that ifϕ � �
and ϕ � � then ϕ � � ∧ �. Reason in HA and let � be a closed formula, and y and
z be arbitrary. Assume ��◦	∨�◦	 �, taking � = �0, ... , �n–1 as a proof of this fact.
Some of the �i are axioms of �◦	 , some are axioms of �◦	 , and some follow from
previous steps in the proof through a rule. Let {�i}i∈I be the finite set of �◦	

axioms appearing in � . Thus ��◦	
∧
i∈I �i and by the induction hypothesis for

ϕ � � we obtain �ϕ◦	
∧
i∈I �i . On the other hand, we know ��◦	 (

∧
i∈I �i → �) by

the Deduction Theorem. Through the induction hypothesis for ϕ � � we conclude
�ϕ◦	 (

∧
i∈I �i → �). Putting these two observations together, we obtain the desired

�ϕ◦	 �.
We turn to the necessitation rule, that if ϕ � � then �ϕ � ��. Reason in

HA and let �, y , and z be arbitrary. Consider the induction hypothesis with
� := ¬� (and y , z as given by our assumption): ��◦	¬� → �ϕ◦	¬�. Taking
the contrapositive, we conclude �ϕ◦	� → ��◦	�, and consequently �	(�ϕ◦	� →
��◦	�) by Lemma 10.1. Assume now that�(��)◦	 �. By the Deduction Theorem, we
obtain �	(��◦	� → �). Thus our previous observation gives us �	(�ϕ◦	� → �),
which is �(�ϕ)◦	 � by the Deduction Theorem.

Consider the transitivity axiom:��ϕ → �ϕ. We start by observing that (��ϕ)◦	

is equivalent to 	(u) ∨ u = ��	�ϕ◦	��. Note that we can derive �	(�	�ϕ◦	� →
�ϕ◦	�) from Lemma 10.1. Assume now �(�ϕ)◦	 �. By the Deduction Theorem
we have �	(�ϕ◦	� → �). Then we obtain �	(�	�ϕ◦	� → �) by our previous
observation, and we finish with one more application of the Deduction Theorem.

The ∀ introduction rule on the right states that if x0 /∈ fv(ϕ) and ϕ � �, then
ϕ � ∀x0 �. Reason in HA and let �, y , and z be arbitrary, where y0 does not appear
in y . Assume �∃y0 �

◦	 � and let � = �0, ... , �n–1 be a proof of this fact. Let {�}i∈I be
the finite set of axioms of ∃y0�

◦	 appearing in � . Note that�	(∀i ∈ I �i → �) holds
by the Deduction Theorem. Then for each i ∈ I there is ki such that �i is an axiom
of �◦	 [y0←ki ], so in particular ��◦	 [y0←ki ]�i . We can use the induction hypothesis
for each i ∈ I to conclude �ϕ◦	 [y0←ki ]�i , and since x0 �∈ fv(ϕ), we also know that
y0 �∈ fv(ϕ◦	 ), and thus we obtain ∀i ∈ I �ϕ◦	 �i . We now use collection to obtain
�ϕ◦	 ∀i ∈ I �i , and the result follows from our observation that �	(∀i ∈ I �i → �),
noting that ϕ◦	 extends HA.

The ∀ introduction rule on the left states that ifϕ[x0←t] � �, then ∀x0 ϕ � �. Let
w be the arithmetical counterpart of t (so if t is xk then w := yk and if t is ck then
w := zk). We have ϕ[x0←t]◦	 = ϕ◦	 [y0←w]. Let �, y , and z be arbitrary, where y0

appears in y if and only if x0 is a free variable of �. We assume ��◦	 �. If t appears
in ϕ or in�, then the value of w was already fixed when we picked arbitrary y and z .
Otherwise, fix w := 0 and use the induction hypothesis to obtain �ϕ◦	 [y0←w]�. It is
then clear that �∃y0 ϕ

◦	 � holds as well.
Finally, the term instantiation and constant elimination rules boil down to variable

renaming. �
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The arithmetical completeness of QRC1 with respect to HA remains an open
question. We conjecture that the fact that the substitutions in the completeness
proofs are of restricted complexity, and the fact that PA is Π0

2 conservative over HA
(see [20]) can be essential ingredients in a possible completeness proof.

§11. Future work. There are many unexplored paths surrounding QRC1. It would
be worthwhile to extend it to a polymodal language (in analogy with RC, as in
[6]), and to the positive setting (as in [13, 17]). Whether this is possible without
loosing decidability remains to be seen. A hypothetical QRCΛ would presumably
lead to some interesting applications to Π0

1 ordinal analysis and ordinal notation
systems.

There are several proof theoretical properties of interest, such as interpolation,
cut-free proofs, fixpoints, etc. One could also strive for uniform completeness.

Moreover, the set of always true QRC1 sequents should be a productive avenue of
study.

The completeness of QRC1 with respect to HA remains an open question.
Finally, the current approximation for the computational complexity of QRC1

is super-exponential space, since the canonical model grows quite large. A more
dedicated study might lead to a significant reduction in complexity.
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