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BY JOSH REED AND BERT ZWART

Abstract

We consider a stochastic differential equation (SDE) with piecewise linear drift driven
by a spectrally one-sided Lévy process. We show that this SDE has some connections
with queueing and storage models, and we use this observation to obtain the invariant
distribution.
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1. Introduction

Let X(·) be a spectrally positive Lévy process, i.e. a process with stationary and independent
increments for which we can write

E[e−sX(t)] = etφ(s),

where

φ(s) = ds + 1

2
σ 2s2 +

∫ ∞

0
(e−sx − 1 + sx 1(x < 1))ν(dx) (1)

for d ∈ R and a measure (the jump measure) ν such that

∫ ∞

0
min{1, x2}ν(dx) < ∞.

We are mainly interested in the following stochastic differential equation (SDE) driven by X(·):

dW(t) = −c+W(t)+ dt − c−W(t)− dt + dX(t). (2)

Here x+ = max{x, 0} and x− = min{x, 0}. It is assumed that c− and c+ are nonnegative
constants such that c+ + c− > 0. Since the drift function b(x) = −c+x+ − c−x− is Lipschitz
continuous, it follows from Theorem 4.1 of [19] that there exists a unique, strong solution to (2).

The SDE (2) is an extension of the generalized Ornstein–Uhlenbeck process, which is
obtained when c+ = c−, and as such is relevant to recent developments in mathematical
finance [7]. Our motivation for studying this SDE is that it can arise as a limit of a sequence
of many-server queues, as explained in the recent work of Pang and Whitt [18]. The Brownian
case arises in both application areas as well; for related queueing literature, we refer the reader
to [10], [19], and the references therein. The additional jumps can arise as a consequence of
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110 J. REED AND B. ZWART

heavy-tailed interarrival times, or large-scale service interruptions—we refer the reader to [18]
for details.

Contrary to the above references, in this paper we concentrate almost exclusively on the SDE
itself, rather than formalizing the appearance of the SDE as the limit of a sequence of queueing
models. A survey of the results in the Brownian case is given in Browne and Whitt [5], who
proposed the terminology ‘piecewise linear diffusion processes’ (leading to our title choice).
Intuitively, it is clear that on a single half-space, the process behaves as a storage/dam model
with affine release rate. This model is well understood; see, for example, the chapter on this
topic in [2]. Making this connection formal using purely probabilistic tools such as martingales
is one of the key aims of this paper. Once this connection is established, it is possible to use
existing results for reflected spectrally negative Lévy processes, as well as Ornstein–Uhlenbeck
processes, to obtain qualitative and quantitative results on the invariant distribution.

As mentioned, the work in this paper covers Lévy processes, storage models, many-server
queues, and martingales. Thanks to Søren Asmussen and his impact on applied probability,
these topics are now well connected. Indeed, Søren’s books, papers, and lectures have been
inspiring and have made an important impact on our careers. It is therefore an honor and
pleasure to contribute to this volume.

The paper is organized as follows. In Section 2 we focus on structural results, such as stability
and the process restricted to the negative half-space. Examples are considered in Section 3.
Section 4 closes with comments on time-dependent results.

2. Structural results

We exclude the case that X(·) is a subordinator, so that lim infs→∞ φ(s)/s > 0. Note that
X(·) is a strong Markov process with generator L. The function fs(x) = e−sx is in the domain
of L, and L(fs)(x) = e−sxφ(s). Consequently, the generator A of W(·) is given by

A(f )(x) = −c+x 1(x > 0)f ′(x) − c−x 1(x < 0)f ′(x) + L(f )(x).

We assume that c−, c+ ≥ 0 and c+ + c− > 0. To ensure stability, we also assume that
E[X(1)] > 0 if c− = 0 and that E[X(1)] < 0 if c+ = 0.

Proposition 1. The process W(·) is strong Markov. Moreover, there exists an almost-sure
finite random variable W such that W(t)

D−→ W as t → ∞.

Proof. The fact that W is strong Markov follows from Theorem 32 of [20, Chapter V]. In
order to show that W is ergodic, we rely on results from [15], [16], and [17]. Let Om = (−m, m),
m ≥ 1, be a sequence of open sets, and let T m denote the first entrance time of W to the closed
set Oc

m. Let Am denote the extended generator of the truncated process Wm(·) = W(· ∧ T m),
and let D(Am) be its domain. Note that, by (1), (2), and the optional sampling theorem,
Ex[Wm(t)] − x is equal to

Ex

[ ∫ t∧Tm

0
(−c+(Wm(s))+ − c−(Wm(s))− + E[X(1)]) ds

]
.

Moreover, by (2) and the fact that X is spectrally positive,

∫ t

0
Ex[| − c+(Wm(s))+ − c−(Wm(s))− + E[X(1)]|] ds < ∞.
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A piecewise linear SDE 111

Hence, the identity function e(x) = x is in D(Am) and

Ame(x) = −c+x 1(x > 0) − c−x 1(x < 0) + E[X(1)].
It is then clear that, under each of the assumptions above, there exist a closed interval I , positive
numbers c, d > 0, and a linear function f ≥ 1 such that

Ame(x) = −cf (x) + d 1(x ∈ I )

for x ∈ Om. Combining Theorem 5.1 of [17], Theorem 4.1 of [16], and Theorem 3.4 of [15],
we see that it suffices to show that the skeleton chain W 1 obtained by sampling W at integer
time points is ϕ-irreducible for some measure ϕ whose support has nonempty interior and that
W 1 has the Feller property.

It is clear from Proposition 2 of [21] that W 1 has the Feller property. Now let x� be such that
c−x−

� + c+x+
� = E[X1]. It is also clear that, under the above assumptions, such a point must

exist. If x� < 0, let ϕ be a probability measure with support equal to (−∞, x�); if x� > 0, let
ϕ be a probability measure with support equal to (x�, ∞); and, if x� = 0, let the support of ϕ

be R. It is straightforward to show that W 1 is ϕ-irreducible, which completes the proof.

The main goal of this work is to obtain information about the distribution of W . Our plan to
obtain this information is as follows. Suppose that E[e−sW ] < ∞ on some open interval Dφ .
For s ∈ Dφ , we see that the limiting random variable W satisfies

φ(s) E[e−sW ] = −c+s E[W 1(W > 0)e−sW ] − c−s E[W 1(W < 0)e−sW ].
Let p = P(W > 0).

Suppose that E[e−sW | W < 0] =: G−(s) is known (from which we would be able to infer
that Dφ is nonempty). Then we can write E[e−sW ] = pG+(s) + (1 − p)G−(s), and we obtain
a tractable differential equation for G+:

φ(s)(pG+(s) + (1 − p)G−(s)) = c+psG′+(s) + c−(1 − p)sG′−(s).

To find G−, we will consider the process constrained in (−∞, 0]. Call this process WR−(·).
Formally, define J−(t) = ∫ t

0 1(W(s) < 0) ds. We can set WR−(t) = W(J−1− (t)). Since W(·)
has only positive jumps and the driving process X(·) has stationary and independent increments,
the following holds.

Theorem 1. The process WR−(·) has the same law as W(·) restricted on (−∞, 0] and reflected
at 0. In addition, WR−(t)

D−→ WR− for some random variable WR− which has Laplace–Stieltjes
transform (LST) G−(s).

Proof. We modify the proof of Theorem 6.3.1 of [12] to account for jumps and a state-
dependent drift. By (2) and the generalized Itô formula for convex functions (see Theorem 9.46
of [11]), it follows that

W(t)− = W(0)− +
∫ t

0
1(W(s−) ≤ 0) dX(s) − c−

∫ t

0
W(s)− ds

+
∑

0<s≤t

[W(s)− − W(s−)− − 1(W(s−) ≤ 0)�W(s)] − 1

2
L(t), (3)
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112 J. REED AND B. ZWART

where L(t) denotes the local time of W at 0. In addition, note that

K(t) =
∑

0<s≤t

[W(s)− − W(s−)− − 1(W(s−) ≤ 0)�W(s)] − 1

2
L(t)

is a nonincreasing process as a function of t and that, by Corollary 9.45 of [11],∫ ∞

0
1(W(s)− < 0) dK(s) = 0.

Now note that J−(J−1− (t)) = t < J−(J−1− (t) + δ) for δ > 0 and so, since X is spectrally
positive, this implies that WR−(t) ≤ 0. Thus, WR−(t) = W(J−1− (t))−. By (3), it then follows
that

WR−(t) = WR−(0) +
∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(s) − c−

∫ J−1− (t)

0
W(s)− ds

+
∑

0<s≤t

[WR−(s)− − WR−(s−)− − 1(WR−(s−) ≤ 0)�W(J−1− (s))]

− 1
2L(J−1− (t)).

Next note that, since WR−(t) = W(J−1− (t))− (see above), it follows by a change of variables
and the fact that dJ−(t) = 1(W(t) < 0) dt that

c−
∫ J−1− (t)

0
W(s)− ds = c−

∫ J−1− (t)

0
WR−(J−(s)) ds

= c−
∫ J−1− (t)

0
WR−(J−(s)) 1(W(s) < 0) ds

= c−
∫ t

0
WR−(s) ds.

Moreover, note that

B(t) :=
∑

0<s≤t

[WR−(s)− − WR−(s−)− − 1(WR−(s−) ≤ 0)�W(J−1− (s))] − 1

2
L(J−1− (t))

is nonincreasing as a function of t and, again by Corollary 9.45 of [11],∫ ∞

0
WR−(s) dB(s) = 0.

By Proposition 2 of [21], it remains to show that

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(s), t ≥ 0,

is a Lévy process with Laplace exponent φ.
Let 0 < ε < 1. By the Lévy–Itô decomposition for Lévy processes (see Theorem 2.1 of

[14]) we may write

X(t) = X(1)(t) + X(2)
ε (t) + X(3)

ε (t) −
( ∫ ∞

ε

xν(dx)

)
t,

where X(1)(t) = σB(t) − (d + ∫ ∞
1 xν(dx))t , B is a standard Brownian motion, X

(2)
ε is a
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compound Poisson process with jump rate ν(ε, ∞), where the distribution of the jump sizes
is ν(dx)/ν(ε, ∞) for x > ε and 0 otherwise, and X

(3)
ε is a square-integrable martingale with

maximum jump size ε and quadratic variation

〈〈X(3)
ε 〉〉t =

( ∫ ε

0
x2ν(dx)

)
t

(see Exercise 2.4.14 of [1]). In addition, X(1), X
(2)
ε , and X

(3)
ε are independent of one another

for a given ε. We may therefore write

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(s)

=
∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(1)(s) +

3∑
i=2

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(i)

ε (s)

−
∫ J−1− (t)

0
1(W(s−) ≤ 0) d

(( ∫ ∞

ε

xν(dx)

)
s

)
.

We proceed term by term in analyzing the right-hand side above. First note that

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(1)(s) =

∫ J−1− (t)

0
1(W(s−) ≤ 0) d(σB(s)) −

(
d +

∫ ∞

1
ν(dx)

)
t.

In addition, since J−1− (t) is a stopping time for each t ≥ 0, it follows by the optional sampling
theorem that ∫ J−1− (t)

0
1(W(s−) ≤ 0) d(σB(s)), t ≥ 0, (4)

is a continuous martingale with quadratic variation σ t , and so, by Lévy’s martingale charac-
terization of Brownian motion (see Theorem 3.3.16 of [12]), it is a Brownian motion. Next
consider ∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(3)

ε (s), t ≥ 0.

In the same manner as was shown above it is a martingale with quadratic variation
∫ ε

0 x2ν(dx)t .
However, since limε→0

∫ ε

0 x2ν(dx) = 0, it follows by the martingale invariance principle (see
Theorem 7.1.4 of [8]) that

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(3)

ε (s) ⇒ 0 as ε → 0,

where we use ‘⇒’ to denote weak convergence. Finally, consider

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(2)

ε (s) −
∫ J−1− (t)

0
1(W(s−) ≤ 0) d

(( ∫ ∞

ε

xν(dx)

)
s

)

for t ≥ 0. Let Nε : B[0, ∞) × B(R+) �→ N ∪ ∞ be the Poisson random measure associated
with X

(2)
ε (see Lemma 2.2 of [14]), and define the new random measure

N̂ε : B[0, ∞) × B(R+) �→ N ∪ ∞
by setting

N̂ε(dt × dx) = 1(W(J−1− (t)−) ≤ 0)Nε(dJ−1− (t) × dx). (5)
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114 J. REED AND B. ZWART

We claim that N̂ε is a Poisson random measure on ([0, ∞) × R, B([0, ∞)) × B(R), 	ε),
independent of the process in (4), and where 	ε = dt × ν(dx) for x > ε and 0 otherwise. It
suffices to show that, for disjoint sets A1, A2 ∈ B(R), the processes∫

[0,t]×A1

N̂ε(dt × dx), t ≥ 0, and
∫

[0,t]×A2

N̂ε(dt × dx), t ≥ 0, (6)

are independent Poisson processes with rates ν(A1 ∩(x, ∞)) and ν(A2 ∩(x, ∞)), respectively.
First note that each of the processes in (6) are counting processes. Next, for i = 1, 2, we have,
by (5), ∫

[0,t]×Ai

N̂ε(ds × dx) =
∫

[0,J−1− (t)]
1(W(s−) ≤ 0)

∫
Ai

Nε(ds × dx).

However, ∫
[0,t]

∫
Ai

Nε(ds × dx), t ≥ 0,

is a Poisson process with rate ν(Ai ∩ (x, ∞)) and so
∫

[0,t]

( ∫
Ai

Nε(ds × dx) − ν(Ai ∩ (x, ∞)) ds

)
, t ≥ 0,

is a martingale. Thus,
∫

[0,J−1− (t)]
1(W(s−) ≤ 0)

( ∫
Ai

Nε(ds × dx) − ν(Ai ∩ (x, ∞)) ds

)

is a martingale as well. Thus, since∫
[0,J−1− (t)]

1(W(s−) ≤ 0)ν(Ai ∩ (x, ∞)) ds = ν(Ai ∩ (x, ∞))t,

it follows by Watanabe’s characterization of Poisson processes (see Theorem 1.8.2 of [3]) that
each of the processes in (6) is a Poisson process with rate ν(Ai ∩ (x, ∞)). Independence
follows from the fact that since Nε is a Poisson random measure, the set of jump times of
the two processes in (6) are disjoint from one another and so, since we already know they are
Poisson processes, they must be independent (see [4]). Independence from the Brownian term
follows from Corollary 11.5.3 of [22]. Since

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(2)

ε (s) =
∫

[0,t]×R

xN̂ε(ds × dx),

it now follows from Lemma 2.8 of [14] that

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(2)

ε (s), t ≥ 0,

is a compound Poisson process with arrival rate ν(ε, ∞) and jump distribution ν(dx)/ν(ε, ∞).
Now considering the compensated process

X̂(2)
ε (t) =

∫ J−1− (t)

0
1(W(s−) ≤ 0) dX(2)

ε (s) − t

∫ ∞

ε

xν(dx),
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it follows from Theorem 2.10 of [14] that X̂
(2)
ε ⇒ X̂(2) as ε → 0, where X̂(2) is a martingale

with the desired properties. This completes the first part of the proof.
It remains to show that WR−(t)

D−→ WR− for some random variable WR− which has LST
G−(s). First note that since W is ergodic by Proposition 1, it follows by the ergodic theorem
that, for each f ∈ Cb(R),

lim
t→∞

1

t

∫ t

0
f (W(s)−) ds = E[f (W−)] P-almost surely (P-a.s.).

Next, recall that (see above)

∫ J−(t)

0
f (WR−(s)) ds =

∫ t

0
W(s)− ds

for t ≥ 0, and so, since J (t) → ∞ as t → ∞, it follows that

lim
t→∞

1

J−(t)

∫ J−(t)

0
f (WR−(s)) ds = lim

t→∞
t

J−(t)

∫ t

0 f (W(s)−) ds

t

= 1

1 − p
E[f (W−)] P-a.s.

Using basic storage process theory (see [2]), WR−(·) is ergodic as well, so the result follows.

3. Examples

In this section we focus on several particular cases. To compute the invariant distribution,
we make use of Theorem 1, and the general outline before that.

3.1. The case c+ > 0, c− = 0

If c− = 0, Theorem 1 implies that −WR−(·) is a reflected at 0 Lévy process in [0, ∞)

with negative jumps. Consequently, −WR− is exponentially distributed with parameter γ > 0
satisfying φ(γ ) = 0; see, for example, Proposition 1 of [13]. Thus, G−(s) = γ /(γ − s). The
differential equation for G+(s) becomes

φ(s)

c+s
G+(s) − G′+(s) = 1 − p

c+p

φ(s)

s

γ

s − γ
.

Here (φ(s)/(s − γ ))(γ /s) is well defined for all values of s using l’Hôpital’s rule. This
differential equation can be solved using standard methods. Since G+(0) = 1, we obtain

G+(s) = exp

{
1

c+

∫ s

0

φ(u)

u
du

}

×
(

1 − 1 − p

p

∫ s

0

1

c+
φ(u)

u − γ

γ

u
exp

{
− 1

c+

∫ u

0

φ(y)

y
dy

}
du

)
.

Since lim infs→∞ φ(s)/s > 0 and G+(s) → 0 as s → ∞, we necessarily have

p

1 − p
=

∫ ∞

0

1

c+
φ(u)

u − γ

γ

u
exp

{
− 1

c+

∫ u

0

φ(y)

y
dy

}
du.
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116 J. REED AND B. ZWART

Example 1. If we assume a Brownian motion, we obtain φ(s) = 1
2σ 2s2 − βs, with β > 0. If

we further take σ 2 = 2 then 1−p has the interpretation of being the limiting waiting probability
for the M/M/k queue in the Halfin–Whitt regime, where µ = 1 and λ = k − √

k + o(
√

k).
Indeed, it can be shown straightforwardly that our equation for p (which is the main quantity
of interest from a practical standpoint) simplifies to

1 − p = 1

1 + βeβ2/2
∫ β

−∞ e−s2/2 ds
,

using the fact that γ = (2β)/σ 2.

Example 2. Assume now a stable process with negative drift, i.e. φ(s) = Csα − βs,

α ∈ (1, 2). This arises in a G/M/k queue with heavy-tailed interarrival times (i.e. the interarrival
times are regularly varying with index −α; see again [18] for details). In this case, we have
γ = (β/C)1/(α−1) and

1 − p =
(

1 +
∫ ∞

0

1

c+
Cuα − βu

u − γ

γ

u
exp

{
− 1

c+

((
C

α

)
uα − βu

)}
du

)−1

.

3.2. The case c− > 0

Let V be a random variable given by

v(s) = E[e−sV ] = exp

{
1

c

∫ s

0

φ(u)

u
du

}
, s ≥ 0.

Note that this coincides with the LST of W if c = c− = c+, which is a well-known result; see,
for example, [6]. Define FV (x) = P(V ≤ x).

Proposition 2. If c− > 0 then

P(W ≤ x | W ≤ 0) = FV (x)

FV (0)
, x ≤ 0,

with c = c−.

Proof. This result is trivial if c+ = c− and Theorem 1 implies that the left-hand side is
independent of c+.

We now review some examples for which FV can be computed. It is easy to see that, since
V

D= ∫ ∞
0 e−t dX(t), if X(t) is the sum of N independent Lévy processes with Laplace exponent

φi and associated FVi
, then FV = FV1 ∗· · ·∗FVN

, with ‘∗’denoting the convolution. This can be
used to compute explicit examples. Some basic examples/building blocks are as follows.

1. Brownian motion: φ(u) = 1
2σ 2u2, leading to v(s) = eσ 2s2/4c so that

FV (x) = �

(
σx√
2c

)
.

2. (Right-skewed) α-stable process: φ(u) = κuα leading to v(s) = esακ/(α−1)c, so that V

is α-stable as well.
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3. Compound poisson process with exponential jumps:

φ(u) = −λ

(
1 − µ

µ + s

)
,

leading to
d

dx
V (x) = µλ/c

�(λ/c)
xλ/c−1e−µx.

We are now ready to analyze the case c+ �= c−. We first treat c+ = 0, and let V be as above with
c = c−. Recall that X(·) has a negative drift in this case, and that the transform G(s) = E[e−sW ]
satisfies

G(s) = c−(1 − p)
s

φ(s)
G′−(s).

Write

G′−(s) = 1

V (0)

∫ ∞

0
xesx dF̄V (x),

where F̄V (x) = P(−V ≤ x). Define

v̄0 =
∫ ∞

0
x dF̄V (x),

and let V0 be a random variable with density x dF̄V (x)/v0 so that

G(s) = v0c−(1 − p)

FV (0)φ′(0)

sφ′(0)

φ(s)
E[esV0 ].

We recognize sφ′(0)/φ(s) to be the generalized Pollaczek–Khintchine formula, i.e. the Laplace
transform of the supremum M of X(·). This implies that v0c−(1−p)/FV (0)φ′(0) = 1 (yielding
the unknown value of p) and that W

D= M − V0.
The case c+ > 0 is less tractable. Note that

φ(s) E[e−sW ] = −c+s E[We−sW ] + (c+ − c−)s E[W(W < 0)e−sW ],
i.e.

φ(s)

c+s
G(s) = G′(s) + c− − c+

c+
(1 − p)G′−(s).

This is a standard differential equation. Consequently,

G(s) = exp

{
1

c+

∫ s

0

φ(u)

u
du

}

×
(

1 − c− − c+
c+

(1 − p)

∫ s

0
G′−(u) exp

{
− 1

c+

∫ u

0

φ(y)

y
dy

}
du

)
.

Let us look at the case of a Brownian motion with drift β and infinitesimal variance σ 2. This
example arises when considering Markovian many-server queues with abandonments (cf. [9]),
known as the Erlang A model. The case c− = c+ would correspond to the case where the
service rate equals the abandonment rate, in which case we would get the M/M/∞ queue.
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Here φ(s) = 1
2 s2σ 2 − βs. This is Example 1, i.e. the density of the limiting distribution is

(1/
√

πσ 2/c−)e−(x−β/c−)2σ 2/c− . Hence,

G−(s) = 1

V (0)

1√
πσ 2/c−

∫ ∞

0
e−sxe−(x−β/c−)2c−/σ 2

dx.

It is now possible to proceed as before and derive an expression for p. We omit the computational
details and refer the reader to [9].

4. Comments on the time-dependent analysis

We finally briefly outline how to obtain results for the time-dependent behavior, i.e. the law
of W(eq), where eq is exponential with rate q.

Lemma 1. Let x0 be a real-valued constant. Consider the Markov process with generator Aq

given by
Aqf (x) = Af (x) + q(f (x0) − f (x)).

This Markov process is positive recurrent, and the unique invariant distribution is the same as
that of Weq given that W0 = x0.

Set Wq,x0(s) = Ex0 [e−sWeq ]. From the lemma, we obtain, with fs(x) = e−sx ,

(q − φ(s))Wx0,q(s) = qe−sx0 + sc+ Ex0 [Wqe−sWq (Wq > 0)]
+ sc− Ex0 [Wqe−sWq (Wq < 0)].

In what follows, we focus on the case c− = 0, c+ > 0. In the steady-state analysis of this case,
a key argument consisted of the fact that the negative part of the steady-state random variable
must be exponentially distributed, since you can only enter the negative half-plane through 0.
In the case considered here, this is still true if x0 ≥ 0. In particular, if x0 ≥ 0,

G−
x0,q

(s) := Ex0 [e−sWq | Wq < 0] = γq

γq − s
.

We can write, as before, Wx0,q(s) = PqG+
x0,q

(s) + (1 − Pq)G−
x0,q

(s). As before, this leads
to an ordinary differential equation for Gx0,q(s) that can be solved explicitly. If x0 < 0, the
process behaves like a Lévy process up to the point of upcrossing of level 0—this is τ0. The
idea is to split between the events eq < τ0 and eq > τ0 using the memoryless property:

Wx0,q(s) = E[e−sX(eq ); eq < τ0] +
∫ ∞

0
Wy,q(s) dP(X(τ0) ≤ y; τ0 < eq).

The behavior of a spectrally positive process starting from x0 < 0 up to time τ0 is pretty
well understood; all functionals in this expression related to Lévy processes can be found in,
for example, [14]. So essentially, we reduced it to a calculation issue, since we can solve in
principle for Wy,q(s) if y ≥ 0. These computations seem tractable in the Brownian case.
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