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1. The almost isolated singularity
Let/(z) be represented on its circle of convergence | z | = 1 by the Taylor

series
/(z) = co + clz + c2z

2 + ... + cnz
n+ (1)

and suppose that its sole singularity on | z | = 1 is an almost isolated singularity
at z = 1. In the neighbourhood of such a singularity /(z) is regular on a
sufficiently small disk, centre z = 1, with the outward drawn radius along the
positive real axis excised, f If also in this neighbourhood | /(z)| e~(lld)P remains
bounded for some finite p, where 5 is the distance from the excised radius, then
the singularity is said to be of finite exponential order.%

Polya has created an appropriate process of dissection whereby the singu-
larity can be separated off from the rest of/(z).§ In this, the singular stretch
of the positive real axis is cut so as to isolate the singular segment (1, k) for some
k > 1. The point z = 1 is singular while the point z = k and any interior point
of the segment may or may not be singular. || The associated decomposition
gives

/ ( 2 )=/1 (Z)+/*(z) , (2)

where / *(z) is regular inside the circle | z | = k and

(3)
2nijr w — z

Here T is a simple closed curve containing the segment (1, A:) but passing
through the point w = k and excluding the origin. It is described in a negative
direction.

The coefficients cn of (1) may be interpolated by a function G(z) as follows :*[

cn = G(n) + c* (4)

t (5), 735.
{ (5), 777.
§ (5), 738-41.
I [ The isolated critical point and the essential point which is a limit point of poles along a line

are particular cases. So is the isolated essential point and for this the point z = k is
not singular.

If (5), 741-4.
E.M.S.—K
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138 R. WILSON

where

A f Ww-'-'dw, (5)

the integral is taken round a circle \w\ = h(< 1), / t ( z ) is defined by (3) and

lim | c * | < l ,
n-*oo

as follows from (2).
The substitution w = e~? in (5) shows that

G(z) ~hy
where the path of integration is from — log h — in to — log h+in in the £-plane.

The function G(z) is of exponential type and its indicator diagram is the
segment (—log k, 0) of the negative real axis. It is at most of order 1, minimum
type in the right half-plane, including the boundary, f

2. Finite exponential order
When the singularity of /(z) at z = 1 is of finite exponential order these

results can be sharpened. To this end we first prove the lemma below.

Lemma 1. When the almost isolated singularity of f{z) at z = 1 is of finite

exponential order p then G(z) is at most of order in the right half-plane and
p + 1

on its boundary.%
The path of integration in (5) can be deformed so that h> 1, provided that

the contour deviates inside the circle | z \ = 1 round the point z = 1. In fact,
we can assume it to enclose the point 1 in a semi-circle of radius 5 and to be

distant <5 from the segment (1, A;) until the straight pieces of contour meet the
circle \z\ — h> 1. Now, on this contour C1;

|/() \( (6)
and so, from (2),

|/1(z)|<K1(«5>><1w'; (7)

since / *(z) is bounded on the contour Ct . On the part near w = 1 we have
| arg w | ^ 5 and so, from (5) and (7),

| G(z)\<K2(5) exp ( < r p + | z | 5) (8)
t (5), 744, Satz III.
J I am indebted to Dr M. L. Cartwright for the use of notes from which the proof of Lemma 1

has been adapted.
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Hence, if we take \z\ = ( W + 1 then

|G(z) |<K 2 ( ,5)exp |zpI (9)

in the right half-plane and, in particular,

| G(±iy) \<K2(S)exp | y |^T (10)
on the imaginary axis.

The property of finite exponential order is critical in regard to the coefficient
theory of the almost isolated singularity because, in general,

log |G(n) |>-y« (11)

for prescribed positive y, for a sequence of n of upper density 1, at least, while
if the singularity is of finite exponential order then the inequality (11) holds
for a sequence of n of density l.f While the upper density property is, in the
general case, minimal for the class of almost isolated singularity and may be
exceeded (as happens in the case of finite exponential order), Polya has given
examples % for which this property is the best possible.

The condition on G(z) which makes it possible for (11) to hold for a sequence
of n of density 1, rather than upper density 1, for functions of at most order 1,
minimum type, in the right half-plane, is that of being of convergent minimum
type on the boundary, so as to satisfy

f" 1Og+ 1 <** ">' dt<+*. or f" log+ 1 G(± iy)\ % < + oo ...(12)
Jo i + t2 Ji y2

on the arms of the angle in which it is of order 1, minimum type.§
This condition is clearly satisfied when the almost isolated singularity of

/ (z) at z = 1 is of finite exponential order for then, in accordance with Lemma 1,
G(z) is of order less than 1 in the right half-plane, as is seen from (9) and (10).

However, it is possible to satisfy (12) even if G(z) is of order 1, provided
that it is of convergent minimum type. In this case/(z) would satisfy (6) with
p = oo, subject to certain restrictions. The determination of these restrictions
is the object of the present paper.

3. Restricted order
In place of (6) we now suppose that, on the contour Q ,

|/(z)|<e*(R) /* (13)

where R = l/<5 and \p(R) is a positive increasing differentiable real function for
increasing positive R such that log \j/(R) is convex. || We now restrict the rate
of growth of i]/(R) by the condition

d

j; <+oo (14)
)i "

t (5), 777, Satz X; (4), 222.
t (5), 763-5.
§ (3), 430-31; (4), 204.
|| In the sense that if 0<R1<R2 then the points on the straight segment joining log i

to log <ji(R2) lie below the curve y = log i/r(x) unless it is a straight line.
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Thus il/(R) cannot be as large as eR but it can be larger than eR>" with 6>0.
Hence, from (13), /(z) can be of infinite order. From (2) and (13) it follows
that ' ; • ''

j/Kz)) <**<*>'* (15)

since/ *(z) is bounded onC, , •
Now consider the integral for G(z) in (5) but with the modified contour Cx.

The value of the integral is largely determined by the behaviour of/^w) on that
part of the contour Ct close to the segment (l.ifc). Here (15) holds and
w = e-*"*'1-"'*' with -in^x^ln. Thus, as in (8) with \z |= r,

(16)

To maximise the integral we now take r = ij/(R). Let R = <j>(r) be the
relation inverse to this. Then condition (14) becomes

f-(Nogr f - A ; f - j f r ,
J i R J i *r J , r<t>{r)

Now with r — ^{R), R = (£(/•), relation (16) becomes

|G(z)|<A'(d)er/*(r) (18)

and so
f" log+ I G(z)| , f00 Kdr

_?—' W | dr< I <+oo
J i r2 J , r<t>(r)

from (17) and (18), where K is the finite upper bound of K(S), K^S), K2(S).
Putting z = +iy, we now obtain the required convergence condition on

•G(z) when it is of order 1, minimum type, and / (z) is of infinite order, namely

^
y

We note that <f>(r) is also an increasing function for positive increasing r
and that, from (18),

iim - log j G(r)| < lim — = 0.

Since G(n) = cn — c*, from (4), the equality sign must hold and so

lim -log|G(r)| = 0 (20)
r~* ao T

Conditions (19) and (20), together with the fact that G(z) is of order 1,
minimum type, in the right half-plane enable us to make use of well-known
theorems of M. L. Cartwright t set out in the lemma below.

Lemma 2. If G(z) is regular and of order 1, minimum type, in the right

t (1), Th. Ill using the method of (2), Th. II.
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half-plane and if

(i) f" log+ | G(±i»| % < +00, (ii) lim - log | G(r)| = 0,

then along every radius arg z = 0 inside the half-plane and for every y > 0,
log | G(re<4>)\ > — yrfor a set of r of linear density 1. In particular, (II) is satisfied
for a sequence of n of density 1.

If/ (z) has at z = 1 an almost isolated singularity and satisfies in the neigh-
bourhood of this singularity conditions (13) and (14) then the almost isolated
singularity will be said to be of restricted order. Clearly an almost isolated
singularity of finite exponential order is also of restricted order. The results
concerning this singularity are embodied in the following theorem:

QO

Theorem. If f(z) = £ cnz" has at z = 1 an almost isolated singularity of
o

restricted order, and if this is the only singularity off(z) on its circle of convergence
then, for every y>0, \ cn \>e~y" for a sequence of n of density 1.

The approximate interpolation in (4), together with the results of Lemma 2,
lead directly to the form of result given in the theorem.
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