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Time Reversal in Physical Theory

Précis. The meaning of time reversal on state space is determined by a representation
of time translations.

When the time reversal transformation T appears on the state space of a
physical theory, it is usually required to do a number of idiosyncratic things,
such as those listed in Figure 3.1. For example, it conjugates wavefunctions
in quantum mechanics, and it reverses magnetic fields in electromagnetism.
To explain this, its advocates often refer to it as ‘motion reversal’ and appeal
to a wide variety of physical facts about how this affects instantaneous
states. This led Albert (2000, p.18) to remark that in the textbooks, “for one
physical situation to be the time reverse of another is (not surprisingly!) an
obscure and difficult business”. Even Earman (2002b) admits that the going
gets tough:

I do not mean to suggest by the above examples that fixing the properties of the time
reversal operation is always such an easy or straightforward matter. It is not, and in
some instances the quest may not end in any clear answer. (Earman 2002b, p.249)

This chapter aims to make the meaning of time reversal in state space
a more straightforward matter. We now have the results of Chapter 2
in hand: on the Representation View (Section 2.3), a dynamical theory
is by definition a representation of time translations on state space. We
have seen how to construct a time reversal group element τ : t �→ −t that
reverses those time translations (Section 2.6); and, when the representation
of time translations extends to this larger structure, then we can immediately
understand the time reversal transformation T to be the image of τ in state
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Reversed Preserved
Momentum: p �→ −p Position: q �→ q

Magnetic Field: B �→ −B Electric Field: E �→ E

Spin: σ �→ −σ Kinetic Energy: p2/2m �→ p2/2m

Position wavefunction: ψ(x) �→ ψ(x)∗ Transition probability: |〈ψ,φ〉|2 �→ |〈ψ,φ〉|2

Figure 3.1 Some effects of the time reversal operator T on state space.

space (Section 2.7). So, the meaning of time reversal is not so haphazard after
all: it is determined by a representation of time translations. What remains
is to verify that the familiar time reversal operator in textbooks is what we
recover by this procedure.

This chapter aims to make good on that, by showing how various expres-
sions of time reversal on a physical state space now follow automatically.
I will make this argument case by case, for some common frameworks
for dynamical systems in physics. I hope that by illustrating the general
technique, it will be clear how to apply it in other physical theories too. In
each case, our task will be to determine two things:

1. the general character of the time reversal group element in a
representation;

2. its specific character when it is required to reverse time and ‘do noth-
ing else’.

The second task arises because, in general, there are a great number of ways
to represent time reversal on state space: we can reverse time and space; we
can reverse time and rotate 180 degrees; we can reverse time and exchange
matter and antimatter; and so on. Recognising this will be important for
our development of the CPT operator in Chapter 8. But, the specific task
for us now will be to distinguish ‘bare time reversal’ from the many other
time-reversing transformations.

Our focus in this chapter will be on state space representations. Nearly
every theory in modern physics has an expression of this kind; in particular,
the framework for analytic mechanics that we discuss in Section 3.3 is so
robust that it can be viewed as including both general relativity and quantum
theory as special cases.1 We begin Section 3.1 with some general remarks
about state space representations of time translations, which will be applied
in all the theories to follow. This includes precise statements of two physical

1 Wald (1984, Appendix E) gives a classic introduction to general relativity in the Hamiltonian and
Lagrangian frameworks. The fact that quantum theory can be viewed as a special case of analytic
mechanics is less well-known, but was pointed out independently by Ashtekar and Schilling (1999),
Gibbons (1992), Kibble (1979).
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52 Time Reversal in Physical Theory

postulates about the experience of time’s passage in general: that it is a
symmetry of local physics, and that the energy is half-bounded. We then
turn to deriving the meaning of time reversal in various physical theories:
Newtonian mechanics (Section 3.2), analytic mechanics (Section 3.3), and
quantum theories (Section 3.4).

3.1 State Space Representations

3.1.1 State Space

State spaces in physics are used to represent possible states of affairs
in nature, like the possible locations of the planets in our solar system
(Figure 3.2). However, when one spends a little time getting to know state
spaces, some patterns among them emerge: many share common structure;
and some of them seem perennially useful, while others do not. What makes
a structure reasonable, appropriate, or fruitful for use as a state space?

Philosophers of physics have made some comments in this regard, such
as the proposal of Albert (2000, p.9) that a state is (at least) a “genuinely
instantaneous” and “complete” description of physical facts.2 Butterfield
(2006b,d), inspired by Lewis (1986), characterises this view as one in which
states are “temporally intrinsic” facts: when obtaining at a moment, a state
does not by itself imply any contingent facts about other times. Thus, physi-
cists sometimes refer to configuration space or phase space in mechanics as
an ‘instantaneous state space’. However, as Butterfield (2006a,b, 2011) goes
on to argue at length, even the state space of classical mechanics cannot
possibly be just that; for example, “[m]echanics needs of course to refer to
the instantaneous velocity or momentum of a body; and this is temporally
extrinsic to the instant in question” (Butterfield 2006a, p.193). I agree. The
state spaces to be considered in this chapter are highly structured objects –
Hilbert spaces, phase spaces, jet bundles, and the like – and all this structure
is needed to understand a symmetry transformation like time reversal.3

Figure 3.2 A state in the space of the planetary locations.

2 See Section 2.5.1.
3 Barrett (2018b, 2019, 2020a, 2020b), Dewar (2022, Part IV), Halvorson (2012, 2013, 2019), and

Weatherall (2016) have argued on similar grounds that a physical theory can be viewed as a
category. I have reservations about some of the remarks in this literature (cf. Roberts 2020), but
agree with the general structuralist spirit.
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This might seem to contradict some remarks of Albert (2000) about
dynamical theories, but I think that it need not. Albert (2000, pp.9–10) dis-
tinguishes between states representing complete descriptions of the world
at an instant, and the dynamical conditions needed to make use of “the
full predictive resources” of the laws of physics. In Newtonian mechanics,
he takes the states to be particle positions in R3n, while the dynamical
conditions also include velocities. I have no problem with this, but will
propose a liberal reading of Albert: nothing about his remarks preclude
state space from having a great deal of structure beyond this. It can be a
manifold, like a tangent bundle of vectors, or be equipped with a symplectic
form or a Euclidean metric, among other things.

In the remainder of this section, I will identify two key structural facts
associated with general state spaces: that time translations can be viewed
as symmetries in isolated systems, and that energy is bounded from below
but not from above. This will set the stage for the analysis of time reversal
on particular examples of state spaces in the remainder of the chapter.

3.1.2 Time Translations Are Automorphisms

A representation is a homomorphism from a symmetry structure to the
automorphisms of a state space. Each state space structure has its own
standard of automorphism or ‘structure preserving map’: for example, a
differentiable manifold has diffeomorphisms, while a vector space has linear
maps. So, by choosing a state space structure, and therefore a notion of
state space automorphisms, we constrain what sorts of representations are
possible.

Representing the group of time translations amongst the transformations
of a state space is what justifies referring to the representing state space
map as ‘time evolution’ as opposed to something else; this was the thesis of
Section 2.3. And, not just any transformations: time translations should be
represented among the state space maps that are automorphisms, at least for
isolated systems. This is because most physical theories are built to capture
the repeatability of local experiments, in the following sense.

We seek theories that can be supported by experimental evidence, but
also – where possible – theories for which that experimental evidence can
be supplied again at a later time. Local dynamical theories are generally
designed in this way: the modelling of time evolution is compatible with
setting up an isolated experiment today, collecting the results, and then
confirming those same results tomorrow when a structurally equivalent
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54 Time Reversal in Physical Theory

experiment is repeated. In more precise terms, a time translation is an
automorphism of a dynamical theory. Of course, whether or not this kind of
‘homogeneity in time’ accurately describes reality is a matter of experience.
But as Jauch points out, it turns out to be central to our experience:

Whether there are systems which are, in this sense, homogeneous in time is of
course a matter of experience, and it is indeed one of the fundamental experiences
about the physical world that this is the case. (Jauch 1968, p.152)

Thus, we represent time translations amongst the automorphisms of a state
space, as postulated by the Representation View. This by itself does not guar-
antee that the representation can be extended to include time reversal; as we
will see in Chapter 4, a representation of time reversal may still fail to arise,
giving rise to the failure of temporal symmetry. Our study here will thus be
predicated on the assumption that a representation of time reversal exists.

3.1.3 Half-Bounded-Energy Representations
A second structural fact about typical representations of time translations,
in stark contrast to representations of spatial translations, is that they are
associated with a conserved quantity called ‘energy’ that is bounded from
below. To get a more precise sense of what this means, recall that a Lie
group (Definition 2.1) is a group with a manifold structure. The continuous
transformations in a Lie group, which describe familiar symmetries like
rotations or time translations, turn out to be ‘locally generated’ by an object
called a Lie algebra:

Definition 3.1 The Lie algebra g of a Lie group G is the algebra of right-
invariant vector fields on G, where a ‘right-invariant’ vector field X is defined
by the condition that for all g,h ∈ G, if ρg : G → G is the right-multiplication
map on group elements defined by h �→ h ·g, then dρg(X)

∣∣
h

= X
∣∣
ρg(h) = X

∣∣
h·g .

In more picturesque terms (Figure 3.3), an element of this Lie algebra
is any vector field X on the Lie group manifold G with the property that
group multiplication ‘traces along’ the vector field. As this picture suggests,
elements of a Lie algebra stand in one-to-one correspondence with the
one-parameter subgroups of a Lie group (cf. Olver 1993, Proposition 1.48).
In particular, a one-parameter group of time translations (R,+) is associated
with a single Lie algebra element X, called the generator of the one-parameter
group.

A fundamental result in the representation theory of Lie groups is that
every homomorphism between Lie groups induces a unique homomor-

https://doi.org/10.1017/9781009122139.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122139.004


3.1 State Space Representations 55

Figure 3.3 A Lie algebra element.

phism between the Lie algebras of those groups.4 Thus, every state space
representation of the Lie group defines a unique representation of its Lie
algebra. For example, in a representation of spacetime symmetries, this
group will include a generator for each one-parameter group of time trans-
lations t �→ φt . When this generator X can be viewed as the gradient of a
smooth function h, then this function h is called the ‘Hamiltonian’. Since the
Hamiltonian generates time translations, its value is also ‘preserved’ by time
translations, and so in physical terms it can be used to define the conserved
quantity known as energy. Similarly, each conserved function associated
with a one-parameter group of spatial translations is called three-momentum
or momentum, and traditionally denoted p.

Although conserved functions h for time translations and p for spatial
translations are formally similar at the level of Lie groups and algebras,
experience shows that they display a fundamental difference when inter-
preted as physical quantities. Namely, the possible values of momentum are
unbounded above and below, while the possible values of energy are half-
bounded: they are bounded from below and unbounded from above.5 This is
one of the truly remarkable differences between space and time, although it
has received little attention from philosophers. And, it appears to represent
an elementary fact about the local structure of our world in everything
from the simple harmonic oscillator to quantum electrodynamics. Energy
is typically unbounded from above, owing to the fact that velocity can be
boosted arbitrarily close to the speed of light, and its lower bound is usually

4 Cf. Hall (2003, Theorem 2.21) or Landsman (2017, Theorem 5.42).
5 A well-known exception in the history of physics is the unbounded ‘negative energy sea’ in Dirac’s

hole theory of electrodynamics (Dirac 1930). This theory encountered irreparable problems, and
half-bounded energy was restored in the modern Fock space formulation of quantum
electrodynamics (cf. Duncan 2012, §2.1).
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interpreted as defining a ‘stable ground state’. The common wisdom about
why this lower bound exists has been captured by Malament (1996):

If it failed, the particle could serve as an infinite energy source (the likes of which
we just do not seem to find in nature). Think about it this way. We could first tap
the particle to run all the lights in Canada for a week. To be sure, in the process
of doing so, we would lower its energy state. Then we could run all the lights
for a second week, and lower the energy state of the particle still further. And so
on. If the particle had no finite ground state, this process could continue forever.
There would never come a stage at which we had extracted all available energy.
(Malament 1996, p.5)

Whatever the reason for this fact, we will use it as the basis for assuming
that in a representation of time translations, the generator h must be half-
bounded.

This completes our general discussion of state space and representation
theory. In the next sections, we will apply it to a number of different theories.
In each case, the procedure will be similar:

1. Represent time translations (R,+) amongst the automorphisms on a state
space.

2. Interpret τ : t �→ −t on time translations as time reversal.
3. Extend the representation to include τ as a group element, interpreted in

the representation as an instantaneous time reversal operator T .
4. Where possible, use the half-bounded energy constraint on the Hamilto-

nian h to determine the general character of T .
5. When further group structure is available, use it to try to determine the

unique definition of T .

I hope the result will be a novel, unified approach to the meaning of time
reversal: not ‘motion reversal’, nor a bag of tricks for reversing instants, but
as the reversal of time translations in each physical theory where it can be
applied.

3.2 Newtonian Time Reversal

3.2.1 Why Time Translations Are Needed

The world according to atomists like Democritus, Bošković, and Boyle con-
sists of a finite number of indistinguishable particles “variously configured
and moved”, whose only properties are their locations in smooth three-
dimensional Euclidean space (cf. Boyle 1772, p.355). When this is the case,
the locations of n particles can be represented by the C∞ (I will usually say
‘smooth’) real manifold with Euclidean metric (R3n,·). Each point x ∈ R3n
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Figure 3.4 The ‘folk’ view of Newtonian time reversal without time
translations.

represents a possible particle configuration at an instant, and the motion of
the particles through space is represented by a smooth curve x : R → R3n –
in my notation, x = (x1, . . . ,x3n) is a coordinate in a manifold representing
total configuration, not a spatial coordinate – with R interpreted as the time
axis. So, we write x(t) to represent the configuration x ∈ R3n of the system
at given time t ∈ R.

In this general context, Callender (2000) has set out the common ‘folk’
view about time reversal:

Relative to a co-ordinisation of spacetime, the time reversal operator takes the
objects in spacetime and moves them so that if their old co-ordinates were t ,
their new ones are −t , assuming the axis of reflection is the co-ordinate origin.
(Callender 2000, p.253)

In other words, the time reverse of a smooth curve x(t) is x(−t), as in
Figure 3.4.

I agree with this description of Newtonian time reversal, at least when
I put on a substantivalist hat.6 But it should be viewed as incomplete. We
often say, ‘Let x(t) represent the trajectories of particles over time’. However,
as we have seen in Section 2.5.2, a more complete analysis of time requires
including its structural properties: not just the time coordinates, but the time
translations.

An adequate representation of time in Newtonian mechanics is not pos-
sible without this extra structure. In particular, (R3n,·) cannot be a complete
Newtonian state space, since its automorphisms include only the (spatial)

6 Newtonian substantivalism is traditionally justified using examples like Newton’s bucket (Newton
1999, Scholium to the Definitions, pp.58–9). Mach’s principle is a standard response (Earman 1989,
Chapter 4), but this remains an active research area: see Rynasiewicz (1995a,b, 2014), and the novel
recent alternative of Gomes and Gryb (2020) using techniques from Kaluza–Klein theory.
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transformations of rigid rotation, translation, and reflection. Time transla-
tions for this structure cannot even describe an elliptical orbit. So, beware
that one’s intuitions here can fail: the map x(t) �→ x(−t) on smooth curves
through a Euclidean manifold is not a complete description of time reversal.
It is incomplete because it includes no representation of Newtonian time
translations, and so it has no way to say that time translations are reversed.
So, let us begin by discussing a more complete state space for Newtonian
mechanics.

3.2.2 Newtonian Time Translations

Begin at the level of spacetime. Time translations are usually introduced
by extending the Euclidean manifold to include a temporal dimension
R, together with some further spacetime structure. Although there are
different ways to do this, most7 admit a group of time translation symmetries
isomorphic to (R,+). So, let me follow my announced practice of postulating
the existence of a time translation group, without taking a position on
spacetime structure.

To introduce a representation of these time translations, we now need
to say what time translation invariance means in the context of Newtonian
mechanics. This introduces Newton’s second law. However, a rigorous treat-
ment requires some technicalities regarding the symmetries of a differential
equation that are not so often discussed. – Oh dear: Must we complicate a theory
as simple as Newtonian mechanics? – I’m afraid that someone who comes to
Newtonian mechanics for its simplicity was misinformed.8 The situation is
as Bill Burke once remarked, and in the spirit of the way Putnam (1962)
describes kinetic energy:

Be careful of the naïve view that a physical law is a mathematical relation between
previously defined quantities. The situation is, rather, that a certain mathematical
structure represents a given physical structure. Thus Newtonian mechanics does
not assert that F = ma, with F , m, and a separately defined. Rather, it asserts that
the structure of second-order differential equations applies to the motion of masses.
(Burke 1985, p.37)

7 This includes Leibnizian, Maxwellian, Galilean, and Newtonian spacetime (Earman 1989, Chapter
2). An exception is Machian spacetime, associated with the work of Barbour (1974); but, insofar as
this approach demotes time translations to a ‘coordinate relabelling’, the question of the meaning of
time reversal does not appear to arise.

8 See Butterfield (2006a,b,c, 2007), Wallace (2022), and Wilson (2013) for some subtleties in the
philosophical foundations of classical mechanics. The call-to-arms of Butterfield (2006a,b, 2011) is
particularly apt for this discussion: he argues that the properties of classical physics cannot be
viewed as defined only at points.
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The mathematical structure required for Newtonian mechanics is the
following. Observe that, given a smooth curve x(t) through R3n, each point
on the curve is associated with a set of values (x,ẋ,ẍ, . . . ) corresponding to its
successively higher derivatives with respect to t . These values are elements
of the jet space of R3n, associated with the smooth manifold R3n × R3n × · · ·
(see Olver 1993; Saunders 1989). In Newtonian mechanics, attention is
restricted to the ‘two-jet’ associated with M = R3n × R3n × R3n, whose
elements have the form s = (x,ẋ,ẍ). Given a smooth function F : R×R3n ×
R3n → R3n of only (x,ẋ), called a ‘force’, we say that a solution to Newton’s
equation is a smooth curve x : R → M satisfying Newton’s second law,9

ẍ = F (t,x,ẋ), (3.1)

at each point along the curve. Where are the masses? To simplify the
notation, I interpret them as assigned by the function F . So, for a harmonic
oscillator, F (x) = −(k/m)x, where k is called the ‘spring constant’.

Viewing the solution x(t) as a set of points (t,s) ∈ R × M , it is also
convenient to define a function f : R × M → R3n by

f (t,x,ẋ,ẍ) := ẍ − F (t,x,ẋ). (3.2)

Then each point (t,s) = (t,x,ẋ,ẍ) on a curve is in the solution space if and
only if (t,s) ∈ ker f , meaning that f (t,s) = 0. The space of all such curves is
called the solution space SF .

On reflection, it should be clear that Newton’s equation in this form
implies almost nothing about the physical world: without specifying the
functional form of F , it is just the statement that motion is guided by a
second-order differential equation. However, one of the few things it does
imply is that the state space of Newtonian mechanics cannot possibly be R3,
nor even R3n. Without an expression of higher derivatives, these spaces do
not have enough structure to support Newton’s equation. The state space
of Newtonian mechanics is rather the state space of a typical differential
equation, which has the richer structure of the jet space R × M . Careful
treatments of the philosophy of Newtonian mechanics like that of Wallace
(2022, §2) do correctly represent the structure of Newtonian state space, but

9 The restriction to smooth force functions of at most first derivatives ensures the existence and
uniqueness of solutions (see e.g. Arnol’d 1992, §7.2). This rules out pathological examples of local
indeterminism like ‘Norton’s dome’, although the latter is (rightly) the subject of much philosophical
debate (cf. Earman 1986; Fletcher 2012; Gyenis 2013; Malament 2008; Norton 2008a; Wilson 2009).
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this is not often discussed in physics or philosophy,10 and it is a crucial
observation for us here.

We can now develop a more appropriate understanding of ‘symmetry’ in
Newtonian mechanics: we say that an automorphism of a Newtonian system
with solution space SF is a diffeomorphism φ on the state space of higher
derivatives,

φ : R × M → R × M, (3.3)

such that φ preserves the kernel of f : if (t,st ) ∈ ker f , then φ(t,st ) ∈ ker f .
This does what one would expect an automorphism of a solution space to
do: if x(t) is a solution to Newton’s equation, then so is the curve produced
by the transformation φ. As Belot (2013, §3) has emphasised, a Newtonian
symmetry is not just a bijection on curves x(t), but a diffeomorphism on
R × M ; indeed, a bijection alone does not necessarily preserve all the local
structure of a differential equation, and if one exists that does, then it leads
to a pathological perspective on symmetries.

This discussion should make clear that the structure of Newtonian state
space is not a trivial matter. However, once it is in place, a representation of
time translations in Newtonian mechanics can be concisely defined: it is a
homomorphism t �→ φt from the time translations (R,+) to the automor-
phism group of SF , such that for each point (t0,s0) ∈ R × M and for each
time translation t ,

φt : (t0,s0) �→ (t0 + t,st ), (3.4)

for some st ∈ M . Writing φt (s0) = st for the restriction of this map to M ,
a representation of (R,+) thus defines a smooth curve t �→ x(t) associated
with each initial point (t0,s0), which is given by x(t0 + t) := φt (s0). Since an
automorphism φt of the solution spaceSF by definition preserves ker f , this
implies that x(t) is a solution to Newton’s equation. As one would expect,
each time translation by a duration t maps a point on a curve x(t0) to a
different point on the same curve, x(t0) �→ x(t0 + t).

Let me emphasise that time translations are represented here by symme-
tries, as discussed in Section 3.1.2. If the map defined by Eq. (3.4) were not
an automorphism of SF , then it would not provide a representation. This
is standard practice in Newtonian mechanics: in locally isolated systems
without any hidden degrees of freedom, forces do not seem to display any
time dependence, and so time translations are symmetries of the theory; or,

10 Recognising the fact that state space must have higher derivatives has implications for much of the
philosophical literature on the dimensionality of state space following Albert (1996), such as the
contributions in Ney and Albert (2013), which I leave as an invitation to the reader.
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in the language of this section, time translations are automorphisms of the
solution space.11 We will return to this assumption in Chapter 4, since it is
related to the question of time reversal symmetry and symmetry violation.

3.2.3 The Newtonian Time Reversal Operator

Having clarified the structure of Newtonian time translations, we can simply
follow the procedure of Chapter 2 to construct the time reversal transfor-
mation on Newtonian state space. Here is the fundamental idea, which we
will repeat throughout this chapter.

Given a representation t �→ φt of the time translation group (R,+), recall
that in Section 2.5.2, we saw that time reversal can be uniquely determined
to transform this group as τ : t �→ −t . And, in Section 2.6, we showed
that it can be ‘added in’ as a group element to an extension G of those
time translations, which satisfies τ tτ−1 = −t . If our representation of (R,+)
can be extended to a representation of G, then there will be a state space
transformation T := φτ corresponding to time reversal that reverses each
time translation, T φtT

−1 = φ−t for all t ∈ R. There is nothing mysterious
about this transformation: it is just the representative of a temporal reflection
on state space.

In the previous section, we saw how time translations give rise to curves in
Newtonian mechanics. So, by reversing the time translations, time reversal in
Newtonian mechanics gives rise to a transformation on curves, whereby the
curve x(t0 + t) = φt (s0) is replaced with a curve xT (t0 + t) = φ−t (s0) = x(t0 − t).
In other words, time reversal transforms curves through Newtonian state
space as

x(t0 + t) �→ x(t0 − t). (3.5)

This makes clear how the ‘folk’ account of time reversal discussed by
Callender (2000) arises! If we parametrise x(t) so that t0 = 0, then we get
exactly the transformation x(t) �→ x(−t). But, it arises as a reflection of time
translations rather than of time coordinates, and so there is no longer any
question about ‘which coordinate origin’ to reflect about of the kind that
concerns North (2008).12 By reversing the whole structure of time, including
time translations, that problem is dissolved.

11 Of course, damped systems are often treated heuristically as if they do not satisfy this requirement,
but this is generally because they are in reality not isolated; see Section 7.2.

12 See Section 2.5.2.
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Now we can also see the origin of the time reversal transformation T := φτ

on state space, debated by the two camps of Section 2.2: it is just the image
of the ‘true’ time reversal transformation τ : t �→ −t on state space. When a
representation of it exists, it is guaranteed to reverse time translations when
it acts on them by conjugation:

T φtT
−1 = φ−t . (3.6)

For example, suppose we adopt a time-independent force F = F (x,ẋ),
which has the property of being independent of the sign of velocity,
F (x,−ẋ) = F (x,ẋ). This might be the force F = (k/m)x for the harmonic
oscillator, or F = kq/x for a Coulomb force. Let me drop the time parameter t

from state space, since this force does not depend on time. Then a
representation of the time reversal operator is defined by transforming
each state s = (x,ẋ,ẍ) ∈ M in Newtonian state space by

T : (x,ẋ,ẍ) = (x,−ẋ,ẍ). (3.7)

To confirm that this provides a representation of the time reversal group
element, we need only check that Eq. (3.6) is satisfied. First, if (x,ẋ,ẍ) is the
initial (t = 0) state on a curve x(t), then we have

T φt (x,ẋ,ẍ) = T (x(t),ẋ(t),ẍ(t)) = (x(t),−ẋ(t),ẍ(t)) . (3.8)

Our assumptions imply that x(t) is a solution only if x(−t) is too,13 meaning
that it evolves from x(0) under the same time translations ϕt to x(−t).
This curve has initial state (x,−ẋ,ẍ), which ϕt transforms as ϕt (x,−ẋ,ẍ) =
(x(−t),−ẋ(−t),ẍ(−t)). Therefore, applying the reverse time translation ϕ−t

produces (x(t),−ẋ(t),ẍ(t)), so that we get

φ−tT (x,ẋ,ẍ) = φ−t (x,−ẋ,ẍ) = (x(t),−ẋ(t),ẍ(t)) . (3.9)

Setting these two equations equal, we thus find that T φt = φ−tT , which
means that T is a representation of time reversal, T φtT

−1 = φ−t .
Thus, a Newtonian time reversal operator really does exist! Folk wisdom

suggests that it is the identity or non-existent, and there is a grain of truth in
that: the construction of T above is indeed the identity when restricted
to the submanifold of particle positions R3n. However, time reversal is
not the identity on true Newtonian state space, the jet space of higher

13 For x(t) to be a solution means that d2

dt2 x(t) = F
(
x(t), d

dt
x(t)

)
for all t ∈ R, and so it is true for each

−t ∈ R. Thus, d2

dt2 x(−t) = F
(
x(−t),− d

dt
x(t)

)
= F

(
x(−t), d

dt
x(t)

)
, where the last equality applies

the fact that F does not depend on the sign of velocity. Therefore x(−t) is a solution as well.
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derivatives (x,ẋ,ẍ) ∈ M . This follows deductively from the fact that it is
a representation of the reversal of time translations. So, when Callender
(2000, p.254) proposes that time reversal does nothing but reverse the sign
of t and “anything logically supervenient” upon it, we can agree! But, this
does not mean that there is no instantaneous time reversal operator, as the
Time Reflection Camp seems to suggest: on the contrary, it means that there
must be.

How are we to interpret the time reversal transformation T on Newtonian
state space? The Instantaneous Camp of Section 2.2 proposed to view
it as part of a two-step description of time reversal, in which we first
reverse time order and then reverse instants. I would not recommend
that it be viewed this way either; at least, not at its foundation. Time
reversal is fundamentally the reversal of time translations τ tτ−1 = −t , and
the transformation T on state space is just its representative on state space,
in that T φtT

−1 = φ−t . Nor is this somehow really ‘motion reversal’: since it
is an element of a representation, which preserves the essential structure of
time, the transformation T has all that is needed to justify viewing it as the
reversal of temporal structure.

That said, we can still make sense of the Instantaneous Camp’s proposal,
as a shorthand way to answer a particular question:

Given that an initial state s = (x,ẋ,ẍ) evolves along x(t) according to Newton’s equation,
what is the solution associated with the ‘reversed’ initial state T s?

The answer is: x(−t), which is really (T x)(−t) together with the fact that
T (x) = x. This follows immediately from our basic construction: a repre-
sentation of time reversal must satisfy T φtT

−1 = φ−t , which is equivalent
to φtT = T φ−t ; so the evolution φt (T s) of the initial state T s by φt can
equivalently be written as the evolution T φ−t (s) of the initial state s. Thus,
T s is associated with the solution, (T x)(−t) = x(−t). The controversy over
whether T s is really a ‘time reversed’ instantaneous state is, as far as I can tell,
only an issue of terminology. One can call it ‘motion reversal’ or whatever
one wishes. But, the basic interpretation of time reversal is still just as the
reversal of time translations.

3.2.4 Uniqueness of the Newtonian Time Reversal Operator

When a representation of the time reversal operator exists, it is usually not
unique. For example, in the case above where force does not depend on the
sign of velocity, the transformation T̃ (x,ẋ,ẍ) = (−x,ẋ,ẍ) provides another
representation of time reversal, in that it implies that T̃ φt T̃

−1 = φ−t .
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It is instructive to see this in an example: consider the ‘free’ particle
system for which F = 0, and where solutions to Newton’s equation are
curves of the form x(t) = ẋt + x and time translations can be written as
ϕt (x,ẋ,ẍ) = (ẋt + x,ẋ,ẍ) for all t ∈ R. Then,

T̃ φt T̃
−1(x,ẋ,ẍ) = T̃ φt (−x,ẋ,ẍ) = T̃ (ẋt − x,ẋ,ẍ) = (−ẋt + x,ẋ,ẍ)

= φ−t (x,ẋ,ẍ),
(3.10)

satisfying our requirement that T̃ is a representation of the temporal reflec-
tion τ tτ−1 = −t . So, there are multiple representatives of time reversal in this
sense, which have the same effect of transforming curves, as x(t) �→ x(−t).

However, the transformation T̃ also reverses ‘spatial translations’, in that if
we define a translation in space La by the statement La(x,ẋ,ẍ) := (x +a,ẋ,ẍ)
for each a ∈ R3n, then it follows14 that T̃ LaT̃

−1 = L−a . That is what most
would expect of ‘space and time reversal’, but not time reversal alone. So,
there is reason to think that not every reversal of a curve x(t) �→ x(−t)
is ‘really’ time reversal. But, to distinguish time reversal from space-time
reversal, it turns out that we must look beyond the folk wisdom that time
reversal just ‘reverses little-t ’, and make essential use of the time reversal
transformation T on Newtonian state space.

In particular, the Galilei group is a common choice for the symmetries of
pre-relativistic spacetime, and so we often suppose that we have a represen-
tation of it on Newtonian state space.15 In this context, the transformation
T̃ would normally be defined as a representation of the ‘parity and time’
transformation pτ . Just as time reversal can be defined as the reversal of time
translations, so p can be defined as the reversal of spatial translations, in the
sense that pap−1 = −a for each spatial translation s. In contrast, the time
reversal group element τ commutes with each spatial translation, τaτ−1 = a.
This expresses the ‘homogeneity’ of time’s direction across space: applying
time reversal in different spatial locations produces exactly the same result.

Thus, in a representation of the Galilei group with T = φτ representing
time reversal and Ls = φs representing spatial translations, the homomor-
phism property implies that

T LaT
−1 = La . (3.11)

The requirement of homogeneity expressed by Eq. (3.11) is satisfied by the
ordinary time reversal transformation T (x,ẋ,ẍ) = (x,−ẋ,ẍ). But, it is not

14 Namely, T̃ LaT̃ −1(x,ẋ,ẍ) = T̃ La (−x,ẋ,ẍ) = T̃ (−x + a,ẋ,ẍ) = (x − a,ẋ,ẍ) = L−a (x,ẋ,ẍ).
15 For a discussion of the geometry underlying this, see Abraham and Marsden (1978, Theorem 5.4.21

and commentary thereafter) or Marle (1976); a philosophical discussion can be found in Belot (2000)
and Earman (1989), or more recently Dewar (2022, Chapter 6).
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satisfied when T is replaced with the space-time reversal T̃ . In this sense,
T is the preferred time reversal transformation in Newtonian mechanics.16

This technique for identifying the time reversal operator turns out to be
remarkably general, and we will make use of it in other contexts below.

Here is a general lesson from our discussion: since a state space is a highly
structured object, one should expect a representation of time translations
to contain significantly more structure than the group of time translations
itself. This, in the end, is where the instantaneous time reversal operator
gets its ‘bells and whistles’: a representation T = φτ of the time reversal
group element τ is a highly structured thing. The same moral applies in
nearly every approach to dynamical systems, and so I will appeal to similar
arguments in the remainder of this chapter.

What the reader should not conclude from this is that Newtonian mechan-
ics is necessarily time reversal invariant. Although we can always extend
the time translation group (R,+) to one that includes time reversal, it is
a significant assumption to say that a representation of time translations
can be appropriately extended to this larger group too. As we will see in
Chapter 4, the latter assumption can fail, even in the context of Newto-
nian mechanics.17 Indeed, even more interesting things happen outside the
austere world of Democritus, Bošković, and Boyle: if we allow matter to
have intrinsic properties besides position (as even Aristotle did18), such as a
fluid’s instantaneous viscosity field in Navier–Stokes theory, then the state
space becomes more interesting too. This allows for all sorts of possibil-
ities regarding the failure of time reversal symmetry, even in Newtonian
physics.

3.3 Analytic Mechanics

There are three great approaches to analytic mechanics: Hamiltonian,
Lagrangian, and Hamilton–Jacobi. Folklore has it that these frameworks are
all equivalent to Newtonian mechanics, and there are senses in which this
is true.19 But, each adopts a slightly different structure for state space. And,
these frameworks are so general as to provide a framework for virtually
every area of modern physics. So, to understand the meaning of time

16 This suggests that a uniqueness theorem is possible in this context; however, stating this appears to
be much simpler in the context of analytic mechanics, and so I reserve this for Section 3.3.

17 Cf. Roberts (2013b).
18 In On Generation and Corruption Book I, Part 8, 326a.
19 Philosophical challenges to the folklore are given by Butterfield (2004), Curiel (2013), and North

(2009). It has been defended by Barrett (2015, 2019).
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reversal in these theories, they should really each be treated independently.
As Butterfield observed,20 the analytic framework,

helps rebut the false idea that classical mechanics gives us a single matter-in-
motion picture. . . . [T]hese equivalences are subtler than is suggested by textbook
impressions, and folklore slogans like ‘Lagrangian and Newtonian mechanics are
equivalent’. (Butterfield 2004, p.29)

Nevertheless, to avoid dragging the reader through the derivation of time
reversal in each of these sophisticated frameworks, I hope to be forgiven
for analysing just one of them in detail, the symplectic formulation of
Hamiltonian mechanics. I will then just give a few brief comments on how
the analysis applies to Lagrangian mechanics in Section 3.3.4.21

3.3.1 State Space for Symplectic Mechanics

With suitable definitions, if F = −∇U for some smooth function U of posi-
tion alone, then with an appropriate definition of a smooth ‘Hamiltonian’
function h, Newton’s equation is equivalent to Hamilton’s equations,22

d

dt
qi(t) = ∂h

∂pi

d

dt
pi(t) = − ∂h

∂qi

(3.12)

for each i = 1, . . . ,n and for all t ∈ R. Hamilton’s equations are invariant
under time translations, and so they provide a natural context for a repre-
sentation of time translations. This can be stated most clearly in the language
of symplectic mechanics.

One can view symplectic mechanics as a framework for producing Hamil-
ton’s equations in ‘local’ form by elevating time translation invariance to the
status of an axiom. The state space is a pair (M,ω) called a symplectic manifold,
where M is a smooth 2n-dimensional real manifold, and ω is a closed, non-
degenerate two-form on M called a symplectic form. The central axiom of the
theory can be stated as follows:

Time evolution is along a vector field X that preserves the structure of state space.

20 Butterfield, J. (2004). “Between laws and models: Some philosophical morals of Lagrangian
mechanics”. In: Unpublished manuscript, http://philsci-archive.pitt.edu/1937

21 An even more general framework for Hamiltonian mechanics is Poisson mechanics, although I will
not discuss this here; see Landsman (1998) for a treatment of mechanics in this framework.

22 Namely, given a basis (xi,ẋi ) ∈ Rn × Rn, define qi = xi and pi = miẋi , and let h : Rn × Rn → R be
a function is a sum of all the energy, both ‘kinetic’ and ‘potential’, h(q1, . . . ,qn,p1, . . . ,pn) :=∑n

i=1

(
1

2mi
pi · pi

)
+ U (q1, . . . ,qn). Now check that −∇U = miẍi is equivalent to Hamilton’s

equations.
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This axiom can be interpreted to mean that X is a smooth vector field with
Lie derivative satisfying LXω = 0, called a symplectic vector field. That is
equivalent23 to the statement that ιXω is a closed one-form, which implies
that it is ‘locally’ exact by the Poincaré lemma: in a neighbourhood of every
point,

ιXω = dh (3.13)

for some smooth function h : M → R. We can now confirm that Eq. (3.13)
is a local geometric expression of Hamilton’s equations by an application
of Darboux’s theorem, which ensures that there is a local coordinate sys-
tem (q1, . . . ,qn,p1, . . . ,pn) in which ω = (

1−1

)
, which reproduces24 the

Eqs. (3.12). However, the framework of symplectic mechanics is much more
general: (M,ω) can be any symplectic manifold, and a state s ∈ M can be
used to represent a much more general state of affairs than Boyle or Bošković
intended for Newtonian mechanics.

We begin by reviewing the nature of time translations in this frame-
work. A symplectic vector field X is threaded by a one-parameter set of
diffeomorphisms called the symplectic flow t �→ φt along X. In general,
an automorphism of (M,ω) is a diffeomorphism that either preserves ω

or reverses its sign; the latter possibility arises because the symplectic
form introduces an orientation on M , which is arbitrary from a physical
perspective. The former is called a symplectomorphism and the latter an anti-
symplectomorphism.

By construction, each φt in a symplectic flow is an symplectomorphism
such that φt1φt2 = φt1+t2 . Thus, t �→ φt forms a representation of the Lie group
of time translations. Its local Lie algebra generator in the representation is
the smooth function h, called the ‘Hamiltonian’ or ‘energy’ of the represen-
tation. Following the discussion of Section 3.1.3, we will require that the
Hamiltonian h be half-bounded, meaning that there exists some fixed lower
bound b ∈ R such that h(s) ≥ b for all s ∈ M , but no such upper bound.

3.3.2 Time Reversal in Symplectic Mechanics

Let t �→ φt be a representation of time translations amongst the symplec-
tomorphisms of (M,ω). In other words, φt is a symplectic flow that threads

23 Cartan’s ‘magic formula’ for a two-form ω and a vector field X states, LXω = dιXω + ιXdω. But
dω = 0, so LXω = dιXω. Hence, LXω = 0 if and only if dιXω = 0, where the latter says ιXω is
closed.

24 That is, writing an integral curve of X as qi (t),pi (t) so that X =
(

d
dt

q1(t), . . . , d
dt

pn(t)
)

. Thus, since

for smooth functions dh = ∇h =
(

∂h
∂q1

, . . . , ∂h
∂pn

)
, Eq. (3.13) produces Hamilton’s equations.
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a symplectic vector field X. Let h denote a half-bounded local generator
of φt in some neighbourhood. Extending the time translations to a group
that includes a time reversal element τ , suppose that an extension of the
representation φ exists too. Then, the time reversal transformation in symplectic
mechanics is just the representative T := φτ of time reversal on state space.
As before, τ tτ−1 = −t implies that T φtT

−1 = φ−t , since a representation is a
homomorphism.

To verify that this notion of time reversal transforms dynamical trajec-
tories in an appropriate way, let s ∈ M be an initial state, and let us write
t �→ s(t) = φts to denote a curve representing the time evolution that begins
at s. The application of time reversal to each time translation T φtT

−1 = φ−t

implies that the curve s(t) = φs(t) is transformed to s(−t) = φ−t s, and so
time reversal induces a transformation on curves of the form

s(t) �→ s(−t). (3.14)

However, as before, more structure is needed in order to determine what
this transformation T is like.

By adopting the (Darboux) coordinates of Hamilton’s equations (3.12),
one might guess that T should be defined by T : (q,p) �→ (q,−p), so as
to ‘reverse instantaneous momentum’. Writing the symplectic form in
terms of the wedge product as ω = dp ∧ dq, this would imply that time
reversal also reverses the symplectic form ω �→ −ω, and so is an anti-
symplectomorphism.25 This is indeed the right result. Unfortunately, in
symplectic mechanics we do not always have assurance that the coordinates
(q,p) represent physical ‘position’ and ‘momentum’, respectively. Indeed, if
one coordinate system (q,p) happens to represent position and momentum,
then there typically remain many coordinate systems (Q,P ) related to it by
a symplectomorphism, which thus satisfy Hamilton’s equations, but which
do not represent position and momentum. So, in symplectic mechanics, we
will need a more general perspective on the meaning of the time reversal
operator.

Happily, we have already done the work of building that general perspec-
tive and can prove the general result that time reversal is antisymplectic
without this appeal to coordinate systems. Our only substantial assumption
will be that the energy associated with time translations is half-bounded.
And, to preserve the local structure of symplectic mechanics, we will take
our time translations to be associated with a local Lie group, defined by the
(R,+) in some neighbourhood of the identity. Since an automorphism of

25 This is analogous to an antiunitary time reversal operator in quantum theory; see Section 3.4.

https://doi.org/10.1017/9781009122139.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009122139.004


3.3 Analytic Mechanics 69

a symplectic manifold (M,ω) is by definition either symplectic or antisym-
plectic (as discussed in the end of Section 3.3.1), it will be enough to show
that time reversal cannot be symplectic. Here is the result.

Proposition 3.1 Let t �→ φt be a representation of a local Lie group of (R,+)
in some neighbourhood of the identity, amongst the symplectic and antisymplectic
transformations of (M,ω), with h a half-bounded generator. If the representation
extends to one that includes a time reversal operator T := φτ such that T φtT

−1 =
φ−t , then T is not symplectic, and so it must be antisymplectic.

Proof Assume for reductio that T is symplectic, and let s(t) := φts for some
s ∈ M . Then s(t) is an integral curve with tangent vector field Xh, where
h is the half-bounded local generator of time translations. We assumed
T ◦ φt ◦ T −1 = φ−t , which is equivalent to φt ◦ T = T ◦ φ−t using the fact that
T = T −1. This implies that T ◦ s(−t) = T ◦ φ−t s = ϕt ◦ T s. So, (T s)(−t) =
T s(−t) is an integral curve of Xh. Moreover, by Hamilton’s equations, s(−t)
has a Hamiltonian vector field given by −Xh = X−h. Combining these two
facts implies that

Xh = T∗X−h, (3.15)

where T∗ is the push-forward of T on vector fields. But we have assumed
T is symplectic, so Jacobi’s theorem can be applied (Abraham and Marsden
1978, Theorem 3.3.19), which says that for symplectic maps, Eq. (3.15) is true
if and only if Xh = X−h◦T . Therefore: h(x) = −h ◦ T (x) + c for some c ∈ R

and for all x ∈ M . But h is half-bounded, so we can write m ≤ h ◦ T (x) for
all x ∈ M , which is equivalent to: −h ◦ T (x) + c ≤ m + c. Combining these
two thus entails

h(x) = −h ◦ T (x) + c ≤ m + c

for all x ∈ M , contradicting the assumption that h is unbounded from
above. �

One immediate corollary is that, like in Newtonian mechanics, time rever-
sal cannot be the identity transformation: if a representation of time reversal
exists, then it must be antisymplectic, whereas the identity is symplectic.

Another interesting application is in electromagnetism. Let (R4,gab) be a
relativistic spacetime, where gab is a Lorentzian metric. A two-form F on R4

that is closed, dF = 0, is called a Maxwell–Faraday field and is a common way
to represent the electromagnetic field. To analyse this system in symplectic
mechanics, let M = T ∗R4 be the cotangent bundle over R4, whose canonical
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coordinates can be written (q,p) with q ∈ R4 representing position in
spacetime and p a one-form on R4 at the point q. Let θ be the canonical
one-form on T ∗M , and let ω0 = dθ be its canonical symplectic form.26 Using
the projection π : T ∗M → M , we can pull F back to a two-form on T ∗M ,
which we will again denote by F . Now, the two-form defined by

ωF := ω0 + eF, (3.16)

where e ∈ R represents ‘electric charge’, is again a symplectic form; and, the
symplectic flow on (M,ωF ) generated by the (half-bounded) free Hamilto-
nian h(q,p) := 1

2g
abpapb gives rise to the ordinary equations of motion for a

charged particle in an electromagnetic field.27

What is the effect of time reversal on this system? From Proposition 3.1,
we know that its representative T on the symplectic manifold (M,ωF ) is
antisymplectic, and so reverses the sign of ωF . If we suppose also that
T : (q,p) �→ (q,−p), given that we know the coordinates we have adopted
represent a particle’s position and momentum, then the one-form θ reverses
sign as well, and so ω0 = dθ does too. This implies that T reverses the
electromagnetic field, F �→ −F , since F = (ωF − ω0)/e. Similarly, given an
electromagnetic ‘four-potential’, which is a one-form A satisfying F = dA,
it follows from this that A �→ −A. This is a different way of getting to the
account of Malament (2004), who instead uses the reversal of a temporal
orientation to define time reversal (see Section 2.5.3) and then observes that
this induces the transformation F �→ −F .

3.3.3 Uniqueness of the Hamiltonian Time Reversal Operator

Like in Newtonian mechanics, there are generally many representations of
time reversal on a symplectic manifold: if T satisfies T φtT

−1 = φ−t , and
if α is any symplectomorphism such that αϕt = ϕtα for all t (called an
‘integral’ of time translations), then one can check28 that this is also satisfied
by T̃ := α◦T . But again, the broader context of a symmetry group will often
help to determine the meaning of T . Let me indicate one scenario in which
a uniqueness result can be obtained.

As discussed in Section 3.2.4, the structure of the Galilei group (and the
Lorentz group for that matter) guarantees that time reversal, in addition

26 The canonical one-form θ on a cotangent bundle T ∗M is a standard construction given in coordinates
(q,p) by

∑
i pidqi . It has the property that ω = −dθ is a symplectic form, called the canonical

symplectic form (cf. Arnol’d 1989, §37).
27 Cf. Guillemin and Sternberg (1984, p.140).
28 Namely, T̃ φt T̃

−1 = α(T φtT
−1)α−1 = α(φ−t )α−1 = φ−t αα−1 = φ−t .
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to reversing time translations T ϕtT
−1 = ϕt , also commutes with spatial

translations, T LsT
−1 = Ls . Moreover, time reversal transforms a velocity

boost to the reverse boost, in that T BvT
−1 = B−v, capturing an intuitive sense

in which it reverses velocities. Time reversal similarly reverses rotations,
T RθT

−1 = R−θ . These transformations are the ‘generating elements’ of
the Galilei group, in that all its elements are compositions of them. So, in
summary, we have that for each generating element F of the Galilei group,
time reversal either commutes with the element, T FT −1 = F , or maps it to
its inverse, T FT −1 = F−1.

Suppose now that we are concerned with a linear symplectic manifold
(M,ω), meaning that the manifold M is also a vector space, for example
in the context of a classical field theory (cf. Section 8.2.2). Suppose further
that we have a representation of the Galilei group that is irreducible, in the
sense that it is a non-trivial representation with no non-trivial subspaces
that are also representations. One often uses this condition to characterise
‘elementary’ systems that cannot be decomposed into further component
parts. And, when this is the case, the properties above guarantee that T is
unique, up to a multiplicative constant.

This follows immediately from one of the cornerstones of linear represen-
tation theory known as Schur’s lemma, which says that if a transformation K

commutes with every element of a linear representation, then it must be a
constant multiple of the identity (cf. Blank, Exner, and Havlíček 2008, The-
orem 6.7.1). In particular, suppose that given an irreducible representation,
there are two transformations T and T̃ that both either commute with each
generating element F , or map it to its inverse. Then T T̃ commutes with each
generating element in the representation. Thus, T T̃ = c for some constant by
Schur’s lemma, and so applying the fact that T = T −1, we get that T̃ = cT .
We can summarise this general strategy for determining uniqueness in the
following.

Proposition 3.2 Let T = T −1 be a linear bijection such that, for all the generating
elements F of an irreducible linear representation, either T FT −1 = F or T FT −1 =
F−1. Then T is the unique transformation with these properties up to a multiplicative
constant, in that any other T̃ with these properties satisfies T̃ = cT for some
constant c.

As one might expect, this technique finds its most natural home in theories
with a built-in linear structure, such as quantum theory. Time reversal in
that context is the subject of Section 3.4. But before we turn to the verdammten
Quantenspringerei, let me offer a few brief remarks on time reversal in
Lagrangian mechanics.
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3.3.4 Lagrangian Mechanics

Lagrangian mechanics has an elegant geometric formulation due to Klein
(1962), which makes its state space structure particularly clear.29 This for-
mulation reveals that much of Lagrangian mechanics is in fact just a special
case of symplectic mechanics. So, let me conclude our discussion of analytic
mechanics with a sketch of this fact, which allows one to analyse time
reversal using the results above.

Lagrangian mechanics is formulated on the tangent bundle T M of a
smooth real manifold M . A point in T M is often written s = (x,ẋ), with
x ∈ M and ẋ a vector at x, representing the ‘configuration’ and ‘velocity’
of a physical system at an instant. Motion in this framework is given by a
solution to the Euler–Lagrange equations,

d

dt

∂L

∂ẋi

− ∂L

∂xi

= 0 (3.17)

for each i = 1,2, . . . ,n and for all t ∈ R.
The state space structure underpinning this framework can often be

formulated as a symplectic manifold, and in this sense it is a special case
of symplectic mechanics. This applies specifically to systems with a ‘reg-
ular’ Lagrangian, or one for which the Hessian is invertible.30 For each
smooth Lagrangian L : T M → R, there exists a canonical closed two-form ωL

on T M , which can be ‘pulled back’ from the canonical symplectic form
ω0 on T ∗M , its ‘partner’ cotangent bundle; this two-form turns out to be a
symplectic form if and only if the Lagrangian is regular.31 There is also
a canonical energy function hL : T M → R defined32 by L. For regular
Lagrangians, the Euler–Lagrange equations can then be expressed in the
same form as Hamilton’s equations, but on the manifold T M :

ιXωL = dhL. (3.18)

In coordinates (x,ẋ), this reduces to the familiar expression of the Euler–
Lagrange equations above (De León and Rodrigues 1989, p.304). And, just

29 For details on Klein’s approach, see Nester (1988) and Curiel (2013), De León and Rodrigues (1989,
§7), or Woodhouse (1991, §2).

30 This condition is required for the existence of the Legendre transformation; for details, see Abraham
and Marsden (1978, §3.5). An excellent analysis of the relationship between Hamiltonian and
Lagrangian structures can be found in Barrett (2015, 2019).

31 See Abraham and Marsden (1978, Proposition 3.5.9) or De León and Rodrigues (1989, §7.1).
32 This makes use of canonical vertical (or ‘Liouville’) vector field V on T M ; it is defined in the

standard way by hL := V (dL) − L (cf. Nester 1988).
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as in Hamiltonian mechanics, the time translations here are given by the
symplectic flow t �→ φt on T M that ‘threads’ the symplectic vector field X.

The state space for ‘regular’ Lagrangian mechanics can thus be viewed as a
symplectic manifold (T M,ωL). This means that these models of Lagrangian
mechanics are not just equivalent to models of Hamiltonian mechanics:
the former are a subset of the latter!33 As a result, the conclusion of
Proposition 3.1 applies to this sector of Lagrangian mechanics as well, that
time reversal is represented by an antisymplectic transformation T . Of
course, this conclusion does not apply to the interesting case of non-regular
or singular Lagrangians, which are ubiquitous in gauge physics and for
which the two-form ωL in Eq. (3.18) is not symplectic. However, nothing
prevents the analysis of time reversal on the Representation View from
being carried out in this more general context, as a transformation that
reverses time translations associated with singular Lagrangians. I leave this
analysis as an invitation to the reader.

3.4 Quantum Theories

3.4.1 Two Camps on Hilbert Space Quantum Theory

Recall that in Chapter 2, we discussed two camps regarding the meaning
of time reversal. The Time Reflection Camp argued that time reversal has
the form t �→ −t , while the Instantaneous Camp argued that time reversal
involves this reflection plus a richly structured transformation T on state
space (Section 2.2). My thesis was that, once we adopt the Representation
View, we find a sense in which both these camps are correct: time reversal
does transform time translations as τ : t �→ −t ; and, its representative on
state space is a richly structured operator T , of the kind we have now seen
in the previous sections. Since a significant portion of this debate has taken
place in the context of Hilbert space quantum theory, it is worth briefly
reviewing what they say in this context, before we turn to the new derivation
of the time reversal operator that the Representation View affords.

Modern quantum theory on Hilbert space was set out by Von Neumann
(1932), who took experimental outcomes to be represented by elements of a
lattice of closed subspaces of a separable Hilbert space H, or equivalently,
by the lattice L(H) of projections onto those subspaces. Given a suitably

33 Compare this to Barrett (2018a).
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Unitary Operator U Antiunitary Operator A

(U1) UU∗ = U∗U = I (A1) AA∗ = A∗A = I
(U2) U (aψ + bφ) = aUψ + bUφ (A2) A(aψ + bφ) = a∗Aψ + b∗Aφ

(U3) 〈Uψ,Uφ〉 = 〈ψ,φ〉 (A3) 〈Aψ,Aφ〉 = 〈ψ,φ〉∗

Figure 3.5 Defining properties of unitary and antiunitary operators.

generalised notion of a ‘probability measure’ p on a suitable lattice, one can
always34 find a density operator ρ that allows p to be expressed in canonical
form (the ‘Born rule’):

p(F ) = Tr(ρF ) (3.19)

for each projection F ∈ L(H).
Symmetry transformations in quantum theory are represented by unitary

or antiunitary operators (defined by the properties in Figure 3.5), for reasons
that I will explain shortly. Members of the Instantaneous Camp, which has
included Earman (2002b) and myself (Roberts 2017), defend the standard
practice of including an antiunitary time reversal operator, following the
definition set out by Wigner (1931).

The statement that time reversal is antiunitary gives rise to the ‘complex
conjugation’ aspect of time reversal: for example, in the Schrödinger rep-
resentation on H = L2(R) with Q defined by Qψ := xψ (for all vectors
ψ in its domain DQ), with Q interpreted as a ‘position observable’, the
instantaneous time reversal operator T = K is the ‘conjugation operator’ on
wavefunctions, defined by Kψ := ψ∗ for all ψ ∈ L2(R). One can check that
this T is antiunitary.35 We thus take time reversal to transform a trajectory
ψ(t) to T ψ(−t). In contrast, as a member of the Time Reflection Camp,
Callender (2000) refers to this T as “Wigner reversal” and argues that ‘true’
time reversal in quantum theory is just the transformation ψ(t) �→ ψ(−t),
suggesting that T is actually identity transformation, which is unitary.

34 This is the content of Gleason’s theorem. Birkhoff and von Neumann (1936) pointed out that
‘probability’ in quantum theory cannot be a probability in the ordinary mathematical sense of a
bounded measure on a σ -algebra because the distributive axiom is violated in the lattice L(H). A
common response is to propose a more general logic, such as the lattice of Hilbert space projections:
see Jauch (cf. 1968) for a classic treatment and Rédei (1996, 1998) for a philosophical perspective; a
more general operational perspective can be found in Busch, Grabowski, and Lahti (1995) and in
Landsman (2017).

35 The inner product in the Schrödinger representation is 〈ψ,φ〉 := ∫
Rn ψ(x)∗φ(x)dx, which implies by

the linearity of complex conjugation that 〈ψ∗,φ∗〉 = ∫
Rn ψ(x)∗∗φ(x)∗dx = ∫

Rn (ψ(x)∗φ(x))∗dx =
〈ψ,φ〉∗.
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I have shown elsewhere on the basis of some well-loved adequacy con-
ditions that the time reversal operator must be antiunitary (Roberts 2017,
Proposition 1). That result is the following.

Proposition 3.3 Let T be a unitary or antiunitary bijection on a separable Hilbert
space H. Suppose there is at least one densely-defined self-adjoint operator H on H
that satisfies the following conditions.

i) (positive energy) 0 ≤ 〈ψ,Hψ〉 for all ψ in the domain of H .
ii) (nontrivial) H is not the zero operator.

iii) (invariance) T eitH ψ = e−itH T ψ for all ψ .

Then T is antiunitary.

However, this result did not convince the Time Reflection Camp. Callen-
der (Forthcoming) has responded by rejecting these adequacy conditions.
He writes:

Quantum textbooks sometimes address this point and claim that in quantum
mechanics time reversal invariance is to be given by two operations, a temporal
reflection and the operation of complex conjugation K : ψ → ψ∗. This idea can
be traced back to Wigner . . .. Roberts (2017) shows that if one assumes that there
exists at least one non-trivial time reversal invariant quantum physical system then
Wigner’s operation follows. But in this context this assumption is a large one for
it’s up in the air whether quantum mechanics is time reversal invariant. . . . Call
it what you like, Wigner’s reversal is different from a temporal reflection. Taking
the complex conjugation of a state doesn’t follow by logic or definition alone from a
temporal reflection. (Callender Forthcoming, pp.9–10)

Callender has given a reasonable reply. So, let me try to strengthen mine.
After a brief primer on symmetries in quantum theory (Section 3.4.2), I will
argue that Callender’s conclusion that “Wigner’s reversal is different from
temporal reflection” is too quick: Wigner’s antiunitary time reversal trans-
formation is nothing more than the representation of temporal reflection
τ : t �→ −t , where each t is a time translation. As a result, effects like the
conjugation of wavefunctions really do follow from a temporal reflection –
indeed, by logic and definition alone.

3.4.2 Symmetries of Quantum Theory

As in earlier sections, we begin with the automorphisms of our state space.
Experimental outcomes that cannot both occur at once, such as ‘z-spin
up’ and ‘z-spin down’ in a Stern–Gerlach apparatus, are represented in
quantum theory by projections E,E′ ∈ L(H) that are orthogonal, E⊥E′ = 0,
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meaning that they project onto orthogonal subspaces. An automorphism of
a Hilbert space lattice L(H) is a bijection U on one-dimensional projections
that preserves orthogonality:

U(E)⊥U(E′) if and only if E⊥E′. (3.20)

The group of automorphisms Aut L(H) provides a sensible definition of the
symmetries in quantum theory: they preserve the facts about which out-
comes can and cannot occur together. They are also strikingly classified by
Uhlhorn’s theorem, which assures us that every automorphism U ∈ Aut L(H)
implementable by a unique Hilbert space operator U (in that Uψ ∈ U(E) if
and only if ψ ∈ E) is either unitary or antiunitary (Uhlhorn 1963). Uhlhorn’s
theorem is a more precise and powerful expression of what is commonly
called Wigner’s theorem in quantum theory (cf. Bargmann 1964).

A representation of time translations in quantum theory is thus a map
from the group of time translations (R,+) to the group of unitary and
antiunitary operators on a Hilbert space. In quantum theory, it is entirely
standard practice to view time evolution in this way: we begin with a strongly
continuous representation of (R,+) amongst the unitary or antiunitary
operators, and from this derive the Schrödinger equation. To show this, we
first note that the representation must in fact be entirely unitary, since for
each t ∈ R we have that Ut = Ut/2Ut/2, which produces a unitary operator
regardless of whether Ut/2 is unitary or antiunitary. We can then apply
Stone’s theorem (Blank, Exner, and Havlíček 2008, Theorem 5.9.2), which
says that for such a representation there exists a unique densely-defined self-
adjoint operator H such that Ut = e−itH for all t ∈ R. This leads immediately
to the Schrödinger equation, by defining ψ(t) := e−itHψ for some ψ ∈ H
and taking derivatives of both sides.36 So, on this standard reading of time
in quantum theory, the ‘little t ’ parameter in the Schrödinger equation does
not represent a time coordinate, but a time translation, just as in my general
proposal of Chapter 2.

3.4.3 Time Reversal in Quantum Theory

We now have the tools to see where Wigner’s antiunitary time reversal
operator comes from. Let (R,+) be the group of time translations; as I have
shown in Section 2.6, it can always be extended using a semidirect product
to a group that includes a time reversal element τ satisfying τ tτ−1 = −t ,

36 Namely, d
dt

ψ(t) = −iHe−itH ψ = −iHψ(t). A more detailed treatment of the rationale for the
Schrödinger equation is Jauch (1968, §10-1 and 10-2) and Landsman (2017, §5.12).
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for each time translation t ∈R. In any representation φ of this larger
group amongst the unitary and antiunitary operators on a Hilbert space,
there is no mystery about where Wigner’s time reversal operator comes
from: we define it to be the representative of the temporal reflection τ ,
in that,

T := ϕτ . (3.21)

In other words, Wigner’s time reversal operator is no different than a tempo-
ral reflection: these two have the very same effect on time, guaranteed by the
fact that the representation φ is a (‘structure-preserving’) homomorphism.

No further assumptions about the nature of time reversal are needed.
We will only restrict our attention to a certain very large class of quantum
theories, in which energy is bounded from below but not from above. But,
this is an assumption about time translations, and not about time reversal. On
this basis alone, it is possible to prove that temporal reflection, together with
logic and definition alone, give rise to Wigner’s antiunitary time reversal
operator. Let me state the formal proposition first, before turning to its
interpretation.

Proposition 3.4 Let t �→ Ut be a strongly continuous unitary representation from
the time translation group (R,+) to the automorphisms of a separable Hilbert space
H, with a half-bounded generator H . Let G be the extension of this group to include
time reversal τ satisfying τ tτ−1 = −t . Then:

1. the representation of (R,+) extends to a representation of G, with the representative
τ �→ T of time reversal satisfying T UtT

−1 = U−t ; and
2. in every such representation, T must be antiunitary.

Proof To prove that such an extension exists, let H be the self-adjoint
generator satisfying Ut = e−itH , and let sp(H ) = � ⊆ R be its spectrum.
Let Hs be its spectral representation on L2(�), meaning that Hsψ(x) = x

for all ψ in its domain, and V HV −1 = Hs for some unitary V : H→ L2(�)
(cf. Blank, Exner, and Havlíček 2008, §5.8). If K is the conjugation operator
on L2(�), meaning Kψ = ψ∗ for all ψ ∈ L2(�), then [K,Hs] = 0, since for
all ψ in the domain of Hs we have KHsK

−1ψ(x) = xψ(x) = Hsψ(x). Thus,
T := V −1KV is the desired antiunitary operator, since our definitions imply
that [T ,H ] = 0, and hence TUtT

−1 = eT (−itH )T −1 = eitT HT −1 = eitH = U−t .
To prove that every automorphism T (a unitary or antiunitary by

Uhlhorn’s theorem) in such a representation must be antiunitarity, suppose
for reductio that T is unitary. Since T UtT

−1 = U−t , we have that,

eitH = T e−itHT −1 = eT (−itH )T −1 = e−itT HT −1
, (3.22)
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where the last equality applies unitarity. By Stone’s theorem, the generator of
the unitary group is unique, so −H = T HT −1, and hence H and −H have the
same spectrum. But since H is bounded from below, m ≤ sp(H ) = sp(−H ) =
−sp(H ) ≤ −m, contradicting the assumption that sp(H ) is unbounded from
above. �

I hope this dissolves the remaining mystery surrounding Wigner’s antiu-
nitary time reversal operator. Quantum theory is a dynamical theory, and
so like any dynamical theory, it admits a representation of time transla-
tions with half-bounded energy. Whenever this is the case, Proposition 3.4
shows that time translations extend to include time reversal τ : t �→ −t , and,
Wigner’s time reversal operator is nothing more than its representative on
state space, which is always antiunitary. Although a ‘unitary time reversal’
operator is sometimes associated with the work of Racah (1937), this propo-
sition implies that no such unitary operator reverses time translations in a
theory with half-bounded energy.37

The Temporal Reflection Camp can also rest reassured that this ‘instanta-
neous’ time reversal operator need not be interpreted as ‘reversing instants’.
Fundamentally, Wigner’s time reversal operator is just the representative of
a temporal reflection, which has the property that τ tτ−1 = −t , and therefore,

T UtT
−1 = U−t . (3.23)

This T is no more ‘instantaneous’ than time translations are, in that both are
defined as operators on ‘instantaneous’ state space.

What then of the apparent textbook application of two operations, T and
t �→ −t , instead of just t �→ −t? This is nothing more than a shorthand way
to answer the following question:

Given a solution to the Schrödinger equation ψ(t) := Utψ with initial state ψ , what is the
solution associated with the ‘time-reversed’ initial state T ψ?

The answer is: T ψ(−t). This follows because Eq. (3.23) implies that
UtT ψ = T U−tψ = T ψ(−t); so, the unitary dynamics Ut starting with
T ψ is given by T ψ(−t). In a misleading sense, this gives the appearance
of two operations, τ : t �→ −t and T : ψ �→ T ψ . But, this is not the origin
of the time reversal operator. Time reversal is simply a temporal reflection,

37 This was confirmed explicitly for quantum electrodynamics by Jauch and Rohrlich (1976, pp.88–9).
Costa de Beauregard (1980) proposes to restore a unitary reversal of time translations, but at the
cost of introducing unbounded negative energy into the theory.
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which reverses the group of time translations, Ut �→ U−t . The antiunitary
instantaneous time reversal operator T is the operator that implements time
reflection, as in Eq. (3.23).

What about Callender’s charge that we have assumed time reversal invari-
ance? Here there is a subtlety: Eq. (3.22) does indeed give a standard
expression of what it means for a quantum system to be time reversal
invariant, which we discuss more in Chapter 4. However, this does not
mean that we have assumed time reversal invariance. Although we can
always extend time translations to include a time reversal group element, as
described in Section 2.6, this does not necessarily mean that we can extend
the representation of time translations to an appropriate representation of
time reversal. If such an extension does exist, then the second part of
Proposition 3.4 shows that it must be antiunitary. But, an appropriate
representation might fail to exist, in which case we say that a quantum
system violates time reversal invariance. I will return to the discussion of
time reversal invariance and time reversal violation in Chapter 4.

Note that I am making careful use of the word ‘appropriate’ when I say
that an appropriate representation of time reversal might not exist. Proposi-
tion 3.4 is perhaps surprising because the first part shows that, in quantum
theory, a representation of time reversal – and hence, of time reversal
symmetry – always does exist! This expresses a certain sense in which
quantum theory is always symmetric in time, which I will discuss in more
detail in Chapter 8. However, it is not always appropriate to call the resulting
representative T the ‘time reversal operator’: there are in general many
representatives of time reversal, such as parity–time reversal, just as in the
case of classical mechanics (Sections 3.2.4 and 3.3.2).

Fortunately, as in our discussions of classical mechanics, considerations
of the more general spacetime symmetry group help to uniquely determine
which antiunitary time reversal operator is the ‘appropriate’ one for time
reversal, through the application of Proposition 3.2.

For example, we might adopt the Galilei group, or the Lorentz group, as a
more complete group G containing time translations and consider its repre-
sentation among the automorphisms of a Hilbert space. This representation
will be irreducible whenever it describes an ‘elementary’ system, interpreted
as one that cannot be decomposed into component parts. But, time reversal
transforms each generating elements of this group to itself or to its inverse,
as discussed in Section 3.3.2, and so by Schur’s lemma, it follows that any two
representatives of time reversal T and T̃ must be related by a multiplicative
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constant. It is for this reason that in many concrete applications, the choice
is uniquely determined as to which antiunitary time reversal operator is
appropriate.38

3.4.4 The Time Reversal of Spin

A first topic in many quantum mechanics textbooks is the analysis of spin,
a degree of freedom associated with a system’s total angular momentum.39

Spin-1/2 systems are often studied on a two-dimensional Hilbert space, with
an algebra of observables generated by the Pauli ‘spin observables’,

σx =
(

1
1

)
, σy =

( −i

i

)
, σz =

(
1

−1

)
.

Their eigenvectors are usually interpreted as ‘spin-up’ and ‘spin-down’
states of the system with respect to three spatial axes x,y,z. The algebraic
relations that these observables satisfy are called the ‘Pauli relations’.

Time reversal is usually assumed to reverse the sign of the Pauli spin
observables, T σjT

−1 = −σj for each j = x,y,z. A common explanation of
this is that spin is a ‘kind’ of angular momentum: it is intrinsic angular
momentum that does not correspond to rotation in space, but is angular
momentum nevertheless. So, the argument goes, since angular momentum
is reversed by time reversal, spin must be reversed as well.40 Of course, one
might still wonder why a kind of angular momentum that does not actually
‘rotate’ anything in space must change sign under time reversal.

The Representation View has something to say about this too. To see it,
we will first need to get a better grip on how the Pauli spin observables are
related to spacetime. Define the ‘spin rotations’ through θ ∈ (0,2π ] about
each axis j = x,y,z by

Rj (θ ) := e−(i/2)θσj . (3.24)

Each rotation can be written in explicit form as Rj (θ ) = cos(θ/2)I +
σj sin(θ/2), where I is the identity operator. The group given by the closure
of all these rotations under multiplication is isomorphic to a Lie group called
SU (2), and which is not isomorphic to the spatial rotation group SO(3).
Famously, SU (2) has the unusual property that Rj (2π) = −I , whereas for

38 This observation was made explicit in Roberts (2017, Propositions 2 and 3).
39 See Jauch (1968, Chapter 14) for an elegant introduction.
40 Cf. Sachs (1987, p.34).
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Figure 3.6 On a Möbius strip, a rotation through 2π reverses the arrow,
which is returned to its initial state by another rotation through 2π .

SO(3), a rotation through 2π is the identity. So, viewing ‘ordinary’ angular
momentum as defined by the generators of SO(3), it follows that the spin
observables are not ordinary angular momentum.

However, we can still think of SU (2) as consisting of spatial rotations in
a certain ‘degenerate’ sense. The group SU (2) is an example of a doubly-
degenerate ‘covering group’ for SO(3). The precise meaning of this is defined
in Section 8.3; but, for now, we can visualise a representation of the spin
rotation Rj (θ ) using a Möbius strip, as in Figure 3.6. It has the property that,
when an arrow is transported through 2π around the loop of a Möbius strip,
it is not returned to its original state, but rather reverses: a second ‘copy’ of
rotations through 2π is needed to restore it to its original orientation. There
are thus two elements of SU (2) corresponding to each ‘ordinary’ rotation
through θ , given by Ri(θ ) and −Ri(θ ). This is what it means to say that the
covering group is ‘doubly-degenerate’. So, although SU (2) is not isomorphic
to SO(3), we can still unambiguously associate each of its elements with a
spatial rotation.

Now, recall that as a group element, time reversal generally leaves each
spatial rotation intact, τrτ−1 = r . This is true by definition in the Galilei and
Lorentz groups; and, conceptually, it makes sense of the statement that the
meaning of time reversal is ‘independent of spatial orientation’. These facts
can now be carried over to state space using the Representation View: given
a group containing both SU (2) and a time reversal group element τ , and
which satisfies τrτ−1 = r , any representation will satisfy

T Rj (θ )T −1 = Rj (θ ), (3.25)
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for each j = x,y,z. Using the fact that T is antiunitary, this in turn implies41

that T e−iσj T −1 = eiT σj T −1 = e−iσj , and hence that T σjT
−1 = −σj for each

j = x,y,z. In this way, the fact that time reversal does not change spatial
rotations can be used to explain why it reverses the Pauli spin observables.

Another interesting fact about the time reversal in a Pauli spin system is
that, like a rotation through 2π , applying time reversal twice does not pro-
duce the identity: T 2 = −I . Only by two more applications of time reversal
do we recover: T 4 = I . Our discussion above explains this curious fact as
well and indeed determines the unique form of the time reversal operator
in a Pauli spin system. The proof is an application of the general technique
using Schur’s lemma, introduced in the discussion of Proposition 3.2.

Proposition 3.5 Let σx,σy,σz be an irreducible unitary representation of the Pauli
relations, and let K be the conjugation operator in the σz basis. If T is any antiunitary
operator satisfying T Rj (θ )T −1 = Rj (θ ) for j = x,y,z, then T = cσyK for some
complex unit c, and T 2 = −I .

Proof Our assumptions imply that the antiunitary T reverses each of the
spin observables. One can straightforwardly check that σyK does as well.
Since both are antiunitary, the composition −T σyK is unitary and commutes
with σx , σy , and σz. These are the generators of an irreducible representation,
and so by Schur’s lemma, −T σyK = cI for some c ∈ C. This c is a complex
unit, c∗c = 1, because −T σyK is unitary. So, multiplying on the right by
σyK and recalling that (σyK)2 = −I , we find that T = cσyK . Moreover,
T 2 = (cσ2K)2 = c∗c(σ2K)2 = −I . �

Thus, given a reflection of time translations τ : t �→ −t on spacetime, any
representation of it on Hilbert space must be antiunitary by Proposition 3.4;
and, the form of this antiunitary in a spin-1/2 system is uniquely determined
(up to a constant) by Proposition 3.5. Although the concept of ‘reversing time
translations’ at the level of spacetime is relatively simple, its representation
in a spin system carries some of the interesting structure of that system.

3.5 Summary

This section has been a tour of several different state spaces for modern
physics: Newtonian mechanics, analytic mechanics, and quantum theory.
All of them include a rich structure for the description of what it means to be

41 We use the fact that if T is any antiunitary, then T (αA) = α∗T A for each complex constant α. In
particular, T iσj = −iT σj .
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a ‘solution’ to their equation of motion. Although that structure is not always
visible in elementary presentations, we have made it visible here through
a representation of time translations. This makes it a more straightforward
matter to understand what time reversal means: it is nothing more and
nothing less than a temporal reflection, represented on a highly structured
state space.

This means that, when it comes to writing down the representative of time
reversal on state space, we may find some ‘bells and whistles’, like the fact
that it conjugates wavefunctions. But, the philosopher of time should not
be alarmed by this. Time reversal is still ultimately just the automorphism
τ : t �→ −t that reverses time translations. But, when it is represented using
a highly structured state space, the operator T representing τ will inevitably
pick up some of that novel structure.
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