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Abstract

We review and then combine two aspects of the theory of bundle gerbes. The first concerns lifting
bundle gerbes and connections on those, developed by Murray and by Gomi. Lifting gerbes represent
obstructions against extending the structure group of a principal bundle. The second is the transgression of
gerbes to loop spaces, initiated by Brylinski and McLaughlin and with recent contributions of the author.
Combining these two aspects, we obtain a new formulation of lifting problems in terms of geometry on the
loop space. Most prominently, our formulation explains the relation between (complex) spin structures
on a Riemannian manifold and orientations of its loop space.
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1. Introduction and statement of the result

In their seminal work [3, 4] on the geometry of line bundles over loop spaces, Brylinski
and McLaughlin encountered an interesting ‘product’ with which such line bundles
can be endowed—we are going to call it the fusion product. The idea of a fusion
product on a line bundle L over the loop space is that it provides for two loops τ1 and
τ2 that are smoothly composable to a third loop τ2 ? τ1 a linear isomorphism

λ :Lτ1 ⊗Lτ2
// Lτ2?τ1,

where Lτ denotes the fibre of L over a loop τ . A complete and slightly modified
definition will be given later (Definition 3.1).

In this note we construct examples of bundles with fusion products in the context
of geometric lifting problems. A lifting problem is posed by specifying a central
extension

1 // A // Ĝ // G // 1
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of Lie groups and a principal G-bundle P over a smooth manifold M . A solution
for the lifting problem is a principal Ĝ-bundle P̂ over M together with an equivariant
bundle map from P̂ to P , in the following called a Ĝ-lift of P . A geometric lifting
problem is one where P carries a connection, and a geometric Ĝ-lift P̂ includes a
connection on P̂ that is compatible with the given one in a certain way. As we are
going to explain later in more detail, geometric Ĝ-lifts have a scalar curvature: a
2-form on M with values in the Lie algebra a of the central Lie group A.

We establish a relation between geometric lifting problems and the geometry of
bundles over the loop space L M := C∞(S1, M) by constructing a principal A-bundle
LP over L M from a geometric lifting problem posed by a principal G-bundle P with
connection over M . Basically, the fibre of LP over a loop τ ∈ L M consists of all
geometric Ĝ-lifts of the pullback τ ∗P . We will see that every ‘global’ geometric Ĝ-lift
P̂ defines—by restricting it to loops—a smooth section σP̂ : L M // LP . Sections
that can be obtained in this way turn out to be very particular.

The bundle LP fits well into the context of the work of Brylinski and McLaughlin:
it comes with a fusion product and with a connection. We will see that the section
σP̂ is compatible with this additional structure. Firstly, it preserves the fusion product.
Secondly, its curvature (that is the pullback of the connection of LP to L M) coincides
with the transgression of the scalar curvature of P̂ (that is the pullback along the
evaluation map ev : S1

× L M // M , followed by integration over the fibre S1). We
show that these two properties characterize those sections of LP that come from
geometric Ĝ-lifts of P , and so establish the following loop space formulation for
geometric lifting problems.

THEOREM 1.1. Let M be a connected smooth manifold and P be a principal
G-bundle with connection over M, let ρ ∈�2(M, a) and Lρ ∈�1(L M, a) denote
its transgression. Then the assignment P̂ � // σP̂ defines a bijection{Equivalence classes of

geometric Ĝ-lifts of P
with scalar curvature ρ

}
∼=

{
Fusion-preserving sections of

LP with curvature Lρ

}
.

The definition of the bundle LP , the properties of the sections σP̂ and the proof
of Theorem 1.1 are all obtained using the theory of bundle gerbes. In Section 2 of
this note we review lifting gerbes and connections on those following Murray [9]
and Gomi [7]. The main result of Section 2, Theorem 2.2, gives a complete
formulation of geometric lifting problems in terms of bundle gerbes. In Section 3
we review the transgression of bundle gerbes to loop spaces, developed by Brylinski
and McLaughlin [2–4], and include some recent contributions of the author [17]. The
main result of Section 3, Theorem 3.3, is an equivalence between the category of
bundle gerbes with connection over M and a category of principal bundles with fusion
products and connections over L M . In Section 4 we put the two pieces together:
we define the bundle LP to be the transgression of a lifting gerbe, and combine the
equivalences of Theorems 2.2 and 3.3 to a one-line proof of Theorem 1.1.
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The remaining two sections of this note are complementary. In Section 5 we provide
an alternative construction of the bundle LP which is elementary in the sense that it
does not use any gerbe theory (Theorem 5.2). We will also construct the fusion product
in that context—so far as I know, this is the first elementary nontrivial example of a
fusion product. In Section 6 we apply Theorem 1.1 to spin structures and complex spin
structures on Riemannian manifolds. This is interesting because the bundle LP has a
nice interpretation as the orientation bundle of L M . Theorem 1.1 reduces in the spin
case to previously known results of Atiyah [1] and Stolz–Teichner [15] (Corollary 6.1),
while in the complex spin case it provides a new description of complex spin structures
in terms of certain loop space orientations (Corollary 6.3).

One line for further research could be to understand the role of fusion products
in the case that the underlying manifold is a Lie group. There, it can be seen as an
additional structure for loop group extensions, and it is expected that it is responsible
for the fusion of positive energy representations, thus the terminology. It would be
interesting to have a geometrical formulation of fusion in the setting of bundle gerbes
and bundle gerbe modules, as initiated in [6].

2. Lifting bundle gerbes

In this section we review (and slightly complete) the theory of lifting bundle gerbes
and connections on them. The setup is a central extension

1 // A // Ĝ
t // G // 1 (2.1)

of Lie groups and a principal G-bundle P over a smooth manifold M . A Ĝ-lift
of P is a principal Ĝ-bundle P̂ over M together with a bundle map f : P̂ // P
satisfying f ( p̂ · ĝ)= f ( p̂) · t (ĝ) for all p̂ ∈ P̂ and ĝ ∈ Ĝ. Ĝ-lifts of P form a
category Ĝ-Li ft (P). The existence of Ĝ-lifts is obstructed by a class ξP ∈ H2(M, A)
that is obtained by locally lifting a Čech cocycle for P and then measuring the error.

The idea of realizing the obstruction class ξP geometrically has been proposed by
Brylinski [2] in terms of Dixmier–Douady sheaves of groupoids. Murray has adapted
this idea to bundle gerbes, where it becomes particularly elegant [9]. I will assume
in the following that the reader is familiar with bundle gerbes—for instance, the
papers [5, 10, 12] contain introductions.

Associated to the given bundle P is the following bundle gerbe G P over M , called
the lifting gerbe. Its surjective submersion is the bundle projection π : P // M . We
are going to denote its k-fold fibre product by P [k], and by πi1···ik : P

[ j] // P [k]

the projections to the indexed factors. Over P [2], the lifting gerbe has the principal
A-bundle Q := g∗Ĝ, obtained by regarding Ĝ as a principal A-bundle over G and
pulling it back along the map g : P [2] // G defined by p · g(p, p′)= p′. Finally, the
multiplication of Ĝ defines a bundle gerbe product, that is a bundle isomorphism

µ : π∗12 Q ⊗ π∗23 Q // π∗13 Q (2.2)
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over P [3] that is associative over P [4]. The characteristic class of the lifting gerbe
G P is the obstruction class ξP [9]. Thus, Ĝ-lifts of P exist if and only if G P is
trivializable.

This statement can be slightly improved by taking morphisms between bundle
gerbes into account. We recall that bundle gerbes over M form a 2-category
GrbA(M) [14]. The Hom-category between two bundle gerbes G and H is denoted
Hom(G, H). A trivialization of G is a 1-morphism T : G // I , where I denotes the
trivial bundle gerbe [18]. In detail, a trivialization of our lifting gerbe G P is a principal
A-bundle T over P together with a bundle isomorphism

κ : Q ⊗ π∗2 T // π∗1 T (2.3)

over P [2] satisfying a compatibility condition with the bundle gerbe product µ.
It is a nice exercise to check that P̂ := T with the projection T // Y // M and

the Ĝ-action p̂ · ĝ := κ(ĝ−1
⊗ p̂) is a Ĝ-lift of P . Even better, we have the following

theorem.

THEOREM 2.1. Let P be a principal G-bundle over M. Then the above construction
defines an equivalence of categories

Hom(G P , I)∼= Ĝ-Li ft (P).

Lifting gerbes become even more interesting when connections are taken into
account. For preparation, we look at the Lie algebra extension

0 // a // ĝ
t∗ // g // 0 (2.4)

associated to the central extension (2.1). Gomi constructed a connection on the lifting
bundle gerbe G P from a given connection η on P [7]. His construction depends on
two further parameters.

(a) The first parameter is a split σ of the Lie algebra extension (2.4), that is a
linear map σ : g // ĝ such that t∗ ◦ σ = idg. As usual, one can measure the
failure of σ to be a Lie algebra homomorphism by a 2-cocycle ω : g× g // a.
Alternatively, one can lift the adjoint action of G on g to ĝ, and then measure the
failure of σ to intertwine the two, resulting in the map

Z : G × g // a with Z(g, X) := Ad−1
g (σ (X))− σ(Ad−1

g (X)).

(b) The second parameter is a reduction of P with respect to the split σ : a smooth
map r : P × g // a that is linear in the second argument and satisfies

r(p, X)= r(p · g, Ad−1
g (X))− Z(g, X) (2.5)

for all p ∈ P , X ∈ g and g ∈ G.

Gomi showed that choices of a split and a reduction with respect to it always exist, and
we fix such choices for the rest of this note.

The split σ defines a connection ν on the principal A-bundle Ĝ over G, given
by the formula ν := θ − σ(t∗θ) ∈�1(Ĝ, ĝ), where θ stands for the left-invariant
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Maurer–Cartan form (on Ĝ and G, respectively). On the principal A-bundle Q = g∗Ĝ
over P [2], we shift the pullback of the connection ν by a 1-form on P [2]:

λη := g∗ν + Z(g, π∗1 η).

This connection on Q makes the bundle gerbe product (2.2) a connection-preserving
bundle morphism [7, Theorem 5.6], and thus qualifies as the first part of a bundle gerbe
connection. It remains to define the curving. Using the reduction r , we set

Cη := − 1
2ω(η ∧ η)+ r(curv(η)) ∈�2(P, a). (2.6)

The required identity for curvings,

curv(λη)= π∗2 Cη − π
∗

1 Cη, (2.7)

is satisfied [7, Theorem 5.9]. This completes the definition of a connection on the
lifting bundle gerbe G P . Next we explain what this connection is good for.

First we recall what ‘compatible connections’ on Ĝ-lifts of P are. If f : P̂ // P
is a Ĝ-lift of P , a connection η̂ ∈�1(P̂, ĝ ) on P̂ is called compatible with the given
connection η if f ∗η = t∗(η̂). Pairs of a Ĝ-lift P̂ and a compatible connection η̂ are
called geometric Ĝ-lifts of P . With our fixed choices of the split σ and the reduction
r , one can assign to any compatible connection η̂ a scalar curvature

scurv(η̂) := rσ (curv(η̂)) ∈�2(P, a), (2.8)

where rσ : P̂ × ĝ // a is defined by rσ (p, X) := Xa − r( f (p), Xg) using the
decomposition X = Xa + σ(Xg) of ĝ determined by σ . The scalar curvature (2.8)
descends to an a-valued 2-form on M . We are interested in geometric Ĝ-lifts with
fixed scalar curvature ρ; those form a category Ĝ-Li ft∇ρ (P).

In the spirit of Theorem 2.1, we want to compare the category Ĝ-Li ft∇ρ (P) with a
category of trivializations of the lifting gerbe G P . We recall that bundle gerbes with
connections form again a 2-category Grb∇A(M) [14, 18]. If G and H are bundle gerbes
with connections, the ‘connection-preserving’ 1-morphisms1 are the objects of the
Hom-category Hom∇(G, H). Connections on the trivial bundle gerbe I are given by
2-forms ρ ∈�2(M, a). We denote the trivial bundle gerbe with connection ρ by Iρ .
Flat trivializations of G are the objects of the category Hom∇(G, I0).

Gomi proved [7, Theorem 3.9, Corollary 5.13] that G P has a flat trivialization if
and only if there exists a geometric Ĝ-lift with vanishing scalar curvature. We need
the following generalization to arbitrary scalar curvature, whose proof we leave as an
exercise in Lie algebra-valued differential forms.

THEOREM 2.2. Let P be a principal G-bundle over M with connection and
ρ ∈�2(M, a). Then the equivalence of Theorem 2.1 extends to an equivalence
of categories

Hom∇(G P , Iρ)∼= Ĝ-Li ft∇−ρ(P).

1 We put that into quotes since being connection preserving is a structure, not a property.
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3. Transgression and fusion bundles

In this section we discuss a relation between bundle gerbes over M and bundles
with fusion products over L M . Employing this relation for the lifting bundle gerbe G P
from the previous section yields the bundle LP that appears in Theorem 1.1.

We denote by Grb∇A(M) the 2-category of bundle gerbes with connection over M
and by h1Grb∇A(M) its ‘homotopy 1-category’ whose morphisms are 2-isomorphism
classes of the former 1-morphisms. Further, we denote by Bun∇A(L M) the category of
principal A-bundles with connection over L M . The main idea we need in this section
is a functor

L : h1Grb∇A(M) // Bun∇A(L M).

This functor realizes—on the level of characteristic classes—the transgression
homomorphism

H2(M, A) // H1(L M, A) (3.1)

in the cohomology with values in the sheaf of smooth A-valued functions.
A first version of the functor L has been described by Brylinski and McLaughlin in

the language of Dixmier–Douady sheaves of groupoids and line bundles [2, 3]. We are
going to review it briefly in the language of bundle gerbes; for a detailed treatment I
refer to [19, Section 3.1] and [17, Sections 4.1 and 4.2].

Given a bundle gerbe G with connection over M , the principal A-bundle L G over
L M is defined as follows. Over a loop τ ∈ L M , its fibre consists of isomorphism
classes of flat trivializations of τ ∗G, that is

L Gτ := h0Hom∇(τ ∗G, I0).

The A-action on these fibres is induced by tensoring the principal A-bundle T of a
trivialization T : τ ∗G // I0 with the pullback of a principal A-bundle Pa over S1

with HolPa (S
1)= a. There exists a Fréchet manifold structure on L G that makes this

a smooth principal A-bundle over L M [19, Proposition 3.1.2].
The connection on L G can be defined by prescribing its parallel transport, see [11,

16]. Suppose that γ is a path in L M , and T0 ∈ L Gτ0 and T1 ∈ L Gτ1 are trivializations of
G over the end loops of γ . We look at the associated cylinder γ ∨ : [0, 1] × S1 // M .
As a bundle gerbe with connection, G associates to this cylinder a surface holonomy
HolG(γ

∨, T0, T1) ∈ A, where the two trivializations act as boundary conditions (‘D-
branes’), see [5]. We put

τγ : L Gτ0
// L Gτ1 : T0

� // T1 · HolG(γ
∨, T0, T1). (3.2)

One can show that this prescription indeed defines a connection on L G [17,
Proposition 4.2.3].

Concerning the morphisms, consider a 1-isomorphism A : G // H between bundle
gerbes with connections. Over a loop τ ∈ L M , it induces the morphism

L A : L G // L H : T � // T ◦ τ ∗A−1,
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where T : τ ∗G // I0 is a trivialization of τ ∗G, and ◦ and ()−1 denote the composition
and the inversion, respectively, of 1-isomorphisms in the 2-category Grb∇A(S

1).
This yields a smooth, connection-preserving bundle morphism, and so finishes the
definition of the transgression functor L .

Brylinski and McLaughlin used the functor L to study geometrically the image of
the cohomological transgression homomorphism (3.1) [2, 3]. They argued that all
bundles in the image of the functor L are automatically equipped with one of the
‘products’ from the beginning of the introduction to this note. We describe a slightly
modified version of this product called fusion product.

We look at the set P M of smooth maps γ : [0, 1] // M that are locally constant
at {0, 1} (they have ‘sitting instants’) and equip that set with the evaluation map
ev : PM // M × M . In [17], I treated spaces of paths with sitting instants rigorously
in the framework of generalized manifolds. In this note we will pretend that they were
Fréchet manifolds; this will lead us in the end to correct statements. The evaluation
map is a ‘surjective submersion’ and we have the fibre products P M [k] available,
employing the notation for fibre products introduced in Section 2. Explicitly, a point
in P M [k] is a k-tuple of paths in M with common end points.

The sitting instants permit us to define a smooth map

l : P M [2] // L M : (γ1, γ2)
� // γ2 ? γ1,

where γ denotes the reversed path and ? denotes the concatenation of paths.
Combining this map with the projections evi j : P M [3] // P M [2], we obtain the
smooth maps ei j := l ◦ evi j . Now we are in the position to give the central definition
of this note.

DEFINITION 3.1 [17, Definition 2.1]. A fusion product on a principal A-bundle P
over L M is a smooth bundle isomorphism

λ : e∗12 P ⊗ e∗23 P // e∗13 P

over P M [3] that is associative over P M [4].

It is not totally trivial to spot the fusion product on a transgressed principal A-bundle
L G. It can be characterized as follows—for a detailed treatment see [17, Section 4.2].
For (γ1, γ2, γ3) an element in the space P M [3], we write τi j := l(γ1, γ2) ∈ L M .
Pick trivializations Ti j ∈ L Gτi j over these loops. We introduce the maps ι1, ι2 :
[0, 1] // R/Z defined by ι1(t) := 1

2 t and ι2(t)= 1− 1
2 t . Pullback along ι1 and ι2

‘restricts’ the trivializations Ti j to intervals, altogether giving two trivializations over
each of the paths γk . Now we pick 2-isomorphisms

φ1 : ι
∗

1 T12 +3 ι∗1 T13, φ2 : ι
∗

2 T12 +3 ι∗1 T23 and φ3 : ι
∗

2 T23 +3 ι∗2 T13;

these always exist and the notation is such that the 2-isomorphism φk is over the
path γk . Let x be the common initial point and y be the common end point of the
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paths γk . All three 2-isomorphisms can be restricted to x and to y, and we have

λ(T12 ⊗ T23)= T13 (3.3)

if and only if the relation φ1 = φ3 ◦ φ2 holds over both x and y.
The work of Brylinski and McLaughlin [2, 3] suggests that the existence of fusion

products characterizes bundles in the image of the transgression functor L among all
principal A-bundles over L M . The main result of my paper [17] (Theorem 3.3 below)
shows that this is true if one requires additionally a connection on P satisfying three
conditions: it has to be compatible, symmetrizing and superficial. The easiest of these
is the compatibility with the fusion product: it simply means that the fusion product
λ is a connection-preserving bundle morphism. The second condition requires that
the connection symmetrizes the fusion product in a subtle way, and the third condition
imposes constraints on its holonomy. Since these conditions will not appear explicitly
in the following, I omit a more detailed discussion.

DEFINITION 3.2 [17, Definition A]. A fusion bundle with connection over L M is a
principal A-bundle P over L M with a fusion product and a compatible, symmetrizing
and superficial connection.

The principal A-bundle L G equipped with the connection and the fusion product
constructed above is such a fusion bundle with connection. To see this, one has to
check the three conditions—this is quite tedious and can be found in [17, Section 4.2].

Let us look at the category F usBun∇A(L M) composed of fusion bundles with
connection and connection-preserving, fusion-preserving bundle isomorphisms. As
we have motivated above, the transgression functor L lifts to this category as an
‘improved’ transgression functor

T : h1Grb∇A(M) // F usBun∇A(L M).

In the sense of the following theorem, this functor captures all features of
transgression.

THEOREM 3.3 [17, Theorem A]. Let M be a connected smooth manifold. Then the
improved transgression functor T is an equivalence of categories.

To close this section about transgression let us compute the transgression TIρ
of the trivial bundle gerbe I equipped with the connection defined by a 2-form
ρ ∈�2(M, a).

LEMMA 3.4. The fusion bundle with connection TIρ has a canonical, fusion-
preserving section σ : L M // TIρ of curvature −Lρ, that is

λ(σ(γ2 ? γ1)⊗ σ(γ3 ? γ2))= σ(γ3 ? γ1) and σ ∗ω =−

∫
S1

ev∗ρ

for all (γ1, γ2, γ3) ∈ P M [3], where λ is the fusion product, ω the connection on TIρ
and ev : S1

× L M // M the evaluation map.
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PROOF. The section itself is defined by the fact that we have over every loop τ ∈ L M
a distinguished element in the fibre L Iρ , namely τ ∗idIρ . That this section is fusion
preserving is straightforward to see using the characterization (3.3) of λ and by
choosing Ti j := τ

∗

i j idIρ . For the curvature, we calculate for a path γ : [0, 1] // L M :

exp
(
−

∫
γ

σ ∗ω

)
= HolIρ (γ

∨, σ (γ (0)), σ (γ (1)))

= exp
(∫

γ∨
ρ

)
= exp

(∫
γ

∫
S1

ev∗ρ
)
.

The first equality is the relation between a connection 1-form and its parallel
transport (3.2)—the minus is a convention of [11] that is required to consistently
translate between connection 1-forms and their parallel transport. The second equality
calculates the surface holonomy of a trivial bundle gerbe, and the third is obtained
by splitting the integration over [0, 1] × S1 into two integrals. But 1-forms are
characterized uniquely by their integrals along paths [16, Theorem A.3.5]—this
finishes the proof. 2

4. The bundle LP over the loop space

In this section we combine the main results of Sections 2 and 3 and prove
Theorem 1.1. Let P be a principal G-bundle with connection over M , and let σ and r
be our choices of a split and a reduction, respectively, so that a lifting bundle gerbe G P

with connection is determined. We set

LP :=TG P . (4.1)

With this definition, we are in a position to give the proof of Theorem 1.1. We use that
the equivalences from Theorems 2.2 and 3.3 induce bijections on isomorphism classes
and Hom-sets, respectively, and obtain bijections

h0(Ĝ-Li ft∇ρ (P))∼= h0Hom∇(G P , I−ρ)∼= Hom(LP ,TI−ρ ).

Using the canonical section of TI−ρ from Lemma 3.4, we can identify the set on the
right-hand side with the set of fusion-preserving sections of LP of curvature Lρ. This
is Theorem 1.1.

Let us look in more detail at what the bundle LP defined in (4.1) is, under the
identification of geometric Ĝ-lifts of P and trivializations of G P of Theorem 2.2. Over
a loop τ ∈ L M , the fibre of LP consists of all geometric Ĝ-lifts of τ ∗P . The fusion
product on LP can be seen as a structure that glues geometric Ĝ-lifts over loops
γ2 ? γ1 and γ3 ? γ2 to a third geometric Ĝ-lift over the loop γ3 ? γ1. The connection
can be described as follows: if γ is a path in L M with end loops τ0 and τ1, then
geometric Ĝ-lifts P̂0 of τ ∗0 P and P̂1 of τ ∗1 P are related by parallel transport along
γ if and only if P̂0 and P̂1 are restrictions of a geometric Ĝ-lift (P̂, η̂) over the
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cylinder γ ∨ : S1
× [0, 1] // M with

exp
(∫

γ∨
scurv(η̂)

)
= 1.

Finally, with the above explanations, the map in Theorem 1.1 assigns to a geometric
Ĝ-lift P̂ of P the section σP̂ : L M // LP given by σP̂(τ ) := τ

∗ P̂ . Theorem 1.1
states the exact conditions under which one can go in the opposite direction, that is
when ‘loop-wise’ geometric Ĝ-lifts of P patch together to a ‘global’ one.

5. An alternative construction of LP

In this section we present an alternative construction of the bundle LP that does not
use any gerbe theory. We start with a principal G-bundle P over M with connection η,
and fix choices of a split σ and a reduction r with respect to σ .

As a prerequisite we recall the following fact.

LEMMA 5.1. Let G be a connected Lie group and let π : P // M be a principal
G-bundle over M. Then Lπ : LP // L M is a Fréchet principal LG-bundle over
L M.

PROOF. The assumption that G is connected assures that Lπ : LP // L M is
surjective. One chooses a connection on P and lifts a loop τ in M horizontally to
a path γ in P . Then one acts on it with a path β in G connecting 1 with the difference
between γ (0) and γ (1). The new path γ · β is closed and, by choosing β with sitting
instants, horizontal in a neighborhood of {0, 1}, in particular, it is a smooth loop. The
proof is completed in [13, Proposition 1.9]. 2

By Lemma 5.1, the given bundle P defines a surjective submersion Lπ :
LP // L M , and we have fibre products LP [k] available. We remark that taking
loops commutes with taking fibre products in the sense of canonical diffeomorphisms
L(P [k])∼= LP [k], and we will not further distinguish between these two manifolds.
From Section 2 we take the principal A-bundle Q over P [2] with its connection λη and
denote by g : LP [2] // A its holonomy. The multiplicativity of Q from (2.2) implies
the cocycle condition

Lπ∗12g · Lπ∗23g = Lπ∗13g

over LP [3]. We regard g as a Čech cocycle with respect to the ‘cover’ Lπ :
LP // L M , and apply the usual reconstruction of principal bundles from cocycles:

L ′P := (LP × A)/∼g with (τ ′, a)∼g (τ, g(τ, τ ′) · a)

is a principal A-bundle over L M . This is our alternative construction of LP . Before
we show that L ′

P and LP are isomorphic, we continue with specifying a connection
and a fusion product on L ′

P .
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In our Čech picture, a connection on L ′

P is determined by a ‘local’ 1-form
ω ∈�1(LP, a) that is compatible with the cocycle g in the sense that Lπ∗2ω =
Lπ∗1ω + g∗θ over LP [2]. We choose ω := LCη, the transgression of the curving 2-
form Cη from (2.6). Indeed, we find that

Lπ∗2ω = Lπ∗1ω + Lcurv(λη)= Lπ∗1ω + d log(HolQ)= Lπ∗1ω + g∗θ.

The first equality is the transgression of Equation (2.7), and the second equality
uses the fact that the derivative of the holonomy of a connection λη is equal to the
transgression of its curvature, see for example [16, Proposition B.2.13].

Finally, we equip the bundle L ′

P with a fusion product. The Čech description of a
fusion product is not particularly nice but possible. We consider a triple (γ1, γ2, γ3) ∈

P M [3] of paths with common end points, and lifts β̃i j ∈ LP of the three associated
loops βi j := `(γi , γ j ) ∈ L M . Such data form the space Z := P M [3] ×L M3 LP3. A
fusion product is given by a smooth map f : Z // A such that—if β̃ ′i j are different
lifts of the loops βi j —one has

g(β̃12, β̃
′

12) · g(β̃23, β̃
′

23) · f (β̃ ′12, β̃
′

23, β̃
′

13)= f (β̃12, β̃23, β̃13) · g(β̃13, β̃
′

13). (5.1)

Additionally, the associativity condition for the fusion product requires that for four
paths (γ1, γ2, γ3, γ4) ∈ P M [4] and accordant lifts β̃i j we have

f (β̃13, β̃34, β̃14) · f (β̃12, β̃23, β̃13)= f (β̃12, β̃24, β̃14) · f (β̃23, β̃34, β̃24). (5.2)

In the present situation of the bundle L ′

P , the map f : Z // A representing the fusion
product is produced in the following way. We split each loop βi j into two paths

µi j (t) := βi j (
1
2 t) and νi j (t) := βi j (1− 1

2 t).

We combine these to three paths

γ̃1 := (µ12, µ13), γ̃2 := (ν12, µ23) and γ̃3 := (ν23, ν13)

in P [2], the indices being chosen such that each path γ̃k sits over the original path γk
in M . We want to measure the failure of the parallel transport τγ̃k in the bundle Q
over P [2] to respect the isomorphism µ from Equation (2.2). For that purpose, we
choose elements ĝ2 ∈ Qγ̃2(0) and ĝ3 ∈ Qγ̃3(0) and set ĝ1 := µ(ĝ2 ⊗ ĝ3) ∈ Qγ̃1(0). Now
we define f such that

µ(τγ̃2(ĝ2)⊗ τγ̃3(ĝ3)) · f (β12, β23, β13)= τγ̃1(ĝ1).

Due to the A-equivariance of parallel transport, this definition is independent of the
choices of ĝ2 and ĝ3. Since ĝ2 and ĝ3 can be chosen locally in a smooth way, f is a
smooth map. Checking the identities (5.1) and (5.2) is a straightforward calculation
that we leave out for brevity.

Summarizing, we have defined a principal A-bundle L ′

P over L M with a
connection and a fusion product. As a consequence of Theorem 5.2 below, L ′

P is
in fact a fusion bundle with connection in the sense of Definition 3.2.
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THEOREM 5.2. There exists a canonical, connection-preserving and fusion-
preserving bundle isomorphism η :LP // L ′

P .

PROOF. We recall that a point in LP =TG P over a loop τ ∈ L M is a flat trivialization
of τ ∗G P . In turn, this is a principal A-bundle T over τ ∗P with connection, whose
holonomy we denote by h : L(τ ∗P) // A. Further, there is an isomorphism (see (2.3))
of principal bundles over (τ ∗P)[2] which guarantees that

g · Lπ∗2 h = Lπ∗1 h, (5.3)

where g is the Čech cocycle used above. Now let τ̃ ∈ LP be a lift of τ , and let a loop
βτ̃ ∈ L(τ ∗P) be defined by βτ̃ (z) := (z, τ̃ (z)) ∈ S1

τ×π P . Equation (5.3) shows that
the class (τ̃ , h(βτ̃ )) ∈L ′

P is independent of the choice of τ̃ . Since we can choose the
lifts τ̃ locally smooth, this defines a smooth map

η :LP // L ′

P .

By construction, it respects the projections to L M and is A-equivariant.
In order to see that η is connection preserving, we compare the parallel transports

in LP and L ′

P along a path γ in L M . By Lemma 5.1, we may choose a lift γ̃ to
LP . Accordingly, the associated map γ ∨ : C // M on the cylinder C = [0, 1] × S1

lifts to a map γ̃ ∨ : C // P . This lift defines a section into the submersion of the
bundle gerbe (γ ∨)∗G P over C , and any such section determines a trivialization T :
(γ ∨)∗G P // Iρ , where ρ = (γ̃ ∨)∗Cη [17, Lemma A.3.2]. We use this trivialization
to compute

HolG(γ
∨, T0, T1)= exp

(∫
C
ρ

)
= exp

(∫
γ̃∨

Cη

)
=: a ∈ A.

Putting T0 := T |γ (0) and T1 := T |γ (1), we get for the parallel transport

τγ :LP |γ (0) // LP |γ (1) : T0
� // T1 · a.

Further, the loops βγ̃ (0) and βγ̃ (1) have trivial holonomy in the bundle Q, since they
factor through the diagonal P // P [2] over which Q has a flat section. This shows
that η(T0) := (γ̃ (0), 1) and η(T1) := (γ̃ (1), 1). On the other side, the parallel transport
in L ′

P is

τγ :L
′

P |γ (0)
// L ′

P |γ (1) : η(T0)
� // η(T1) · exp

(∫
[0,1]

γ̃ ∗ω

)
. (5.4)

Looking at the definition of the connection ω, the integral in (5.4) coincides with
the constant a, and this shows that the isomorphism η commutes with parallel
transport.

In order to see that the isomorphism η is fusion preserving, let (γ1, γ2, γ3) ∈

P M [3] with associated loops βi j := l(γi , γ j ) ∈ L M and lifts η̃i j ∈ LP . We pick
trivializations Ti j over βi j such that λ(T12, T23)= T13, and denote their images under η
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by η(Ti j )= (β̃i j , hi j ). In this notation, the claim that η is fusion preserving boils down
to the equality

h12 · h23 · f (β̃12, β̃23, β̃13)= h13.

It can be verified by a tedious but straightforward computation with parallel transport
in the bundles Ti j that belong to the trivializations Ti j , involving the 2-isomorphisms
φk that make up the fusion product on LP in the sense of Equation (3.3). 2

6. Spin structures and loop space orientations

In this section we discuss two applications of Theorem 1.1: spin structures and
complex spin structures on an n-dimensional oriented Riemannian manifold M .

6.1. First example: spin structures. We are concerned with the central extension

1 // Z2 // Spin(n) // SO(n) // 1 (6.1)

and with the SO(n)-bundle F M of orthonormal frames in an n-dimensional oriented
Riemannian manifold M . A spin structure on M is precisely a Spin(n)-lift of
F M . Since Z2 is discrete, all connections and differential forms disappear from the
statement of Theorem 1.1, so that equivalence classes of spin structures are in bijection
with fusion-preserving sections of LF M .

Let us look more closely at the bundle LF M in its alternative formulation from
Section 5. Its total space is

LF M = (LFM × Z2)/LSO(n), (6.2)

where LSO(n) acts on Z2 via the monodromy m : LSO(n) // Z2 of the spin
extension (6.1). This bundle can be seen as the orientation bundle of the L M for
various reasons, of which two are:

(i) the LSO(n)-bundle LFM over L M plays the role of the frame bundle of L M .
According to Equation (6.2), our bundle LF M is a Z2-reduction of that frame
bundle, just like the orientation bundle of a finite-dimensional manifold, see [8];

(ii) since the transgression functor T covers the ordinary transgression
homomorphism (3.1) on the level of cohomology, and the characteristic class
of the lifting gerbe G F M is the second Stiefel–Whitney class w2 ∈ H2(M, Z2),
we see that the characteristic class of LF M is the transgression of w2 to L M—
Atiyah has defined that class to be the obstruction against orientability of L M [1,
The remark after Lemma 3].

In that respect, we see the sections of LF M as orientations of the loop space L M .
The new information that enters this picture from the general point of view of

this note (but also from a different perspective involving Clifford bimodules [15]) is
that the orientation bundle LF M comes with additional structure: a fusion product.
The fusion product distinguishes a class of fusion-preserving orientations of L M , and
Theorem 1.1 implies the following corollary.
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COROLLARY 6.1 (See [15, Theorem 9]). Let M be a connected, oriented Riemannian
manifold. Then there is a canonical bijection{

Equivalence classes of
spin structures on M

}
∼=

{
Fusion-preserving
orientations of L M

}
.

The following example illuminates that it is important to distinguish between
orientations and fusion-preserving orientations. Let M = E be the Enriques surface.
Its second Stiefel–Whitney class is nonzero but transgresses to zero. In other words,
E is not spin but LE is orientable. However, none of the orientations of LE is fusion
preserving.

6.2. Second example: complex spin structures. We recall that the group SpinC(n)
is the quotient of Spin(n)× U(1) by the diagonal Z2 subgroup, and fits into the central
extension

1 // U(1) // SpinC(n) // SO(n) // 1, (6.3)

whose arrows are induced by the obvious inclusion and projection, respectively.
Accordingly, the Lie algebra ĝ of SpinC(n) is a direct sum of the Lie algebras g of
SO(n) and R of U(1). In particular, we have a canonical split of the Lie algebra
extension, namely σ(X) := (X, 0), for which the cocycle ω and the map Z we have
looked at in Section 2 are identically zero.

A complex spin structure on an oriented Riemannian manifold M is a SpinC(n)-lift
F̂ M of the frame bundle F M . A spin connection is a connection η̂ on F̂ M compatible
with the Levi–Civita connection on F M , and the pair of the two is called a geometric
complex spin structure on M .

With the above choice of the split σ , one can take the trivial reduction r ≡ 0. The
only nonzero quantity is the associated map rσ that is used to determine the scalar
curvature (2.8) of a spin connection: it is rσ ( p̂, (X, x))= x for (X, x) ∈ g⊕ R and
all p̂ ∈ F̂ M . Since σ and r are canonically given, the scalar curvature of a spin
connection as well as the principal U(1)-bundle LF M over L M are also independent
of any choices.

REMARK 6.2. There is a nice interpretation of the scalar curvature of a spin
connection. It is well known that a complex spin structure F̂ M is the same as a
principal U(1)-bundle L over M together with a SpinC(n)-structure on F M × L ,
where now SpinC(n) is viewed as a central extension of SO(n)× S1 by Z2. This
correspondence also works in a setup with connections: a spin connection η̂ is the
same as a connection on L . The curvature of this connection is a 2-form on M and is
twice the scalar curvature of η̂.

Returning to the principal U(1)-bundle LF M over L M , we see from the alternative
construction of Section 5 that its total space is

LF M = (LFM × U(1))/LSO(n),
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where LSO(n) acts on U(1) by the holonomy Holν of the canonical (flat) connection ν
on the underlying U(1)-bundle of the central extension (6.3). Recall that the holonomy
of a flat connection is locally constant; in fact, one can check that it is the composition
of the monodromy m : LSO(n) // Z2 of the spin extension (6.1) with the inclusion
Z2 ⊂ U(1). This means that our bundle LF M is the extension of the orientation bundle
of L M along the inclusion Z2 ⊂ U(1). We will thus call it the complex orientation
bundle of L M , and call its sections complex orientations.

Summarizing, Theorem 1.1 implies the following corollary.

COROLLARY 6.3. Let M be a connected, oriented Riemannian manifold and ρ ∈
�2(M). Then there is a canonical bijection{Equivalence classes of geometric

complex spin structures on M with
scalar curvature ρ

}
∼=

{ Fusion-preserving
complex orientations of
L M with curvature Lρ

}
.
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