ON THE CONSISTENCY OF THE TWO-SAMPLE EMPTY CELL TEST

M. Csorgo ${ }^{*}$ and Irwin Guttman

(received August 15, 1962)

1. Introduction. This paper considers the consistency of the two-sample empty cell test suggested by S. S. Wilks [2]. A description of this test is as follows: Let a sample of n_{1} independent observations be taken from a population whose cumulative distribution function $F_{1}(x)$ is continuous, but otherwise unknown. Let $X_{(1)}<X_{(2)}<\ldots<X_{\left(n_{1}\right)}$ be their order statistics. Let a second sample of n_{2} observations be taken from a population whose cumulative distribution function is $F_{2}(x)$, assumed continuous, but otherwise unknown.

$$
\text { Define cells } I_{1}, \ldots, I_{n_{1}+1} \text { by }
$$

$$
\begin{equation*}
I_{i}=\left(X_{(i-1)}, X_{(i)}\right], \quad i=1, \ldots, n_{1}+1 \tag{1.1}
\end{equation*}
$$

where $X_{(0)}=-\infty$ and $X_{\left(n_{1}+1\right)}=+\infty$.

Let $r_{1}, \ldots, r_{n_{1}+1}$ be the number of observations of
the second sample that lie in $I_{1}, \ldots, I_{n_{1}+1}$ respectively.
Let S_{o} be the number of $I_{i}, i=1, \ldots, n_{1}+1$ which are

[^0]Canad. Math. Bull. vol. 7, no. 1, January 1964
such that $r_{i}=0$, that is, the number of empty cells. Under the hypothesis that $F_{1}=F_{2}$, Wilks in [2] and [3] gives a somewhat complicated analytic derivation of the probability function of S_{o} and obtains the result

$$
\begin{equation*}
P\left(S_{o}=s_{o}\right)=\frac{\binom{n_{1}+1}{s_{0}}\binom{n_{2}-1}{n_{1}-s_{0}}}{\binom{n_{1}+n_{2}}{n_{1}}}=p\left(s_{o}\right) \tag{1.2}
\end{equation*}
$$

where the sample space of S_{o} is given by

$$
\mathcal{S}=\left[k, k+1, \ldots, n_{1}\right] \text { and } k=\max \left[0, n_{1}+1-n_{2}\right]
$$

A simplified proof of (1.2) may be found in [4].
Using (1.2), it can be easily shown that

$$
\begin{gather*}
E\left(S_{0}\right)=\frac{n_{1}\left(n_{1}+1\right)}{n_{1}+n_{2}} \\
\sigma^{2}\left(S_{0}\right)=\frac{n_{1}^{2}\left(n_{1}^{2}-1\right)}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right)}+\frac{n_{1}\left(n_{1}+1\right)}{n_{1}+n_{2}}-\frac{n_{1}^{2}\left(n_{1}+1\right)^{2}}{\left(n_{1}+n_{2}\right)^{2}} \tag{1.3}
\end{gather*}
$$

(For these results see Wilks [2] and [3] where the method of factorial moments is used to obtain them.)

If we let $n_{2}=\rho n_{1}+O(1), \rho>0$, these reduce to

$$
E\left(S_{0}\right)=n_{1}\left|\left(\frac{1}{1+\rho}\right)+O\left(\frac{1}{n_{1}}\right)\right|
$$

$$
\begin{equation*}
\sigma^{2}\left(S_{0}\right)=n_{1}\left(\frac{\rho^{2}}{(1+\rho)^{3}}+O\left(\frac{1}{n_{1}}\right)\right) \tag{1.4}
\end{equation*}
$$

which in turn imply that

$$
E\left(\frac{S_{o}}{n_{1}+1}\right) \rightarrow \frac{1}{1+\rho}
$$

and

$$
\sigma^{2}\left(\frac{S_{0}}{n_{1}+1}\right) \rightarrow 0
$$

as $n_{1}, n_{2} \rightarrow \infty$, and by Tchebychev's inequality, these results imply that $S_{0} / n_{1}+1$ converges in probability to $\frac{1}{1+\rho}$, if $F_{1}=F_{2}$.

We can use these results to make a test of the hypothesis $F_{1}=F_{2}$ at the approximate $100 \alpha \%$ level. This is given by

$$
\left\{\begin{array}{l}
\text { Reject if } \mathrm{s}_{\mathrm{o}} \geq \mathrm{b} \tag{1.5}\\
\text { Accept otherwise }
\end{array}\right.
$$

where b is such that

$$
P\left(S_{o} \geq b\right)=\sum_{s_{0}=b}^{n_{1}} p_{0}\left(s_{o}\right) \leq \alpha
$$

(1.6)

$$
\mathrm{P}\left(\mathrm{~S}_{\mathrm{o}} \geq \mathrm{b}-1\right)=\sum_{\mathrm{s}_{0}=b-1}^{\mathrm{n}_{1}} \mathrm{p}\left(\mathrm{~s}_{\mathrm{o}}\right)>\alpha .
$$

Tables of (1.6) have been tabulated by the authors for $\alpha=.01$ and .05 and published in Technometrics [4].
2. Consistency. The form of the test (1.5) follows from the following considerations. Let G_{0} be the class of pairs of
continuous cumulative density functions $\left(F_{1}(x), F_{2}(x)\right)$ such that $F_{1}(x)=F_{2}(x)$. Let $F_{1}^{-1}(u)$ be the inverse of the $c . d . f$. $F_{1}(x)$ and let G_{1} be the class of pairs of continuous c.d.f.'s $\left(F_{1}(x), F_{2}(x)\right)$ satisfying:
(i) $F_{2}\left(F_{1}^{-1}(u)\right)$ has a derivative, say $g(u)$, for all u on $(0,1)$ except possibly for a set of probability measure zero.
(ii) The derivatives of $F_{2}\left(F_{1}^{-1}(u)\right)$ and $F_{1}\left(F_{1}^{-1}(u)\right)=u$ with respect to u on $(0,1)$ differ over a set of positive probability.

In [3] Wilks states the following
THEOREM. The test defined by (1.5) and (1.6) is consistent for testing any $\left(F_{1}, F_{2}\right) \in G_{0}$ against any $\left(F_{1}, F_{2}\right) \in G_{1}$ as $n_{1}, n_{2} \rightarrow \infty$ so that $n_{2}=n_{1} \rho+O(1)$, where $\rho>0$.

To prove this theorem it is sufficient to show that if $\left(F_{1}, F_{2}\right) \in G_{1}, S_{0} /\left(n_{1}+1\right)$ converges in probability to a number greater than $1 /(1+\rho)$ as $n_{1}, n_{2} \rightarrow \infty$ with $\frac{n_{2}}{n_{1}} \rightarrow \rho>0$, for it will be recalled from (1.4) that $1 /(1+\rho)$ is the quantity to which $S_{0} /\left(n_{1}+1\right)$ converges in probability if $\left(F_{1}, F_{2}\right) \in G_{0}$.

$$
\text { We recall that } r_{1}, \ldots, r_{n_{1}+1} \text { denote the number of }
$$

observations of the second sample that lie in the $n_{1}+1$ cells $I_{1}, \ldots, I_{n_{1}+1}$ respectively. For each non-negative integer r, Let $Q_{n_{1}}(r)$ be the proportion of values among $r_{1}, \ldots, r_{n_{1}+1}$ which are equal to r. Then, in particular, we have $Q_{n_{1}}(0)=\frac{S_{0}}{n_{1}+1}$, the proportion of empty cells.

Under the conditions (i) and (ii) of this section, J. R. Blum and L. Weiss in [1] prove that

$$
P\left[\begin{array}{ll|l}
\lim & \sup _{\left(n_{1}, n_{2} ; \rho\right)} & r \geq 0 \tag{2.1}
\end{array}\left|Q_{n_{1}}(r)-Q(r)\right|=0\right]=1
$$

where \lim denotes the limit as $n_{1} \rightarrow \infty, n_{2} \rightarrow \infty$ in such

$$
\left(n_{1}, n_{2} ; p\right)
$$

a way that $n_{2} / n_{1} \rightarrow \rho, \rho>0$, and

$$
\begin{equation*}
Q(r)=\rho^{r} \int_{0}^{1} \frac{g^{2}(u)}{[\rho+g(u)]^{r+1}} d u \tag{2.2}
\end{equation*}
$$

where $g(u)$ is the derivative of $F_{2}\left(F_{1}^{-1}(u)\right)$, satisfying conditions (i) and (ii) of this section.

As a special case of (2.1) we have that
(2.3)

$$
P\left[\lim _{\left(n_{1}, n_{2} ; \rho\right)}\left|Q_{n_{1}}(0)-Q(0)\right|=0\right]=1
$$

if $\left(F_{1}, F_{2}\right) \in G_{1}$, where we have now that

$$
\begin{equation*}
Q(0)=\int_{0}^{1} \frac{g^{2}(u)}{[\rho+g(u)]} d u \tag{2.4}
\end{equation*}
$$

It is also implied by (2.3) that
(2.5) $\quad \lim _{\left(n_{1}, n_{2} ; \rho\right)} P\left(\left|Q_{n_{1}}(0)-Q(0)\right| \geq \epsilon\right)=0$
for any $\epsilon>0$, however small, if $\left(F_{1}, F_{2}\right) \in G_{1}$; that is
$Q_{n_{1}}(0)=\frac{S_{0}}{n_{1}+1}$ converges in probability to $Q(0)$ (expression (2.4)).
Therefore, the test defined by (1.5) and (1.6) is consistent for testing any $\left(F_{1}, F_{2}\right) \in G_{0}$ against any $\left(F_{1}, F_{2}\right) \in G_{1}$ if

$$
\begin{equation*}
\int_{0}^{1} \frac{g^{2}(u)}{[\rho+g(u)]} d u>\frac{1}{1+\rho} \tag{2.6}
\end{equation*}
$$

where we recall from (1.4) that $1 / 1+\rho$ is the quantity to which $Q_{n_{1}}(0)=\frac{S_{0}}{n_{1}+1}$ converges in probability if $\left(F_{1}, F_{2}\right) \in G_{0}$.

The inequality of (2.6) is proved as follows. We have by Schwarz's inequality that

that is

$$
\left(\int_{0}^{1} \frac{g^{2}(u) d u}{\rho+g(u)}\right)(\rho+1)>1
$$

which gives

$$
\int_{0}^{1} \frac{g^{2}(u) d u}{\rho+g(u)}>\frac{1}{1+\rho}
$$

if $g(u)$ differs from unity over a set of positive probability. This condition obtains if $\left(F_{1}, F_{2}\right) \in G_{1}$, since the derivatives of $F_{2}\left(F_{1}^{-1}(u)\right)=g(u)$ and u are assumed to differ over a set of positive probability on (0,1), and under this condition the above strict Schwarz inequality (2.7) holds. This completes the proof of the above theorem.

REFERENCES

1. J.R. Blum and L. Weiss, Consistency of Certain TwoSample Tests. Ann. Math. Stat., Vol. 28 (1957), pp. 242-246.
2. S.S. Wilks, A Combinatorial Test for the Problem of Two Samples from Continuous Distributions. Proceedings of the Fourth Berkeley Symposium, Vol. I (1961), pp. 707-717.
3. S.S. Wilks, Mathematical Statistics. (Wiley, 1962).
4. M. Csorgo and Irwin Guttman, On the Empty Cell Test. Technometrics, Vol. 4, (1962), pp. 235-247.

McGill University and University of Wisconsin

[^0]: * Work supported by a National Research Council of Canada Studentship.

