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Abstract

Let G be a connected Lie group with Lie algebra g and a\,... , ad- an algebraic basis of g. Further let
A, denote the generators of left translations, acting on the L^-spaces LP(G\ dg) formed with left Haar
measure dg, in the directions a,. We consider second-order operators

d' d'

t.j=\ i = \

in divergence form corresponding to a quadratic form with complex coefficients, bounded Holder continu-
ous principal coefficients c,j and lower order coefficients c,, c\, Co e £30 such that the matrix C = (c,y)
of principal coefficients satisfies the subellipticity condition

uniformly over G.
We discuss the hierarchy relating smoothness properties of the coefficients of H with smoothness

of the kernel and smoothness of the domain of powers of H on the Lp -spaces. Moreover, we present
Gaussian type bounds for the kernel and its derivatives.

Similar theorems are proved for strongly elliptic operators
d d

-J2C'JAiAJ+J2C'A'+C°'
i.j=\ (=1

in non-divergence form for which the principal coefficients are at least once differentiable.

1991 Mathematics subject classification (Amen Math. Soc): primary 35J15; secondary 35K05, 22E30.

1. Introduction

Our purpose is to derive regularity properties of second-order operators with complex-
valued variable coefficients acting on the Lp-spaces over a ̂ -dimensional connected
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298 A. F. M. ter Elst and Derek W. Robinson [2]

Lie group G. In an earlier paper [E1R6] we examined subelliptic operators and es-
tablished that uniform continuity of the principal coefficients ensured that the corres-
ponding semigroup kernel satisfied Gaussian bounds and a Holder continuity property.
In the current work we analyze the nexus between smoothness of the coefficients and
the kernel.

We principally consider operators in divergence form,

(1) H = - 2_^ AiCijAj + 2_^{CiAi + AiC.) + col,
ij=\ /=i

with complex coefficients c,y, c,, c,', c0 e L^ . The A, denote the generators, A, =
dL{cij), of left translations L on the Lp-spaces in the directions a, of the Lie algebra
g of G where a\,... , ad' is an algebraic basis of g. We assume the real part of the
matrix C = (c,,) of principal coefficients is strictly positive-definite, that is,

(2) ?HC = 2"1 (C + C*) > fil > 0,

in the sense of d' x rf'-matrices, uniformly over G. The least upper bound, ixc, of the
lower bound /x is called the ellipticity constant and we set ||C||oo = supgeG ||C(g)||
with ||C(g)|| the /2-norm of the matrix C(g) = (c,7(g)). (Here and in the sequel we
use the notation of [Rob], [E1R2] and [E1R6].) Most of our results are restricted to
strongly elliptic operators, that is, operators for which ax,... ,ad' is a vector space
basis of g, or to subelliptic operators on stratified groups with au ... ,ad> a basis of
the generating subspace of the stratification of g.

The operator H, formally given by (1), is first defined on L2 = L2(G; dg), where
dg denotes left invariant Haar measure dg, as the sectorial operator associated with
the form

d' d'

(3) <p )—>• h{<p) = y {Aj(p, CjjAjip) -\- / [(Cj(p, Aj<p) — (A,<p, c'<p)) -f- (<p, CQ(p)
1.7 = 1 1 = 1

with domain D(h) = L'2.x = p)f=1 D(A,). Then h is closed and H is a maximal
accretive operator which generates a strongly continuous, holomorphic, semigroup S
on L2 (see, for example, [Kat2, Chapter VI]). Although the semigroup 5 extends to the
Lp-spaces with p close to 2 by perturbation theory (see [AMT, Section 3.1], [E1R7])
it does not necessarily extend to the spaces with p close to 1 or p very large (see
[ACT]). There is no problem if the principal coefficients are real-valued, see [E1R8]
but difficulties occur for complex operators. If, however, the principal coefficients c,;

are right uniformly continuous then 5 extends to a holomorphic semigroup on all the
spaces LP(G; dg), p e [I, oo]. The extension is strongly continuous if p e [1, oo)
and weakly* continuous if p = oo (see [AMT], [Aus] and [E1R6]). Moreover, H and
S act on the spaces Lp = LP(G; dg) formed with respect to right Haar measure dg.
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It follows from the results of [E1R6] that if Re c0 is sufficiently large then the
semigroup S is uniformly bounded on the Lp-, or Lp-, spaces with the bound uniform
in p. Then the fractional powers of H are defined and one of our aims is to identify
conditions on the coefficients of H which ensure that the domain of (/ + H)"/2 on Lp,
or Lp, 1 < p < oo, coincides with Lp.n, or Lp.n, the subspace of C"-elements with
respect to left translations. As S is holomorphic this would automatically imply that it
maps into the C-subspaces and this in turn would almost imply differentiability of the
semigroup kernel K associated with 5. Conversely, differentiability and smoothness
properties of the kernel can be exploited to obtain information about the domain of
the generator H and its fractional powers.

The kernel is initially defined as a distribution K, such that

(yjr, S,<p) = I dgj{g) [ dh K,(g; h)<p(h)
Jc Jc

for all <p,ijr e C™(G) and t > 0. But right uniform continuity of the principal
coefficients c,, is sufficient to guarantee that K, is Holder continuous and satisfies
Gaussian bounds ([Aus], [E1R6]). Additional smoothness of the coefficients will be
shown to imply further smoothness of the kernel.

Before we state the main theorems we introduce a multi-index notation and some
spaces of more or less smooth functions. If n e Ho we set

n oo

•/„(«/') = 0{1,. . . ,</ '}* and J(d') = \Jjn(d').
k=0 «=0

Then Aa = A,, • • • A,o for a = ( / , , . . . , in) and n = \a\. It will be clear from the
context on which space the A" act. If (or| = 0 then we set A" = I. Furthermore
we set L'p.n = flaey.w) D(Aa) in L

P with norm ||^||^;n = maxa€Vn(d0 \\Aa\\p. For the
Lp-spaces we use the notation L'~n, etcetera.

Next let d'{-\ •) be the right invariant distance canonically associated with the
algebraic basis a\,... , <v (see, for example, [Rob, Sections IV.2 and IV.4c]). This
distance is characterized by

d'(g; h) = sup I \1r(g) - f(h)\ : V e C™{G), £ |(A,V^)|2 < 1 !

where the iff are real-valued ([Rob, Lemma IV.2.3], or [E1R4, Lemma 4.2]). Other
parameters which enter the estimates are the subelliptic modulus g i-> \g\' — d'(g\ e)
where e denotes the identity of G and the local dimension D', that is, the integer for
which the left Haar measure \B'(g; r)\ of the ball B'(g; r) = [h e G : d'{g\ h) < r)
satisfies bounds c~xrD' < \B'(e; r)\ < crD' for some c > 0 and all small r. If the
algebraic basis a , , . . . , ad> is completed to a vector space basis ax,... , ad of g then
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the associated distance and modulus are denoted by d{-\ •) and | • |, respectively, and
the corresponding balls by B(g; r). Note that D' = d if a\,... , ad is a vector space
basis. In general we omit the prime in the notation for quantities with respect to a
vector space basis au ... ,ad.

For v e (0, 1) define the (subelliptic) Holder space Cv '(G) of continuous functions
over G for which

IIHIIc.<= sup (\g\Tv\\U - UgVvWoo
o<i«r<i

is finite. If n e H and v e (0, 1) then we define

C"+" '(G) = {<pe L'^ : Aa<p e Cv '(G) for all a e Jn{d')) •

Note that L^.n+1(G) c Cn+V '(G) for all n e No and v e (0, 1>.

The differentiability properties of the kernel, (g, h) \-+ K,(g; h), involve derivat-
ives with respect to both variables. Left derivatives with respect to the first variable
will be denoted by AjK, and left derivatives with respect to the second by BiK,.
Multiple derivatives AaKt, BfiK, etcetera are expressed with the aid of multi-indices.

Our first main result establishes smoothness of the kernel as a consequence of
smoothness of the coefficients.

THEOREM 1.1. Let Hbe a subelliptic second-order operator in divergence form (1).
Suppose either

(a) H is strongly elliptic, or
(b) G is stratified and d\,... ,ad' is a basis for^, in the stratification (gm)me{i r\

ofQ.
If cihCi,c\ € CV'(G) for some v e (0, 1) and c0 e Lx then K, is once left

differentiate in the first variable and the derivatives are once left differentiable in the
second variable. Moreover, for all a, j3 € / , (d1) and K > 0 there exist a,b > 0 and
co > 0 such that

|C4aZ?%)(g;/i)|<ar(zy+|a

for g, h e G and t > 0 and

(k-lg;r'h)-(AaBfiK,)(g\h)\

,-(D+|«|+|/»|)/2 tot

-l\gh~l\'forallg,h,k,l eGandt > 0 with \k\' + \l\' < Ktx'2 + 2-l\gh
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REMARK 1.2. Since the operators have complex coefficients there is 9C > 0 such
that e'0 H is also subelliptic for cp e {—9C,9C)- The estimates of Theorem 1.1 are then
valid for e'^H instead of H. Moreover, for all 9 G (0, 9C) the constants in the kernel
estimates are uniform for <p e (—9,9). Therefore one has estimates for the kernel
K, similar to those of Theorem 1.1, if one replaces t in the right hand sides by \z\,
uniformly for all z G C\{0} with | argz| < 9. All subsequent kernel estimates can be
extended to complex time by this complex rotation.

This theorem demonstrates that Holder continuity of the coefficients leads to dif-
ferentiability of the kernel; there is a gain of one derivative simultaneously in each
variable. This differentiability can be used to obtain links between the domain of
powers of H and the C-subspaces. The basic result of this nature is a Kato-type
theorem characterizing the domain of the square root.

THEOREM 1.3. Let H be a subelliptic second-order operatorin divergence form (1).
Suppose either

(a) H is strongly elliptic, or
(b) G is stratified and at, ... ,adisa basis for g, in the stratification (gm)m e| i r]

IfCij, Ci, c\ G Cvl for some v e (0, 1) and c0 G Lx then D((A/ + #) 1 / 2 ) = L'p.x
for all large k > 0 and p e (1, oo).

If p — 2 then the strongly elliptic version of this result can be deduced from
Mclntosh's analysis of the Kato problem [Mel]. Mclntosh's L2-result has been
extended to the case c,; e C ' and c,-, c\, c0 e L^ in [E1R5].

In order to obtain information about the domain of H itself one needs more smooth-
ness but one important input is a resolvent bound which only requires Holder continuity
of the principal coefficients. The following result is readily derived on L2 and can
be subsequently extended to the Lp-spaces with p e (1, oo) by singular integration
techniques based on the above kernel bounds.

THEOREM 1.4. Let Hbe a subelliptic second-order operator in divergence form (1).
Suppose either

(a) H is strongly elliptic, or
(b) G is stratified and ax,... ,a# is a basis for§x in the stratification (gm)me(i r\

QfS-
IfCij G C '(G) for some v G (0, 1) andct, c\, c0 € Lx then A,(/ + / / )" 'Ay extends

to a bounded operator on Lp, or Lp, for all i, j € { 1 , . . . , d'\ and p G (1, oo).

In order to convert the estimates of this theorem into information on the domain
of H one needs to be able to commute the derivatives Aj to the left and this requires
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differentiability of the coefficients ctj and c\. If, however, these coefficients are
differentiable then H can be written in non-divergence form,

d d

(4) H = - ^ c,jAtAj + '22ciAi+c0I.

Not only is the domain result best described for operators of this form but the smooth-
ness properties of the kernel can also be partially improved. Unfortunately, we can
only prove the next results for strongly elliptic operators.

THEOREM 1.5. Let Hbea second-order strongly elliptic operator in non-divergence
form (4) with coefficients c,j e Lx-i andc,, Co £ L^.

I. IfCjj, Cj, c0 e Loo;,, with n e N then K, is (n + \)-times left differentiable in the
first variable and these derivatives are (n — \)-times left differentiable in the second
variable. Moreover, for each v e (0, 1) and K > 0 there exist a, b > 0 and co > 0
such that

and

\(A"B/iKl)(k-ig; r'h) - (AaBeK,)(g; h)\

1 - 1

uniformly for all a e Jn+\(d), fi e Jn_i(d), t > 0, g, h e G andk,l e G such that
\k\ + \l\<Kt^2 + 2-'\gh-'\.

II. IfCij, ci, c0 e LQO^CG) with n e N and Rec0 large enough then D(Hm/2) =
Lpmforall p e (1, oo) andm e { 1 , . . . , n + 2}.

III. Ifctj, ch c0 e Cn+V(G) with n€MandO<y<v<l then the kernel K,
is (n + 2)-times differentiable in the first variable, the derivatives with respect to the
first variable are n-times differentiable with respect to the second, the derivatives are
continuous,

\(AaB K,)(g; h)\ < at~ ' t~(a + ' ewte~ lg | f

and

\{AaBfiK,){k~xg- l~lh) - (AaB^Kt){g\ h)\

/ IJH -I- I/I \Y

< at-d/2t-(\a\+\P\)l2eu>t | 1*1 ^ I* I j e~blgh-<\2r<

uniformly for all a e Jn+2(d), fi e Jn(d), t > 0, g, h e G and k,l € G such that

\k\ + \l\<Kt]'2 + 2-1\gh-l\.
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In particular it follows that one has Gaussian estimates for all derivatives of the
kernel if all the coefficients belong to Cboo(G). In the situation of with order strongly
elliptic operators on manifolds with bounded geometry this was proved by Kordyukov
[Kor] using pseudo-differential operators.

2. Preliminaries

2.1. Spaces and embeddings For the convenience of the reader we first collect some
definitions and inequalities which will be useful throughout the paper.

Define the norm || • ||*:L,.loc -* [0, oo] by \\<p\\L = IIA'^IIco and for each
v e (0, 1) define ||| • |||ci-: C(G) -> [0, oo] by

' = SUP (\g\Tv\\Ai/2(I-L(g))cp\U.

Then introduce the corresponding Banach spaces L^ = [cp e LUoc : IMIro < °°}
and Cl' = W € C(G) : |||^|||c.- < oo}.

One has the following continuity properties of multiplication operators.

LEMMA 2.1. Letv e (0,1).
I. If<p, ir G C1" D Loo, then cpfeC1" and

II. If<p G Cv' n Loo and f G CV
A' D L ^ , fAew (pxfr € CV

A' and

I I I?f i l ler <lll<0||lc.-II^II» + IMUII iMlcx ' .

PROOF. For all g G G one has

(5) ( / - LigMvf) = f - ( I - L(g))<p + (L(g)<p) • (I -

from which the statements follow.

For a continuous function cp define the right modulus of continuity, a)'r(<p; •): (0, oo)
- • [0, oo], by

co'r(r, R) = sup{||(/ - UhMn : h G B'{R)},

where B'{R) = B'(e; R). The function (p is called right uniformly continuous if
limR^o o)'r((p; R) = 0. In particular, each element of Cv ' with v > 0 is right uniformly
continuous.
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If <p e L'x.{ then

(6) ||(/-L(s))<0||oo<<n*l' max \\A,tp\\oo, a>>; R) < d'
ie(I d'\

for all g € G and /? > 0. So Z,^., c C ' .

Recall the Sobolev spaces L'p.n, n € No, are defined by L'p.n = fXeJ.ci') D(A")
with norms \\(p\\'p.n = supa€7iiW,) || A"<p\\p. But for p e (1, oo) one has

(7) L;;n = D((7 + HLy'2),

where HL = — £f=1 A^ is the sublaplacian associated with the algebraic basis
a\,... , ad,and ||-||p.n is equivalent to the norm <p t-> \\(I + HL)n/2<p\\p (see [BER] and
the appendix). Next, for y e K\N0 and p e (1, oo) we define L'p.y as the completion
of Lp with respect to the norm <p h-> ||(7 + HL)Y/2(p\\p (see also [E1R2, Section 3]). It
then follows from the identity (7) that the L'p.y form a scale of complex interpolation
spaces. Note also that for n e No the space L'p._n can be identified with the dual of
L'p,.n where l/p' + 1/p = 1.

The scale of spaces L'-.y, y e R, can be defined in a similar manner relative to the
spaces Lp based on right Haar measure.

We adopt some conventions on the extension of operators. If X is a bounded
operator on L2 such that X(L2 n Lp) c L2C\LP and ||A"^||P < cp||(p||p for some
cp > 0 and all (p e L2f\ Lp then X is norm densely-defined on Lp and norm closable
if p € [1, oo}. Hence X extends by closure to a bounded operator on Lp. In this
situation we abbreviate the description by saying that X is bounded on Lp. More
generally, if X is a densely-defined, closable, operator from the Banach space X to
the Banach space <3f with bounded closure we say X is a bounded operator from X
to & and denote its norm by || X \\ x^ <&. If X is a bounded operator from Lp to Lq we
also use | |X| |P^? to denote the norm.

Next we note some simple criteria for an operator to be bounded between the
Sobolev spaces.

LEMMA 2.2. Let p e (I, 00} and n, m e No. If X is a bounded operator on Lp

then the following conditions are equivalent:

I. X is bounded from L' n to L' .
II. X* is bounded from L'p.._m to L'p..n, where l/p* + l/p = 1.

III. (/ + HL)m/2X(I + HL)nl2 is bounded on Lp.
IV. AaX A? is bounded on Lp for all a e Jm (d1) and $ € Jn (d

1).

PROOF. The equivalence of I and II is by duality and the equivalence with III follows
from [BER]. But then II is equivalent to boundedness of (/ + HL)m/2X*(I + HL)n'2 on
Lp. and by [BER] this is equivalent to boundedness of the operators APX*(I + HL)n/2,

https://doi.org/10.1017/S144678870000094X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000094X
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£ e Jn(d'), on Lp. or boundedness of (/ + HL)n/2XAfi, 0 e Jn{d'), on Lp. But this
in turn is equivalent to 2.2.

Note that if X is bounded from L' „ to L'p.m the cross-norm of X between the
spaces can be chosen as

k - .-^;.. = S U P l l k v
aeJm(d'),P£jn(d')

This is a direct consequence of the above arguments.
Each i/r 6 Loo is identified as a multiplication operator on Lp, L'p.y or Lp, etcetera

and we next show that multiplication with a C1" D L^ function, v e (0, 1), is a
bounded operator on L'p.y for all y € (0, v) and p e (1, oo>.

PROPOSITION 2.3. Letv e (0,1).
I. # > € (0, v) and p e (1, oo) tfzen ^ e ^ : y /<"" all f € C ' n L ^ and

<p e L'p.y. Moreover, for all y € {0,v)andpe {I, oo} there exists ac > 0 such that

uniformly for all (p e L'py and i/r e C ' f l L^.
II. For all n e N, y e (0, v) and p £ ( l , oo} fftere gxwrt a c > 0 5«cn

Uf\\'p.,n+y < C ( SUp IHA^IIIc.. +
\a€y,,(d')

uniformly for all <p e Lp.n+/ and ^ e C"+v'.
III. There exists Xo > 0 SMC« that for all y € (0, v) ?«^re w a c > 0 such that

\\[(U + HLY12, t\<p\\P < cA.-(w-'')/2(|||Vr|||c.' + II^IUI^IIp

uniformly for X > k0, p € (1, oo), f 6 C1" n L^ and<p e Lp.y.
IV. //"d' = d rn^n there exists k0 > 0 sacn that for all p e (1, oo), y e (0, v)

and A. > Ao there is ac > 0 swcn rnaf

SUp |||A,Vlllc» + Will ie- + Halloo I \\<P\\p;l
,ie{l d) /

uniformly for all <p e Lp.i+y andxj/ € C1+".
Similar statements are valid on the Lp-spaces.

PROOF. We first prove a weaker version of Statement III, since we only know that
a multiplication operator is bounded on Lp. Let S and K be the semigroup generated
by HL and its kernel. There exist a, b, co > 0 such that \K,(g)\ < arD'/2e-b(lgl'f'~'e°"
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for all t > 0 and g e G. Set cy = /0°° dt rx-Yl2{\ - e'). Then for all k > 0 and
<p G L'., one has

/•OO

(kl + HLyl2<p = c~x \ dt Cx-"l\l - e-k'S,)<p.
Jo

So if x] € L'q.y with \/p +\/q = 1 then

((1/ + tfj^, ^r^) - (r,, tiki + HLY'2ip)
/»OO

= -c;] dtrl-r/2(r,,[e-ktst,f]<p)
Jo

= c;1 f dt r'-yl2 f dg K,{g)e-X'(rt, [I - L(g), x/,]<p)
Jo JG

(8) = c~; f dt r1-*'2 f dg K,{g)e-X'{ri, d - L(g))r(r • L(g)<p),
Jo JG

where we used (5). Since f e C ' D L ^ one has | | ( / - L(g))^| |oo < cf (\g\')v for all
g e G, where c^ = Hl^l l lc-+ 2||^lloo- Then

K(A./ + HLyi2^ fcp) - (n, t(ki + HLy<2<p)\

dtr^-rv2
 dgt-

D'<2e-b^2'-'e-^' {{\g\')2t~Y \\<p\\PW\q

JG

<a'c+ I™ dtrWv-r"2 I dgt-
D'l2e-b'^)1<-'e-«-«)l\\<p\\p\\r]\\<,

Jo JG

poo

Jo

<a'"cf(k-a>r(v~r)/2\\<p\\P\W\q

for some constants a', a", a'", b', co' > 0, independent of k, \js, <p, rj and p uniformly
for all k>ko = 2a)'. Since L'p.v and L'q.v is a core for {kl + HL)y/2 it follows that

\((kl + HLy/2
n, inp) - (r,, 1r(kl + HLy/2<p)\

(9) < f l % ( A - « ' r ( " - y ) / 2

for all (p e D((kl + HLy'2) = L;.y and JJ e D((A./ + //z.
Next, for all <p G L' and k = k0 one has

<C(| | |Vr | | |c . ' + ll^lloo)ll(A./ + /
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[11] Second-order strongly elliptic operators 307

for all n e D«kl + HLy'2) = L'q.y. Therefore xjf(p € D(((kl + HLy>2y) = L'p.y.
Statement I follows since the norms <p i-> \\(kl + HL)y/2<p\\p and || • \\'p.Y are equivalent
(see [Rob, Lemma II.3.2]). Then Statement III is a consequence of (9) and a density
argument.

For the proof of Statement II, let <p e L'p.n+y and V e Cn+V'. Then for all
a e Jn(d') the function Aa(\ff(p) can be written as a finite linear combination of terms
of the form (A°"<p)(Aa2f) with a,, a2 e Jn(d'), by the Leibniz rule. But A°"(p e L'p.y
and Aa2f e C' and hence (A°"(p)(Aa2ir) e L'p.y by Statement I. So Aa{f<p) e L'p.y
and \j/<p e ^p-n+y- The bounds follow from the proof.

Finally we prove Statement IV. Set r = 2"1 (1 + y). Then

< \\(u + HLy/2[(ki + HLy'2, f]<p\\p + \\[(u + HLy'2, f](u + HLy/2<p\\p

< c\\[(u + HLy'2, V M I P ; , +c{\u\\\c" + II f I D \\(ki + HLy>2<p\\p

< C\\[(kl + HL)X/1, f]ip\\rA + CQU\\\C" + U\U\\<P\\p;l

where we have used Statement III. For an estimate on the first term we argue
as in (8), with y replaced by T. NOW ||(7 - L(g))f • L(g)(p\\pA < 2||(7 -
Ug))irWoo-y\\L{g)(p\\pA. But Ci+V = (L^, L^i)^.^ = (L^, L^)„,„,..K by
[E1R1, Theorem 2.1]. Therefore ||(7-L(g))VMIoc;i < cc'^ IglV"1*1 for all g e G, where
c'f = sup/e{1 d] IIIAi^lllcv + lll^lllc + tl^lloo- Moreover, \\L(g)<p\\p-\ < c'ew'lgl||(^||p;1.
So ||(7 - L(g))ip- • L(g)(p\\p-X < cc'c'}//\g\ve(a'+a'')lgl and one can continue to argue as in
the final part of the proof of Statement III.

2.2. De Giorgi estimates The aim of this subsection is to prove the De Giorgi
estimates involving derivatives which are crucial for the regularity theorem in the
next section. Proposition 2.6 establishes a De Giorgi inequality for operators with
C -coefficients but the basic difficulty is to prove the inequality for operators with
constant coefficients. For these estimates we need the following space

H'2.,{B'{g; r)) = {<p e L2(B'(g; r)) : A,<p e L2(B'(g; r)) for all i e {1, . . . , d'}},

where g e G, r > 0 and At<p denotes the distributional derivative in Q)'(B'{g\ r)) .
These spaces are equipped with the norms <p i->- (llyll^r + ll^Vll^gr)'^2 where
\\<Ph,g, = (/„.<,;„ dh\<p(h)\2y2 and

1/2

dh y^ l(A,-y)(/i)|
>B'(g;r)

We denote by H2l(B'(g\ r)) the closure of Cc°°(5'(g; r)) in H^(B'(g; r)).
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FoT(p € L îoc we denote by (<p)g,r the average of cp over B'(g; r). Ifg = ewedrop
the e in the notation. So B'(r) = B'(e\ r), \\ V<p\\Xr = \\ V<p\\2,e,r etcetera.

The proofs of the De Giorgi estimates for strongly elliptic operators and for subel-
liptic operators on stratified groups are quite distinct.

2.2.1. Strongly elliptic operators with constant coefficients The exponent d + 2 in
the term (r/R)d+1 in the next lemma is slightly better than we need for the regularity
theorem in the next section. In fact, we only need (r/R)d+2v for all v e (0, 1), as in
[E1R6, Section 3]. On the other hand, we now have an additional error term.

LEMMA 2.4. Let H = — J^f J=l CijAjAj be a pure second-order strongly elliptic
operator with constant coefficients.

Then there exist cDC, c'DC > 0 such that for all R e (0, 1], all g 6 G and all
<p e H2i(B(g; /?)) satisfying Hep = 0 weakly on B(g; R) one has

\ ^ I I A , „ I A ,r,\ |2\Ak<p - (Ak<p)gs
k=l JB(g;r)

d

< cDC{r/R)d+2 J2 f \Ak<p- (Ak<p)g,R\2 + c'DCR2 f
k=l JB(g;R) JB(g;R)

for allO < r < R. Moreover, the constants CDQ and c'DG depend on the coefficients of
H only through fj,c and \\C\\ao.

PROOF. Arguing as in the proof of [E1R6, Proposition 3.4] it suffices to consider
g = e.

Let || • || be the Euclidean norm on g with respect to the basis a\,... ,ad. For all
s > OsetZ?(s) = {a e g : ||a|| < s}. There exist Ro e (0, l ] ,c > 1 and a real analytic
function a: B(R0) —*• [c~l, c] such that exp is a diffeomorphism from B(2R0) onto
expB(2/?0),c-' |l«ll < I exp a \ < c\\a\\ for all a e g with ||a|| < Ro,

I dao(a)<p(exp(a))= / dg<p(g)
JBOto) JC

for all <p e Cc°°(expS(/?0)) and CT(0) = 1. Then Bc <S c expB(s) C BCS for all
s e (0, c"1 Ro]. Let D, be the closed operator on Z,2(g) of left differentiation in the Jth
direction. So

4
dt (=0

Define the operator A, on B(R0) by A, (<p o exp) = (At(p) o exp. Then there exist real
analytic functions b/j on B(2R0) such that D, = At + £ / = / b0Dj and bo-(0) = 0.

We compare the operator H on G with the operator H = — J^ c,; D, Dj on the
commutative group g. By [Gial, Theorem III.2.1], applied to Dk\j/, there exists a

https://doi.org/10.1017/S144678870000094X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000094X
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constant cDC > 0, depending on the coefficients only through \xc and \\C\\n, such
that for all R e <0, 1] and all f e H2A(B(R)) satisfying Hf = 0 weakly on B(R)
one has

Y, / \Dk1r - (Dkf)S(r)\
2 < cDC{r/R)d

k=\ *>B(r)
Y, / )d+1 £

for all 0 < r < R, where {(p)S(r) denotes the average over the ball B{r).
Now let R e (0, Ro], <p e H2]\(B{R)) and suppose that Htp = 0 weakly on B(R).

SetR] = c"1/?. Define^ € H2A(B(Ri)) by (p = <p o exp and let r) e H2A{B{R{)) be
such that

Hr) = 0 weakly in B(/?,), x = V - V e «

Then, since y i-> j B ( r ) \\j/ — y \2 attains its minimum at y — {if)r, one has

<p)jj\2I \Dkip - {Dk<p)jjir)
JB(r)

B(r)

<2 [ \Dkrj - (Dkr))hr)\
2 + 2 [ \DkX\2

Jfi(r) JB(r)

< 2cDG{r/R{)
d+2 f \Dkr, - {Dkt])~B(Rl)\

2 + 2 [ \DkX\2

JB(R,) JB(R,)

< 2cDC{r/R,)d+1 f \Dkr) - (£>^)g(«,,|2 + 2 [ \DkX\2

JB(,R,) JBI.R,)

(10) <4cDG(rlRi)d+2f \Dk<p-(Dkip)~B{Ri)\
2 + {2 + 4cDc)i \DkX\2

J J

for all 0 < r < /?, and A: e { 1 , . . . ,d}.

Next introduce X e H2,i(B(R)) such that x = x o exp. Then

0 = (X, Hip) = Y2 CijAiXAj<p = 5Z /
i.j 3° ij JB(R,)

Therefore

uc Y, I
k Jfi(R,)

= Re Y)cu / (DiXDj<p - oAiXAj(p).
ij JB(R,) V '
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Since the functions a and &0 are real analytic, CT(0) = 1 and b,,(0) = 0, one easily
estimates that

JB(. H?/* I A x I 2 )

for some c' > 0 which depends only on G and the basis au ... ,ad. Hence

[u
1/2

2 L
k JB(

So

k J B(r)

\Dk<p - \d+2L \Dkip -

AcDC){c'd2\\C\\0O^)2R2 \Vcp\2

for all 0 < r < /?]. Again using the real analytic functions a and &,, one deduces as
above that there exist a c" > 0, depending only on G and the basis at,... , a^.
that

f
JB(r)

- (Ak<p)cr\
'B(r)

<2 ( \Akq>-(Ak(p)cr\
2 + 2 !

JB(r) J B(r

<2c f \Ak<p - (Ak<p)cr\
2 + c"r2 f

JB(cr) JB(cr

and

|V?>|2

\Ak<p - (Ak<p)R\

f \Ak<p - (Ak<p)r\
2 < 2 c I \Dky - (Dk<p)S(cr)\

2 + c"r2 I
JB(r) JB(cr) J B(cr)

for all r e (0, /?,]. Combining these estimates it follows that

V f \Ak<p - (Ak<p)r\
2 < \6cd+*cDC(r/Rx)

d+2 V \
k=l JB(r) k=i JB(R)

+ CDCR2 f |V^|2

J B(R)

for some c'DC > 0, uniformly for all 0 < r < c~lR and R < Ro. One can now extend
the estimates to the range 0 < r < R < 1 by the argument at the end of the proof of
[E1R6, Proposition 3.4].
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2.2.2. Subelliptic operators on stratified groups with constant coefficients Let G be
a (connected, simply connected) stratified Lie group and a\, ... , ad> a basis for g, in
the stratification (gn)n(=ji r) of g.

LEMMA 2.5. Let H = — ̂  .=1 CJJAJAJ be a pure second-order subelliptic operator
with constant coefficients. Then for all v e (0, 1} there exists a cDC > 0 such that for
all R e (0, l],g eG and tp e H2l(B'(g; R)) satisfying H<p = 0 weakly on B'(g; R)
one has

[ . a... <cDC(r/R)D+2vJ2f
>B'(g;r) k=\ JB'(g;R)

for all 0 < r < R. Moreover, cDG depends on the coefficients of H only through fic

and\\C\U

PROOF. Again it suffices to consider g = e. Since G is nilpotent, connected and
simply connected it follows that the exponential map is an analytic diffeomorphism
from g onto G. Extend the algebraic basis au ... , ad' to a basis ai,... ,ad for g
such that at G gn for some n, for all i e { 1 , . . . , d}. For all i € { 1 , . . . , d'} define
xr- G -+ R by X((E?=i lyay) = & for all f e Rd. Then Xi is a C°°-function and
AjXi = —<5,y for all i, j € { 1 , . . . , d'}, since g is stratified. Hence AkAjXi = 0 for all

Now the proof of this lemma is a modification of the proof of [E1R6, Proposition
3.3]. We use the notation of [E1R6]. In particular, let Ro e (0, 1], a e (0, 1} and let
the cut-off functions TTJR be as in [E1R6, Lemma 2.3].

Let R e (0, Ro], <p e H^iB'iR)) and assume Hip — 0 weakly on B'(R). For
all / e { 1 , . . . ,d'} set bj = {Aiip)R, \\r = ip + Yl1=\ b>X< and x = xjr — (ir)R. Then

{x)R = 0, A,T = Aj<p — bt and hence (A,r>R = 0 for all / e { 1 , . . . , d'}. Moreover,
Hx = Hip = 0, since the second-order derivatives of the Xi vanish. Hence it follows
as in the proof of [E1R6, Proposition 3.3], with ip replaced by Akx, that for all r < oR
one has

\ 1/2

|2 \\Ak<p- (Ak(p)a^r\
l\ <\2_^l \Akx - (Akx)a-,r

= 1 JB'(a~>r) j \k=\

But

D'/2-» ( f \Akx\2)
-D'l2-V ( f

\JB'

1/2

B'(R)
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where we have set e = R and used inequality (23) of [E1R6]. Next,

1/2 / d' - ^ 1 / 2

< c'R-" ( f \Vz\2) = c'R-" [T f \A,<p - {Ai(p)R
\JB'(R) / \ i = 1 JB'(R)

2

by [E1R6, Lemma 3.1.II], where we used Hx = 0 weakly on B'(R) and (r)R = 0.
Combining these estimates one deduces that

J2 f \A*<P ~ (Ak(p)a->A2 < c(r/R)D'+2v J2 f \At<p - (Ai(p)R\2

k=l JB'(a-'r) i = i JB'(R)

for all 0 < r < a~'/?</?< Ro and the proof of the lemma is complete.

2.2.3. Operators with variable coefficients Finally we derive De Giorgi estimates
involving derivatives for operators with C-coefficients. In the sequel we need various
parameters to denote the smoothness of the coefficients of the subelliptic operator H.
Hence we define the C-seminorm of the matrix C of principal coefficients by

the Cv-norm of the first-order coefficients by

and the Z^-normofthe first-order coefficients by \\c\\oo = (jT*=l \\c,;|&+£f=i IKH
Note that the definition of \\c\\oo involves both the c, and the c\.

PROPOSITION 2.6. Letve (0, 1) and H = - Ylfj=i A>cuAj a Pure second-order
subelliptic operator. Suppose either

(a) H is strongly elliptic, or
(b) G is stratified and at, . . . , ad- isabasisforQl in the stratification (gm)m€(i,... ,r)

ofg.
Ifcu e Cv '(G) then there exist cDC, c'DC > 0 such that for all R e {0,1], g e G

and(p e H^iB'ig; /?)) satisfying H<p — 0 weakly on B'(g; R) one has

<r r

J2 \A<p(A<p)\2

k=\ JB'
\Ak<p-(Ak<p)g,r\

k = \ JB'i)

I 2 2 I |V>|2

B'(g;R)
< cDC(r/R)D'+2i T I \Ak<p - (Ak<p)g,R\2 + c'DCR2v I

t = l JB.'(g;R) JB'(
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for all 0 < r < R, where v = 2"'(1 + v). Moreover, cDG and c'DC depend on the

coefficients of H only through /xc, IICIloo and |||C|||c"-

PROOF. For g e G define the operator H(g) = - X!?7=i Aicij(g)Aj by fixing the
coefficients. By Lemmas 2.4 and 2.5 it follows that there exist cDC > 0 and c'DG > 0
such that for all R e (0, 1], and r] e H^A{B'{g\ R)) satisfying H{g)t) = 0 weakly on
B'{g; R) one has

k=\ JB'ig.r)k=\

< cDC(r/R)D+2i J2 f \Akr, - {Akr,)g,R\2 + c'DCR2 f \Vn\2

k=i JB'(g;R) JB'(g;R)

forallO < r < R. The cDC and c'DC depend only on fxc and \\C\\co and are in particular
independent of g.

Let R € (0, 1], g e G, <p € H^A(B'(g; R)) and suppose H<p = 0 weakly on
fi'(g; /?). Then let r? e H^(B'(g; R)) be such that

H(g)r,=0 weakly in B'(g; /?), X = <P ~ n ^ H'2.A(B'(g; R)).

Arguing as in the proof of inequality (10) one deduces that

d' p

J2 / \Ak<p- (Ak<p)g,r\
2

4 =1 JB'(g\r)

d' /.

< 4cDG(r/R)D+2i J2 / I A ^ - (Ak<P)g,R\2

k=\ JB'(g;R)

+ 2c'DCR2 I \Vr,\2 + (2 + 4cDG) f \VX\2

JB'ig-.R) JB'(g;R)

d'

<4cDC(r/R)D+2i~
k=\

+ 4c'DCR2 I |VV|2 + (2 + 4cDG + 4c'DC) f \VX\2.
JB'(g;R) JB'(g;R)

Next, since X e H'2A{B'{g; R)) and H(g)x = H(g)<p one has as in [E1R6, Proposi-
tion 3.6]

\Vx\
2<Re(xAHig)-HP)<p)

B'(g;R)
1/2 / / . \ 1/2

<d'co'r(C;R)( f \VX\2) (f \Vcp\2)
\JB'(g;R) / \JB'(g;R) /

(f \v<p\2) .
\JB'(g;R) /

) (f )
B'(g;R) / \JB'(g;

https://doi.org/10.1017/S144678870000094X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000094X


314 A. F. M. ter Elst and Derek W. Robinson [18]

Hence

[
JB'

[ \Vx\2<{d'\\\c\\\c,^-x)2R2v I
B'(g;R) JB'(g:R)

and the proof of the proposition is complete.

3. Operators with C -coefficients, v < 1

In this section we prove that Holder continuity of the coefficients of H ensures the
corresponding semigroup kernel is differentiable with Holder continuous derivatives.
The proof is an extension of the arguments of [Aus] and [E1R6]. It relies on the De
Giorgi estimates and uses Morrey and Campanato spaces. For a brief introduction to
Morrey and Campanato spaces on Lie groups we refer to the appendix of [E1R6].

PROPOSITION 3.1. Letv e (0, 1} and let HP = - £fy=i A,-c,7A;- be a pure second-
order subelliptic operator with Cv '-coefficients. Suppose either

(a) H is strongly elliptic, or

(b) G is stratified and a \,... ,adisa basisfor g , in the stratification i5m)m&\\ r\

of 9.
Let y e [0 , D ' ) , t] e (0 , 2v], 8 e (0 , 2 ] with r)<y + S<D' + r], <pe L ' 2 . v

x € M2,y and Ti, . . . , x# € ^2,Y+&- Suppose Aj(p € M2,y+s-r,for all i 6 { 1 , . . . , d'}
and HP(p = r + Yl1=i ^ ' T ' weakly. Then Ajcp G ^2.y+s for all i e { 1 , . . . , d'} and
there exists an a > 0 such that

uniformly for all e > 0. The value of a is independent of<p, x and the r,, and depends

on v and on HP through fxc, ||C||oo and |||C|||c".

PROOF. Let cDG and c'DC be as in Proposition 2.6 and RD the radius and cD the
constant in the Poincare inequalities for the Dirichlet Laplacian, Proposition 2.2 of
[E1R6]. Let g e G and 0 < r < R < RD. There exists an r\ e H2l(B'(g; R)) such
that

HPr] = 0 weakly in B'(g; R), X = f - 1 e H'21(B'(g; R)).

Using Proposition 2.6 it follows as before that

dp

J2 ~ (Ak<p)g,r\
2 < 2cDC(r/R)D'+2i J^

k=lJ B'(g;r) k=lJB'(g;R)

(11) +4c'DCR2v f \V<p\2 + (2 + 4cDC+4c'DG) f \VX\2.
JB'(g;R) JB'ig-R)
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We estimate the two error terms in (11) separately. Since A,<p e M2,Y+s-n one has

R2v f IVVI2 < R2»\\V<p\\2
M

JB'(g-.R)

where we used that r\ < 2v.
The integral of |V\\2 in (11) can be estimated as follows. By construction one has

d' d'

(X, HPX) = (x, HP<p) = (x, r) - £(A,-x , T,) = (X, r) - ^ ( A , X , r, - (r,>,,R)
1=1 1=1

o

since x £ H'2i(B'(g; /?)). Hence, by ellipticity and the Cauchy-Schwarz inequality,

1/2

Hcf Wx\2<(f
JB'(g;R) \JB'{g:

£(7
~[ \JB'(g;

<\\r\\M,rR
y/2(cDR f

\ JB'(g:R

d' / r \1/2

( iv'xl2 •
\JB'(g:R) /

B'ig-.R) \JB'(g;R) / \JB'(g;R)

/ / r \ 1/2 / /• \ '/2

R) / \JB'(g;R)

y/U,.*2 \V x\
2)

JB'[g;R) /

Therefore

IV'xl2 <
iB'ig-.R) \

Combining these estimates one deduces that

d' ,

E / \Ak(p- {Ak<p)g.r
k=\ JB'(g;r)

2

d'

<4cDC(r/R)D'+2i _
k=\ JB'(g:R)

+ b ( l IVVlU^. , + Ra-&)l2\\r\\Ml,r + JT | |r,|U2.y+J Rr+i

<4cDC(r/R)D'+2iJ2[
k=x JB'(g;R)

1 = 1
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uniformly for all £ € (0, 1] and 0<r<R<RDAe2, where b = 4c'DG + ii^2{\ +
cD)(2 + 4cDG + 4c'DG). Since y + 8 < D' + 2v one has, by [Gia2, Lemma III.2.1]
(for a precise statement of the version we need, see [E1R6, Lemma 3.5]), there exists
an a > 0, depending only on cDC, y + 8 and v, such that

d f
J2 \Ak<p-{Ak<p)gA

2

k=\ JB'(g;r)

d' o

\Ak<p - (Ak<p)g,R\
i = 1 JB'(g;R)

uniformly for all g e G and 0 < r < R < RD A e . Choosing R = RDe it follows
that

d' p

J2 \Ak<p-(Ak<p)g,r\
2

k=\ JB'(g;r)

,,+J_,+e2~*IMU2,
\

uniformly for g e G and 0 < r < RD£2-

Finally, if RDe2 < r < 1 then

- {Ak<p)g.r\
2 < _

k=i JB'(g\r) k=\ JB'(g-r)

and combination of the last two inequalities completes the proof.

Next we consider estimates on the Davies perturbation of the semigroup S generated
by the subelliptic operator H on L2.

Let \j/ e C™(G) be a real-valued function and define the family of bounded multi-
plication operators Up, p € R, by Up<p = e'^cp. Then Sp is the strongly continuous
semigroup on L2 given by Sf = UPS,U^] where we suppress the dependence on rfr
in the notation. The generator of Sf is denoted by Hp. In [E1R6] we established, by
an iterative argument, that Sp is bounded from L2 to C^e' whenever the principal
coefficients of the operator are uniformly continuous. Now we establish that if the
coefficients are Holder continuous then each A,5P satisfies similar estimates.
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First, for each y G [0, D' + 2), introduce the hypothesis P(y) by

S,P(D°°(//P)) C JV2,Y, AiSf(D°°(Hp)) c ^2.y for all t > 0, p e R

and i e { 1 , . . . , d'}. Moreover, there exist by,coy > 0, depending on H

through Me, HCIU HICIIIc... IklU, Hlc'lllc.. and ||c0||oo such that

(12) I|S>IU, < V ' ^
and

(13) \\AtSfv\U, < bYt

for all f > 0, p e R, <p e D°°(HP) and i e { 1 , . . . , d'}.

Since L2 D M2,,, = L2 D ̂ #2,y for all y < D', with equivalent norms, (see [E1R6,
Lemma A.I.Ill]) we know that P(y) is valid in many cases. As an intermediate step
in the proof of [E1R6, Proposition 4.3] we have already proved that P(y) is valid for
all y e [0, D') if D' > 2. (In fact we proved that the constants depend merely on the
modulus of continuity co'r(C; •) instead of |||C|||C»' and |||c'|||c-.) In [E1R6] we used
De Giorgi estimates which were valid only for D' > 2. But the estimates of Section
2 are valid in any dimension. If D' = 1 then obviously P(0) is valid. But then one
can use Proposition 3.1 with r] = S instead of [E1R6, Proposition 4.2] and argue as in
the proof of [E1R6, Lemma 4.4] to establish that P{y + 8) is valid for all y e [0, D')
and S e (0, 2v] with y + 8 < D', whenever P(y) is valid. Therefore P(y) is valid
for all y G [0, D') in case D' = 1. This argument also works in higher dimensions.

As in the proof of [E1R6, Proposition 4.3] it follows from (13) for P(y) with
y e (£>'- l,D') that

(14) \\S?<p\\i<at-D''4e<"^'\\<ph

for all cp e D°°(HP), where a and w depend only on the allowed parameters.
The main step in the proof of the new proposition is the observation that Holder

continuity of the coefficients ensures P(y) is valid for all y e [0, D' + 2v],
For V € C™{G) set

n2(i/)= sup HA/VMIooV sup HAiAyVlloo-
ie{l d'\ i,j€{l d')

PROPOSITION 3.2. Let H be a subelliptic operator in divergence form (1). Suppose
either

(a) H is strongly elliptic, or
(b) G is stratified and a], ... ,ad' is a basis for %y in the stratification (gm)me(i r)

of 9-
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Ifcij,c'i € C1" and ci7 c0 e Lx for some v e (0, 1) then AtS?L2 C Q ' (G) n
^(G) for allt > 0 and p e K and rnere exwr a, a> > 0 swcn

(15)

and

(16) l l | ;

uniformly for <p e L2{G), t > 0, p e K and i e {1 , . . . , a"). 77ie constants a and co
dependon v and on H through fic. IICIU II|C|||C", IklU, llk'|||c- and Ikolloo- 7%«y
depend on the perturbation functions \jr e C^°(G) only through n2(if)-

PROOF. Set S = min(2, 2"1 + 2v) and let y G ((D' - 6) v 0, D' + 2v - 8). Note
that this interval is not empty. We show that P(y + 8) is valid. Fix <p e D°°(HP).
Then (12) for P(y + 8) follows from (13) and the Poincare inequality, [E1R6, Lemma
A.2], in a similar manner to the proof of [E1R6, Lemma 4.4].

Next we use the decomposition

= S?Hp<p -
1=1

with perturbed lower-order coefficients as in [E1R6, Lemma 4.4]. This time we apply
Proposition 3.1 to Sf<p with r again the first three terms on the right, r, = c'^Sfcp
and y) = 2v. The proof of (13) for P(y + 8) is almost the same as the comparable
proof in [E1R6, Lemma 4.4], so we indicate the differences.

First we have the term \\VS^(p\\Mlr+1^ which is not present in [E1R6]. Since
y < D' + 2v - 8 one has y + 8 - 2v < D' and hence by (13) for P(y + 8 - 2v) one
has

Secondly, we have to estimate the ||Tj||̂ r2j,+8. Since y + 8 > D' it follows from
[E1R6, Lemma A.l.V] that there exists a constant a > 0, depending only on y + 8,
such that

where we have set /x = (y + 8 — D')/2. Moreover,
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and

'""Ilk,'

\\cu\U

for suitable a' and co, by Lemma 2.1 and (6). Together with the bounds (14) one
deduces that

lllc;(')lllc,'lis>|£ < arv^r^e-^'uvh < a'r^^r^e-^'Wvh

for suitable a, a', co and co', depending only on v, /xc, ||C||oo, |||C|||c", IkHoo, |||c'|||c»',
IIA^Hoo and ||A,A^lloo.

Alternatively, by [E1R6, Lemma A.l.V], and (12) for P(y)

Combining these estimates one deduces that

for suitable a and co, as required. Thus (13) for P(y + S) follows for all y in the
interval <(£>' - 8)vO, D'+ 2v - 8).

Now let y 6 (D' v 8, D' + 2v). Then by Lemma A.3 of [E1R6] and (13) for P(y)
one has

for suitable a and co, by setting e = ?'/2. But then

by an application of [E1R6, Lemma A.I.IV].
Finally we prove P{D' + 2v). We argue as above, with y = D' + 2v — 8, but in

the first step we now use

| | V ' S , V | U 2 ^ = | |V'S>|U2D, <arD'/4r1'2ea><l+p2>'\\<p\\2.

This was the only place where we previously used y ^ D' — 8 + 2v. The details are
left to the reader.
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It remains to translate the semigroup bounds into kernel bounds. Since we have to
do this repeatedly in the sequel as we assume more smoothness of the coefficients, we
immediately treat the general case of divergence form operators.

For N2, Nu N[, No e No, v2, vuv\,v0 e [0, 1), /x > 0 and M > 0 such that
N2 + v2> 0,

(17) N2 + v2 > Ni + v, > No + v0, N2 + v2> N[ + v[ > No + v0

let <?div(Af2 + v2, N{ + Vi,N[ + v\, No + vo> n, M) be the set of all second-order
subelliptic operators of the form

d' d'

H = - J^ AiCjAj + ]T(c, A, + Aic\) + c0/
i,j = \ i = l

such that Cjj e L'^.^, llcyll^,.^ < M, the ellipticity constant fic > fi and if v2 > 0
then |||A°c,y|||c"2 - < Af for all a e JN2{d') and similar conditions on the c,, c\ and c0.
Since N2 + v2 > 0 it is clear that H and H* generate semigroups on all the Lp-spaces.

Because of the inequalities (17) it follows that Hp e U t o o ^ ^ + v2, N{ +
v^Nl + v'^No + vo,!*, M) for all H e U M > 0 <?in(N2 + v2,Ni + vl, N[ + v[,N0 +

v0, ii, M), p e R, fi > 0 and \j/ e C™{G). Moreover, for all M > 0 there exists
an M' > 0 such that HA e £«"(N2 + v2, Nt + vlf N,' + vj, No + v0, /x, M') for
all / / e <fdiv(Af2 + v2, Â i + vi, N,' + vj, A^ + v0, fi, M), where the operator HA,
defined at the end of [E1R6, Subsection 2.4], is formally given by HA = A"1 / 2 / /A1 / 2 .
The generator / / A is obtained by replacing each A, by A, + 2~'fc,/ in / / , where
b, = (A,A)(e).

Obviously //* e £&\N2 + v2, N[ + v\, Nx + v,, No + v0, M, M) if, and only if,
H € £^{N2 + uz, iV, + v,, N[ + v[,N0 + v0, n, M).

We reformulate Proposition 3.2 and weaken an intermediate result of [E1R6]:

PROPOSITION 3.3. Adopt the hypotheses of Proposition 3.2.
Let v > 0. Then for all M, /x > 0 f/iere ejt/rf a, oo > 0 SMC/I tfia? A.-SfCfCG) C

Cl"(G)nLo0(G)forallt > 0 and p e R,

IIA^IU < ar

uniformly for all H e <fdiv(v, 0, v, 0, /x, A/), <p € C™(G), t > 0, i € { 1 , . . . , </'},
p e Rand x(f e CC°°(G) wir/i «2(V

f) < 1-

PROOF. This follows as in the proof of [E1R6, Proposition 4.4].
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PROPOSITION 3.4. Adopt the hypotheses of Proposition 3.2. Let v > 0. Then for
all M, ix > 0 there exist a,co > 0 such that 5,PC~(G) C C '(G) n L ^ G ) /or a//

uniformly for all H € <fdiv(v, 0, 0, 0, /x, M), <p
f eCf{G)withn2(ir) < 1.

e CC°°(G), ( > 0, p e

PROOF. This follows from the inequalities (30) and (34) in [E1R6]. In fact, one
only needs a uniform bound on the modulus of right continuity of the second-order
coefficients.

The next proposition establishes that one has kernel bounds starting from bounds
on derivatives of Sf and S*p — Upe~'H'U~\ provided these bounds are uniform for
all H in a set <^div(N2 + v2, Nr + vuN[ + v[, No + v0, /i, M) for each fx and M.
The seemingly surprising fact is that for this proposition there is no relation needed
between the number of derivatives posed on Sf and S*p and the N2, v2, etcetera.

PROPOSITION 3.5. Fix N, N* e No and v, v* e (0,1). Next, let N2, Nu N[, No e
No, v2, vu v[, v0 € [0, 1), /Lt > 0 and N' e N. Assume N2 + v2 > 0 and the
inequalities (17). Suppose for all M > 0 there exist a > 0 and co > 0 such that

for all a e JN{d'\ where A
c Cv* '(G) D L^iG) for all

S?C?{G) C L'2.N, Aa5r"Cc°°(G) C CV'(G) n
is the L2-derivative, S*"C™{G) C L'2.N.,
P € ^-(rf'),

(18) I IA^^iu < a r D 7

(19) o 7

(20)

(21)

uniformly for all H e
a € JN{d'\ 0 e JN.(d'), p e
with 1 < \y\ < N'.

Then for all K > 0 and M > 0 f/iere ê wf a, b > 0 and w > 0, swcn that for each
H € <^div(N2 + v2, Âi + V,, iV,' + vj, No + v0, ix, M) the kernel K of the semigroup
S generated by H is N-times differentiate in the first variable, the derivatives with
respect to the first are N*-times differentiate with respect to the second, the derivatives
are continuous,

+ v2, N{ + vuN[ + v[, No + v0, /x, M), <p e C™(G),
andir e CC°°(G) w/r/i I IA^IL < I for ally e J{d')

(22) \(Aa ; h)\ <
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and

\(AaBfiK,){k-xg\ l~lh) - {AaB^K,){g; h)\

(23)

uniformly for all a e JN{a"), fi e JN-{d'), t > 0, g,h e G and k,l e G such that
\k\' + \l\ <Ktxl2 + 2-x\gh-'\'.

PROOF. The proof of this proposition is an elaboration of the proof of [E1R6,
Proposition 4.5], so again we indicate the differences. Let Af = UpAjU~K It follows
from [Rob, p. 191], that for all a e JN(d') there exist caf)(p; \jr) e K such that
(Ap)a = J2\p\<\a\

 c<*p(P; MA" with p h+ cafi(p; x(r) a polynomial of order j« | - \0\, in
p , which depends on i/r only through the derivatives Ay\// with \y \ G { 1 , . . . , |or | —1
So

< J^a'd+p
\PlS\a\

<a"t 2__, f t ew +f> ' l l^lli

(24) —at t a ew p ll^llj-

Here a" depends on rfr only through the \\AyijflU with \y\ e {I,... , N v
Similarly,

| | ( 7 - L ( * ) ) ( A T S > | | o c < V IK/-

\P\<\<*\

(25) + \\L(k)caP(p;

by (5). Now ||(7 - L(k))cafS(p\ ^)IU < a'\k\'(l + p
2)^-m'2, where a' depends on

f only through the UA^Iloo w i t h ly I e {2,.. . , |a| - |/3| + 1} by (6). Therefore

<a"\k\TD'/4rlal/2ea''{1+i>2)'\\<pl\i

<a"'(\k\ryrD'/4r(lal+v)/2ea'"0+p2)'\\<p\\i
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for all k € B'{\) and t > 0. The second term in (25) can be estimated similarly and
hence for all M > 0 there exist a > 0 and co > 0 such that

uniformly for all H e <rdiv(A 2̂ -f v2, Nx + v,, w; + vj, No + v'o, fi, M), <p e CC°°(G),
a € JN{d'), k e B'(l), p e i a n d f e C™(G) with P ^ l l o o < 1 for all p e 7(rf')
with 1 < |)81 < N v N' + 1. But then it follows from (24) that these estimates are
valid for all k € G by increasing a, co and N'.

Now let Sfi* denote the L^-adjoint of Sp. Then Sp* is the semigroup generated by
the subelliptic operator (//*)_p, where H* is formally given by H* = (A~lHA)*.
Precisely, H* = //AA*. Hence, arguing as above, given M > 0 there exist a > 0 and
a) > 0 such that

for all (p\,(p2e Cf(G), where A, = A,- - £,/• Therefore

and similarly,

for all (p G C™(G) and / G G. Combining these estimates one deduces as in [E1R6]
that for all M > 0 there exist a > 0 and co > 0 such that

(26)

and

(27)

uniformly for all H e <fdlv(yV2 + v2, #i + v,, JV,' + v[, No + v'o, fi, M), k,l e G,
a e /„(*/'), j8 € 7w.(rf'), P e R and ^ e CC°°(G) with | |A^ | |oc < 1 for all y e 7(rf')
with I <\y\<Nv N*v N' + 1.

Now it follows as in the proof of [E1R6, Proposition 4.5] that for all a e i/v(^')
and $ e JN'{(T) the operator A°5',A^ has a continuous kernel K\a'P). Of course
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K, = K{a-P) is the kernel of S, if |a | = \fi\ = 0. But for all <p1,<p2e C™(G) one has

(-D'-i-H" f dg ( dhK,{g;h){Aaip,){g)(Aliip2)(h)
JG JG

= (—l)l"'+'^i(Aa#ij~, S,A^(p) = (—1)'^'(^T, Aa5,A^ip2)

= (-l)l/!| / ^^te)(A°S,AV2)te)

= (-1)"" /" rfg f dhKlafi){g-h)<p,{g)<p2{h).
JG JG

So by density

(-D'-i-wi /"rfg fdh K,{g- hKAaBpipKg; h)= (-l)m f dg fdh K<"'»{g\ h)<p(g; h)
JG JG JG JG

for all <p e Cf°°(G x G) and the ( - l ) 1 " 1 / ^ " ^ are the successive distributional de-
rivatives of K,. Since the AT,(a w are continuous one deduces from the lemma of Du
Bois-Reymond that K, is N times differentiable in the first variable, the derivatives
are Af*-times differentiable in the second variable and all derivatives are continuous.
Then the bounds (26) give

\(A"B*K,){g\ h)\ < ar
D72/-(|o|+l/")/2g'B(1+'>2"g'>(*(«)-*r(*))

for all g, h £ G and minimizing over p and \jr, using [Rob, pp. 201-202], gives the
bounds

(28) \(AaB"K,)(g; h)\ < ar
iy/2rlM+M)/2e°"e-bi"'~'iIt~',

where | • | is the strongly elliptic distance. This enters because the estimates involve
the second and higher derivatives of the \fr. Note that in the strongly elliptic case we
have now proved the bounds (22).

Next we use a scaling argument to deduce that the bounds (22) are also valid in the
stratified case. For u > 0 let yu be the dilations on G. For u e [1, oo) let Hu be the
operator with coefficients c^f = Cjj o y~\ cju) = u~^ct o y~\ c,'00 = u~]c't o y~l and
4" ' = u-2c0oy-1. ThenHu € <^iv(N2+v2, N{+vu N[+v[, N0+v^, fi, M),uniformly
for all u > 1. Moreover, (H((p o yu)) o y~l = u2Hu<p and hence (S,(<p o yu)) o y~x —
S{

u"](p, where S(u) is the semigroup generated by Hu. Therefore the kernel K(u) of
the semigroup S(u) satisfies K^)(g;h) = u~D'K,(y~l(g); y~l(h)) for all t > 0.
Consequently, setting u — rU2 one finds

K,{g\ h) = rD'l2K(;\yt^{g)- y,-m{h))
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for all? e (0, 1] and g, h e G. Similarly,

(29) {A"B')Kt){g; h) = r
D'<2r

for all? e (0, I] and g,h e G.
By [VSC, Proposition III.4.2] there exists an r\ > 1 such that |g| > r\\g\ for all

g e G with |g|' > 1. Then

(30) e - b \ g \ 2 t - ' < e b n 2

for all g e G and t e [1, oo). Therefore, by (28)

Hg; h)\ < ar
D'/2rw

uniformly for all u > 1, t > 1 and g,h e G, for some redefined a and b. So for all
t > 1 the estimates (22) follow by setting u = 1.

If t € (0, 1] a combination with (29) yields

t)(g; h)\ = rD'/2r^+m/2\(AaBpKl'~"2))(g; h)\

uniformly for all t e (0, 1] and g,h e G and one deduces the estimates (22) for the
subelliptic operators.

Next we turn to the Holder bounds. Starting from the semigroup bounds (27) it
follows as in [E1R6] that there exist a, a', b, u> > 0 such that

\{AaB?K,)(g\ h) -

uniformly for all g, h, k, I e G, t > 0 and large co, where c = (4<y) '. Note that the
strongly elliptic distance enters even in the subelliptic case. By increasing co one can
make c arbitrarily small. Obviously,

since \g\ < \g\'. Moreover, e-
clsh~'l2'~' < e

cr>e-criilsh~'l')2r' by the estimates (30) if
t e [l,oo>.

Now suppose either H is strongly elliptic and t e (0, oo) or G is stratified and
t e [l,oo). Then

; h) - (AaBf>
1/2)u(|/|'r1/2)

+a'\gh~l\'t~i/2(\k\'+\l\')t~l/2e2c'
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for some redefined constants. One can now continue to argue as in [E1R6] and deduce
that for all M > 0 and K > 0 there exist a,b,co > 0 such that

\Kt(g;h)-K,{k-xg;l-'h)\

< arD''2eM (( i/2
 W' _t V + ( i/2

 | /r
 i V \ e - W D 2 ' - ,

\V + \g I / \t + \gh | / J

uniformly for a l l / / € £div(N2+v2, Nx+Vi, N,'+v;, N0+v0, /z, M)andg, h, k, I e G,
whenever \k\' + \l\' < Ktl/2 + 2~l\gh~l\'. This establishes the estimates (23), except
in the stratified case if t e (0, 1}. But these can be deduced by a scaling argument
from the bounds with t = 1.

We combine Propositions 3.3, 3.4 and 3.5.

THEOREM 3.6. Let v2 e (0, 1), v1; v[ e [0, u2] and H and subelliptic operator in
divergence form (1). Suppose either

(a) H is strongly elliptic, or
(b) G is stratified and ax,... ,ad> is a basis for $x in the stratification (gm )me | i... ,rl

Let N, N* e {0, 1}, v, v* e [0, 1) and suppose that N + v < 1 + v[ and N* + v* <
1 + V, with the exception of the case N + v = lifv[=0 and with the exception of
the case N* + v* = 1 ifvx = 0. Ifcu e C 2 ' , c, e C 1 ' ifvx > 0, c\ e Cv'<' ifv\ > 0
and c0 e Lao then for all K > 0 there exist a,b > 0 and co > 0, such that the kernel
K of the semigroup S generated by H is N-times differentiable in the first variable,
the derivatives with respect to the first are N*-times differentiable with respect to the
second, the derivatives are continuous,

\(AaB^K,)(g;h)\<at-D/2r

and

at-D'/2t-(\a\+\fi\)/2 cot

uniformly for all a e JN(d'), ft e JN>{d'), t > 0, g,h e G and k,l e G such that

\k\' + \l\' <Ktl'2 + 2-'\gh-'\'.

Moreover, for all M, /j, > 0, N, N*, v, v* and K the constants a, b and a> are

uniform for all H e ^ d l v (v 2 , vx,v\, 0, fi, M)

PROOF. This follows immediately from Propositions 3.3, 3.4 and 3.5.
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COROLLARY 3.7. Adopt the hypotheses of Proposition 3.2. 7/c,7, c,' G Cv 'for some
v e (0, 1} and ct,c0 G LM ?ften 5, maps Lp into L'p., and there exist a > 0 and OJ > 0

that

\\S?cp\\p<ae«{l+p2)l\\<p\\p,

and
||(/ - L{k))A,St<p\\p < a( |* iyr ( I + "»

uniformly for all t > 0, p e [\, oo], r G { 1 , . . . ,d'}, k e G, (p e Lp, p € R and
f G Cf{G) with HAyiAlloc < \ for all j G { 1 , . . . , d'}. Moreover, for all M, ix > 0
f/ie constants a and co can be chosen uniform for all H G <?dlv(v, 0, v, 0, /x, M).

Similar results are valid on Lp.

PROOF. The operator UpAiS,U^ has kernel (g,h) \^ e-p(}''{8)-}i'm(AiK,)(g;h)
and

where G,p(^) = r07^-*^02'"^1"11*1' for some a, fc > 0 and <w > 0. So

Therefore

\\UpA,S,U;'<p\\p < a r ' / V I I G

Similarly | |5,>| |p < aea><1+"2)'||^||P. Then

Next we prove the Holder bounds. If \k\' > fl/2 then

||(7 - L(fc))A,S^||p < 2\\A,S,(p\\p < 2 a r - 1 / V | k l l P

Alternatively, if |fc|' < r1/2 then

\(A,K,)(k-lg; h) - (AilOlg; h)\ < a ( W ) r

where G,(g) = r
D 7Vf c < l« r ) 2 ' " ' for some a, fc > 0 and co > 0. So for all g e G one

has
| ((7 - L(fc))A,S,<p) (g)\ < a(|A:|')vf-(1+w>/V'(G, *

https://doi.org/10.1017/S144678870000094X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000094X


328 A. F. M. ter Elst and Derek W. Robinson [32]

Therefore

\\(I - L(k))A,S,ip\\p <a(\k\rrll+v)/2eat\\Glh\\<p\\p <a'Qk\yr<l+v)/2e'"\\ip\\p,

and the corollary follows.

COROLLARY 3.8. Adopt the hypotheses ofProposition 3.2. Ifcihc\ e Cvl for some
v 6 (0, 1) and c,, c0 € Lx then there exist Xo > 0 and a > 0 such that (XI + / / ) " '
maps Lp into L'p.x and ||A,(A/ + H)~x\\p^p < aX~1/2 uniformly for all X > Xo and
p € [ l , oo]. Moreover, for all M, fi > 0 r/te constants a and k0 can be chosen uniform
for all H e #div(u, 0, v, 0, /x, M)

Similar results are valid on Lp.

PROOF. This follows from the Laplace transform of the bounds

\\AiSt(p\\p<at~il2ea"\W\\p

of the previous corollary.

COROLLARY 3.9. Let H be a subelliptic operator in divergence form (1). Suppose
either

(a) H is strongly elliptic, or
(b) G is stratified and a\,... ,adisa basis for^g, in the stratification (gm)me{i r\

ofS-
If Cjj, Ci e Cv 'for some v e (0, 1) and c\, CQ 6 L^ then there exist Xo > 0 and

a > 0 such that (XI + H)~l maps L'p._l into Lp and

uniformly for all X > Xo and p e [1, oo]. Similar results are valid on Lp.

4. Resolvent estimates

Let H be a subelliptic operator in divergence form (1). We next examine properties
of the resolvents (XI + / / ) " ' acting on the L^-spaces, LP(G\ dg), with p e (I, oo),
and on the associated spaces Lp = LP(G; dg).

The operator H is initially defined on L2 through the sectorial form h given by (3)
and the resolvents (XI + H)~] do not necessarily extend to the Lp-spaces or the related
Sobolev spaces (see [ACT]). This requires some smoothness of the coefficients.

If the principal coefficients of H are right uniformly continuous then H generates
a continuous holomorphic semigroup 5 on L2 which extends to all the Lp-, and
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Lp-, spaces by [E1R6, Theorem 1.1]. The action of 5, is determined by a kernel
K, which satisfies Gaussian bounds and is Holder continuous. One cannot expect a
Gaussian kernel to exist for general strongly elliptic, complex, operators [ACT]. It is
essential that the principal coefficients are real or satisfy some smoothness condition
such as uniform continuity. The existence of a kernel satisfying (Holder continuous)
Gaussian bounds does, however, imply many more structural properties of H and S.
For example, it follows as in [E1R3] using arguments as in the proof of Theorem 4.6
below, that H has a bounded holomorphic functional calculus on each of the Lp-, or
L-p-, spaces with p e (1, oo). This in turn implies some domain properties for H and
its fractional powers.

If X > 0 is large enough then XI + H generates an exponentially decreasing
semigroup uniformly on all the L^-spaces, where p e [1, oo]. Then the fractional
powers (XI + H)Y, y e [0, 1], are defined on Lp. Note that the (graph-)norms on
the spaces D((XiI + H)Y) and D((X2I + H)y) are equivalent whenever XUX2 > X
(see [Rob, Lemma II.3.2]). Next the existence of a bounded holomorphic functional
calculus implies D((XI + H)Y) = [Lp, D(H)]Y, for all y € (0, 1), and D((XI +
H)Y) = [Lp, D((XI + H)l/2)]2Y, for all y 6 (0, 1/2), where [•, -]Y denotes the
complex interpolation space. But these identities are not particularly useful in relating
the domains with the Sobolev spaces unless one has some further identification of
D(H) or D((XI + H)l/2).

The Kato problem consists of establishing conditions under which D((XI +
H)1/2) = L'2.v Once this condition is verified one then has D((XI + H)y/2) = L'2yfor
y € (0, 1]. Note that it follows from [Katl, Theorem 3.1], that D((A/ + /f)}'/2) = L'2.Y
for all y e (0,1) even if the coefficients are only measurable. The difficulty is with
the value y = 1.

If G = Rd and the coefficients are Holder continuous the Kato problem has been
resolved positively by Lions [Lio], Mclntosh [Mel] and [AMT]. In [Mel] domains
in Kd are also allowed under some weak smoothness assumptions. On (general) Lie
groups these results are slightly weakened.

THEOREM 4.1. Let H be a subelliptic operator in divergence form (1). Ifcu 6 C u '
for some v e (0, 1) and c,, c'n c0 e Lx then D((XI + / /)1 / 2) = L2.JoraU large X.

Moreover, for all M, /x > 0 there exists a Xo > 0 such that for all y € (0, v) and
X>X0 there exists ana > 0 such that L'2.i+y C D((XI + H)(l+y)/2) and

\\(XI + Hf+y^h < a\\<p\\'2.l+y

uniformly for all (p e L'2.x+y and for all operators H with /j,c > (j,, |||C|||C>" < M,
IICIloo < M, Hclloo < M and \\ca\\x < M.

Similar conclusions are valid on L2.
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PROOF. This theorem is basically proved in [E1R5]. The lower order terms ̂  A,-c,'+
col can be added directly to the principal part in [E1R5] and then the lower order terms
£ CjAj can be added by the perturbation-interpolation argument. The uniformity of
the constants follows from the proof, together with the next lemma.

LEMMA 4.2. ForallM,fj, > 0 there exists a k0 > 0 such thatfor ally £ (0, I) there
exists an a > 0 such that for all subelliptic operators H of the form (I) with fie > /-<•>
IICHoo < M, Hdloo < Ma/K/IMloo < MonehasD{(kl + H)Y) = [L2, D(kI + H)]Y

and
a~l\\<P\\[L2,DUi+H)]r < II(A./ + H)Y<p\\2 < a\\<p\\lL2,D(U+H)]r

uniformly for all k > koand<p e D((XI + H)Y). Moreover,

(31) \\(kol + HY<p\\2 < \\(kl + H)r<ph

for all k>koand<pe D((kol + H)Y).

PROOF. Let k0 e K be such that (Ao — 1)/ + H is a maximal accretive operator. The
constant k0 depends only on M and /x. Then for all k > k0 the operator kl + H is an
injective closed maximal accretive operator. So by [ADM, Theorem G], the operator
kl + H has a bounded //oo(A(#))-functional calculus, in the sense of [CDMY], for
any d € (0, n/2), and

| | / ( 1 / + ff)||2^2 < sup{|/(z)| : z € A(0)}

for a l l / e //oo(A(#)). Therefore the operator kl + H has bounded imaginary powers
and || (kl + H)" ||2_2 < ewm2 for all t e R. Then the first part of the lemma follows
from [Tri, Theorem 1.15.3].

Finally, applying the bounded ^oo(A(^))-functional calculus of the operator kol +
H to the function f{z) = zn+Y)l2{k -ko + zy

{X+Y)l2 yields

for all k > k0 and <p e D((kl + H)<l+Y)'2).

COROLLARY 4.3. For all M, /z > 0 there exists a k0 > 0 such that for all S e
(0, 1 + v) and k > k0 there exists ana > 0 such that L'2.s C D((kl + H)s/2) and

uniformly for all <p e L'2.s andfor all operators H in divergence form (1) with /xc > M.
IIICHIc" < M, ||C|U <M, Hdloo < M and ||c0||oo < M.

Similar conclusions are valid on L=,.
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It follows from Theorem 4.1 that L'2.s c D((A./ + Hf/2) on a general Lie group if
ctj e C " a n d c f , c , ' , c 0 6 L K - We next show that the spaces L'2.s and D({XI + H)s/2)
are equal, if, in addition, the c\ are Holder continuous and the operator is strongly
elliptic or the group is stratified, by exploitation of the heat kernel bounds developed
in Section 3.

THEOREM 4.4. Let H be a subelliptic operator in divergence form (1). Suppose
either

(a) H is strongly elliptic, or
(b) G is stratified and a\, . . . , ad* is a basis forg, in the stratification (gm)m<=u rj

Ifv e (0, 1), y e (0,v>, c y , c ; 6 C1", andc,-, c0 e L ^ rAen D({X1 + H)il+y)/2) c

Z-2-1+ / o r ' a r £ e ^ a n ^ ?^e embedding is continuous.

Moreover, for all M, /x > 0 there exists a k0 > 0 i«c/i that for all y e (0, v)
exists an a > 0 SMC/Z

uniformly for all H e Sd"(v, 0, v, 0, /z, M), k>Xoand<p<E D((XI + H){l+y)/2).
Similar conclusions are valid on L2.

PROOF. The proof consists of several steps.

STEP 1. First we reintroduce the Lipschitz spaces associated with left translations
on L2 of [E1R1], but now we clearly indicate the p-dependence in the notation. Let
6 be a fixed bounded open neighbourhood of the identity of G. For p e [1, oo] and
y e (0, 1) define || • \\L

y": L2 -» [0, oo] by

\w\\y"-ikii2 + (J ds(\s\rD'((\g\rr\\(i-

if p < oo with the obvious modification if p = oo. Then define the Lipschitz

space L^y(L) = [<p e L2(G) : \\(p\\^-P < oo}. It follows from Corollary 3.7 that

AiS,<p € LghQ and

for all y e (0, v] and <p e L2. The constants ay and coy depend on H through M
and ix.

STEP 2. For any interpolation pair (ST, $ 0 , y e (0, 1) and p e [ l ,oo] let
(2C, ^)y,p-K be the interpolation space by the K-method of Peetre (see [BuB, Defini-
tion 3.2.4]). Then it follows from [E1R1, Theorem 3.2], that L2

p)
y(L) = {L2,L'2.X)Y_P,K,

with equivalent norms. Therefore
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for all y e (0, v], and some redefined value of ay. But this means that 5, maps L2

continuously into (L2, L'2.\)' pKX, the once-differentiable functions with derivatives
in the Lipschitz space. But(L2, £ 2 : i W * ; i = (Li> ^2;2)d+y)/2.A';A:by [E1R1], Theorem
2.1 .III, with equivalent norms. Hence

for all y € (0, v], for some redefined ay. Then, by the reiteration theorem ([BuB,
Theorem 3.2.20 and Corollary 3.2.17]), one can deduce information about the inter-
polation spaces with p < oo. In particular the foregoing bounds can be transferred to
the spaces (L2, L'2.2)(I+Y)/2,2:K- One deduces that

for ally e (0,v).

STEP 3. Now fix y e (0, v). We shall prove that

(32) (Z-2, D(H))(\+yy2.2;K ?= (L2, L'2.2)(\+y)/2,2;K

and the inclusion is continuous. Let S e <(1 + y)/2, (1 + v)/2) C (2"1, 1} and set
6 = (2S)-] (1 + y) e (0, 1). By the reiteration theorem it suffices to prove that

(L2, D(H))(i+yy2,2;K £ U-2> (^2. L'2.2)S,2;K)9,2;K

with continuous embedding. Now each <p e L2 can be decomposed as 9? = (/ —
S,«)<p + S,« ,̂ where a = 8~l. Then one can argue as in Step 4 of the proof of [ElRl,
Theorem 3.2], using the bounds of the present Step 2 instead of [ElRl, Lemma 3.3],
that

\\<P\\(L2.(L2,L'2.2)s.2:Kh.2:K -

for some c> 0, independent of <p, but dependent on y and H through M and /x. Then
(32) follows.

STEP4. The spaces (L2, D(H))^+Y)I2,2;K and (L2, D(\H\))(l+y)/2,2]K are equal,
with equal norms. Next, for all 9 e (0, 1) there exists an a > 0 such that
(L2, D(r))fl.2:Jf = D(7-fl) and

* \\Y>\\(L2,Da))<>.2:K — H1 Vl\2 ^UIW\\(L2.D(T))i,,2;K

for any positive self-adjoint operator T and all cp e D(Te) (see [LiM, Theorem
1.15.1]). But D{Te) — [L2, D(T)]e, with equivalent norms, the norms are inde-
pendent of T (see [Tri, Theorem 1.15.3]). Finally, [L2, D(\H\)]e = [L2, D(H)]e,
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with equal norms. So if A.o is as in Lemma 4.2, then (L2, D(H)\\+Y)i2,2;K =
[L2, D(H)](i+y)/2 = D((X0 + Hyl+y)/2), with equivalent norms, independent of the
operator. Repeating these estimates for the Laplacian HL and using the equality
L'2.2 = D(HL) it follows that there exists an a > 0, depending only on y, M and ix,
such that

uniformly for all <p e L'2.l+y.
Finally the bounds uniformly for all X > Xo follow from inequality (31) of

Lemma 4.2.

COROLLARY 4.5. Adopt the assumptions of Theorem 4.4. For all v e (0, 1),
M, /x > 0 there exists a Xo > 0 such that for all 8 € [0, 1 + v) andX > Xo there exists
ana>0such that D((XI + Hf/2) = L'2.S and

a-{\\(XI + H)s/2<p\\2 < \\<p\\'2.t < a\\(XI + H)s/2<p\\2

uniformly for all H e <?div(v, 0, v, 0, (i, M) and(p € L'2.s.
Similar conclusions are valid on the L2-spaces.

Next we extend the Kato regularity to other Z.p-spaces.

THEOREM 4.6. Let H be a subelliptic operator in divergence form (1). Suppose
either

(a) H is strongly elliptic, or

(b) G is stratified and a{, ... ,ad, is a basis for g, in the stratification (gm)me)i r\
of$.

Ifcu, c\ e C 'for some v e (0, 1) and if p e (1, oo> then D((XI + H)1'2) c L'p.x
for all large k. Moreover, for all M, /x > 0 there exists a k0 > 0 such that for all
p € (1, oo> there exists an a > 0 such that

uniformly for all H e <fdiv(v, 0, v, 0, (x, M), X>\oand(pe D{{kl + H)1'2).
Similar conclusions are valid on the Lp-spaces.

PROOF. The proof is nearly the same as that of [BER, Theorem 2.3], so we only
indicate the significant differences. We prove the embeddings and inclusions on the
spaces with the right Haar measure. They then follow for the left Haar measure by
the arguments given in [BER, Lemma 2.1].

It suffices to prove the bounds for one particular X since the uniform bounds then
follow by the argument used in Step 4 of the proof of Theorem 4.4. This latter
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argument relies on the fact that there exists a k > 0 such that kl + H has a bounded
Hoc -functional calculus on the Lp-spaces uniformly for p e (1, oo). If p = 2 this
follows because kl + H is maximal accretive (see [ADM, Theorem G]) and for the
other values of p it follows from a similar adaptation of the proof of [E1R3, Theorem
3.1] as the present proof is an adaptation of the proof of [BER].

We may assume that H generates an exponentially decreasing semigroup uniformly
on all the /,,,-spaces. Fix N e N, N > D' and fix a large A, > 0. It will be clear from
the proof which value of k is required. For j e N consider the operators

Xj = f(jl + H)~N{kl + H)-"2.

Then for fixed i0 e {1, . . . , d'}

HA^XjtpU < c\\(kl + Hy^XjtpU = cjN\\(jI + HTN<Ph < c'

uniformly for all j e N and cp e L2by the bounds of Theorem 4.4. Thus the operators
AjXj are uniformly bounded on L2.

It follows, as in [BER], that the Xj have 'good' kernels, but now they are functions
of two variables,

(Xj<p)(g)= I dhkj(g;h)(f(h),
JG

where kj-.G\{e] -* C is defined by kj(g; h) = /0°° dt fj(t)K,(g; h) and /,: (0, oo) - •
R is a function such that

(33) fj(t)<ari/2(jtye-k'

for some a > 0, uniformly for all t > 0, k > 0, r 6 [0, AH and j e N with j > 2A. (see
[BER, Lemma 2.4]). Choosing r = D' and using the Gaussian bounds of Theorem
3.6 together with the estimates in the Appendix of [E1R3] one can then show that kj
is differentiable in the first variable,

(AlokjKg; h)= f dt fj(t)(AioK,)(g; h)
Jo

and
\(Ahkj)(g; h)\ < Cje~biigh^l')2r'

if A is large enough. In particular the bounds show that the action of Xj can be defined
with the kernel kj on all the Z^-spaces, and in particular on L\, for all large k. These
bounds depend on j . Similar bounds starting from r = 0 give j independent bounds
for the Aifskj,

(34) \(Aiokj)(g; h)\ <
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if k is large enough. But the integral of the latter bounds with respect to left or right
Haar measure is logarithmically divergent. Therefore one has to apply the methods
of singular integration theory, for example [CoW, Theorem III.2.4], to obtain L;-
boundedness properties of AioXj.

At this point a problem occurs. The usual theory of singular integrals is restricted
to spaces of homogeneous type, for example, spaces with the doubling property. This
is sufficient to deal with operators on compact Lie groups or Lie groups of polynomial
type but it is not adequate for Lie groups whose volume grows exponentially. In
particular it does not apply to non-unimodular groups. For groups of exponential
growth one needs a supplementary argument which was first given in [Bur] and later
used in [BER] and [DuR].

The starting point is the observation that each Lie group G has a local doubling
property. Therefore one can use the estimates in [CoW] on any bounded subset of G,
whether or not this subset has the doubling property. In the appendix we explain how
one can adapt the results of [CoW] to this more general situation.

Because of the bounds (34) we localize the problem as in [BER]. Let x, X\ £
CC°°(B'(2)) be such that x(g) = Xi(g) = 1 for all g e B'(l). Consider the operator
Tf. Lp(G) -+ Lf,(G) defined by

IG

where

(Tj<p)(g)= f dhKj(g;h)<p(h)
JG

Kj(g; h) = (Aiokj)(g; h)X(gh-l)xdh) = / dt fj(t)(AhKt)(g\
Jo

So Kj(g; h) = 0 if g $ B'(4) or h & B'(4). Obviously Kj e L2(G xG,dg® dh) and
by the arguments [BER] there exists a c > 0 such that ||7}||2^2 ~ c uniformly for all
j G N. These are the first two conditions of the theorem of [CoW] (see the appendix).

For the third and most difficult condition, it suffices to prove that

sup sup / dg \Kj(g; h) - Kj(g; ho)\ < oo
; /i,/joeG J£i(h,h0)

where S2(h,h0) = {g e G : d'(g;h0) > 4d'(h;h0)} with d\-\ •) the subelliptic
distance on G. One deduces from the triangle inequality that the integral is zero if
h $ B'(6) or h0 e B'(20/3).

Then by right invariance

sup sup / dg\Kj(g;h)-Kj(g;ho)\
j h.h<,£G JQih.ho)

< sup sup I d^(g)\Kj(gho;h)-Kj(gho;ho)\,
j h.hoeG Jn^h.ho)

https://doi.org/10.1017/S144678870000094X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000094X


336 A. F. M. ter Elst and Derek W. Robinson [40]

where ft, (h, h0) = [g e B'(U) : \g\'> 4\hh^ |'}.
Let h e B'(6), h0 e B'{1), g e #'(11) and suppose that \g\' > A\hh^\ > 0. By

the definition of K, we estimate

\(Ai0K,)(gh0\ h)x(ghoh-x)Xx{h) - (AkK,)(gh0\ ho

< \(Ai0Kt)(gh0; h) - (AhK,)(gh0;

+ \(Ai0K,)(gh0; ho)\\x(ghoh'1) -

+ \(Ai0K,)(gh0; ho)\\x(8)\\Xi(h) ~

by the bounds of Theorem 3.6. These can be applied to the first term since \hh^ |' <
4~' |g|' = 4"' \ghohQ' |' and for the last two terms one estimates the differences of the
functions x and X\ in terms of their derivatives. Using the bounds (33) and estimating
as in the Appendix of [E1R3] one deduces that

poo

\Kj(gha; h)-Kj(gh0; ho)\ < / dtarll2e-xla'{\hh0\rrD''2r^)'2e-h^lrie^k)'
Jo

< a"(\g\'rD'-»(\hh0\y

uniformly for all j > 2k, if k is large enough. But if c = sup,€(0 U]t~
D'\B't\,

s = d'(h; h0) = \hh~l \' and Ns e No is such that 2N<~4 < s~l < 2N<~3 then we obtain

B'(ll)\B'(2s) n=0

n=0
D'~3vcsv(2v - iy\2lN'+1)v - 1) < 2D'+ll(2v= 2D'~3vcsv(2v - iy\2lN'+1)v - 1) < 2D'+ll(2

Hence

f dg Wj(ghQ; h)) - Kj(gh0; ho))\ < 2D'+V(T - l)-la",

which is the third and last condition of Theorem Al in the appendix, uniform in j .
So the operators 7} satisfy uniform weak-L, estimates and arguing as in Theorem

2.3 in [BER] we obtain the estimates

p([g e G : \(Pj<p)(g)\ > y}) < Moy'l\\<p\\i

uniformly for j e N with j > 2k, for y > 0 and cp e LX(B'{\)) H L2(B'(l)), where

(Pj<P)(g)= f dh(Aiokj)(g;h)x(gh-l)<p(h)
JG
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and p is the right Haar measure. The value of Mo can be chosen uniformly for all
H e <?div(v, 0, v, 0, fu,, M) for each prescribed M > 0.

By [BER, Lemma 2.5] there exist gi,g2,..- e G and No e N such that G =
U~i B'Wgt and each g e G is an element of at most No balls 5'(3)g,. Let (T^),-

be apartition of unity relative to the cover G = \J°1X B'(l)g,. Then supp Pj{\jfi<p) c
g, for all </> e Lj(G) and i, y e N and

p({g e G : | ( / » ( g ) | > y))

(is e G • I {pjR
gr'R

(35) =J^p({geG:\ (Rg, PjRg-, Rgl&&)) (g)\ > yN'1})

if y > 2k. But if k e G and <p e Lp then

(RkPjRk-t<p)(g)= f dh(Aiokj)(gk;hk)X(gh-')<p(h).
JG

Now if one replaces the operator H with coefficients c,j, c,, c,' and c0 by the operator
Hk with coefficients /?tc,; etcetera, then the kernel kj has to be replaced by (g, h) i->
kjigk; hk). But Hk e <fdiv(y, 0, v, 0, /x, M) if « e ^div(v, 0, v, 0, n, M) for all
k e G. Therefore

p({g e G : |(/?*/>;/?*-,</>)(£)| > / } ) < Moy
, - i

uniformly for all H e <?div(v, 0, v, 0, /x, M), k € G, j e M with j >2v,y > 0 and

<p G L ^ B J ) n Z,2(Si)- So with (35) one establishes that

p({g e G : \(Pj(f)(g)\ > y\) <

The remaining part of the proof is precisely as in [BER]. It follows that the operators
AioXj satisfy a uniform weak-L; estimate and by interpolation the theorem is valid
for all pe (1,2].

Next assume p € [2, oo). Now it suffices to show that the operators (AhXj)*
satisfy a uniform weak-Lj estimate since this implies that the (A,0X;)* are uniformly
bounded on L^ for all q € (1,2] and then the AioXj are uniformly bounded on Lp.
Here * denotes the dual operator with respect to the right Haar measure. But the
operator (AioXj)* has the kernel

/•OO

(g, h) ^ (Aiokj)(h; g) = / dt fj(t)(AioK,)(h;g).
Jo
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Since (AhKt)(h; g) is Holder continuous in h, with the right kind of Gaussian bounds,
by Theorem 3.6, one can repeat the above arguments to deduce the validity of the
theorem if p e [2, oo).

COROLLARY 4.7. Adopt the hypotheses of Theorem 4.6. lfcu, c, e C1" for some
v e (0, 1} and c-, c0 e L^ then L'p.x c D((XI + H)l/2) for all large X and each
p € (1, oo). Moreover, for all M, fi > 0 there exists a Xo > 0 such that for all
p € (1, oo) and X > Xo there exists ana > 0 such that

uniformly for all H € <?div(v, v, 0, 0, /x, M) and<p € L'p.v
Similar conclusions are valid on Lp.

PROOF. This follows by duality as in [BER, p. 182].

COROLLARY 4.8. Adopt the hypotheses ofTheorem 4.6. lfcihci,c\ e C " f o r some

v € (0, 1) and c0 e Lx then L'p.{ = D((kl + H)l/2) for all large X>0 and for each

p € (1 , oo). More generally, L'p.y = D((XI+ H)y'2) for ally e [ - 1 , I] and all large

X > 0. Hence (XI + H)-a'2L'p'Y c L'p.a+y for all y e [ - 1 , 1], a e [ - l - y , l - y ]

and all large A. > 0.

Similar conclusions are valid on the Lp-spaces.

PROOF. The first statement follows from combination of Theorem 4.6 and Co-
rollary 4.7. The second statement follows by the complex interpolation argument
discussed prior to Theorem 4.4. The third statement is a straightforward consequence.

By definition of the quadratic form operator one immediately concludes that the
operators A, (XI + H)~] A, are bounded on L2, even if all the coefficients are merely
measurable. Now we prove bounds on A, (XI + H)~lAj on Lp for Holder continuous
principal coefficients. In Taylor [Tay, Theorem 2.2.H], it was established, for pure
second-order strongly elliptic operators in divergence form on Rd, that

d
) - x\\A,{kI + H)-xAj<p\\p < c J2 II(^ + tf)~%Plli,;. + c\\<p\\

k=\

if 1 < q < p < oo, Cjj e C(U.d) and a > 1 — v, using the machinery of pseudo-
differential operators. The next theorem improves these bounds.

THEOREM 4.9. Let H be a subelliptic elliptic operator in divergence form (1).
Suppose either
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(a) H is strongly elliptic, or
(b) G is stratified and a i,... ,adisa basis for g, in the stratification (gm)me(i r)

ofS-
Ifc,j € Cv', where v e (0, 1), and clt c\, c0 € Lx then (XI + H)-{L'p._x c L'p.x

for all p e {1, oo) and large X.
Moreover, for all M > 0 and p e ( l , oo) f/iere em? Ao, a > 0 such that

\\(XI + H)-l\\L-r_^Lp < aX~'12 and \\(XI +

uniformly for all X>XoandHe £A™(v, 0, 0, 0, /x, M).
Similar statements are valid on the Lp-spaces.

PROOF. Let Ho = — J2i j=\ AjCjjAj+c0I. It follows from Theorem 4.6 and duality
that the operators A, (XI + H0)~

l/2 and Aj(XI + / / 0*)- ' / 2 are bounded on Lp and Lp.,
respectively, uniformly for all large X, where \/p + \/p* = 1 and p e ( l ,oo) .
Therefore there exists a Xo > 0 such that for all p e {1, oo) there exists an ap > 0
such that

uniformly for all X > Xo. Moreover, Corollaries 3.8 and 3.9 give the bounds || A, (XI +

H0)-
l\\p^p < aX"X12 and ||(A./ + H0)-

lAj\\p^p < a^"1/2 for a suitable a > 0,
uniformly for all X > Xo and p e [1, oo], possibly by increasing Xo.

Next let V = Xlt=i c ' ^ i - Then

~ ' II <r" \ x 11^ II II A (\ 1 _|_ H \ ~ ' II <r ^ '1 —1/2\\V(XI + H0)
k=\

and similarly ||V(X/ + Hoy
lAj\\p^p < a'p uniformly for all X > Xo. The value of a'

is independent of p. Therefore, if X > Xo V (2a')2 the series

= (XI + //0)-' £ ( - V(XI + Ho)-1)"
n=0

is norm convergent on Lp. But a standard perturbation argument establishes that
R[p) = (XI + / / " " ) - ' where H{p) is the Lp-closure of the operator sum Ho + V.
Moreover, by comparison of convergent series R[p)(p = R^)(P for all <p e Lp C\ Lq,
each pair p,q e (1, oo) and all appropriately large X. Now we must argue that
the H<p) are the L^-versions of H\, the sectorial operator with coefficients c y , ct, c0

defined on L2 by the form (3). Thus we must establish that (XI + //,)"" V = K?V for
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all <p e L2. If h\ and h0 are the sesquilinear forms defining the operators H and Ho,
respectively, then it suffices to prove that

for all f e L'2X and <p e L2. But flfV e (A/ + H0)~
l L2 C D(H0) c L'2.x and

«=0

in L\.,. So

n=0

= k ^ 0 A , (A/ ( Y

oo

+ ^ ( T A , //O(A/ + Hoy
l (-V(U + Ho)

n=0
oo

n=0

Therefore (A./ + H,)"1

Next it follows that

= A,(A/ + //0)-'2^(-V(A/
n=0

and

n=0

Alternatively,

A, (A./+ #,)"'Ay
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and

n=l

for some a" > 0, independent of A. whenever k > k0 v (2a')2. Analogously, ||(A./ +

By duality one then obtains bounds

\\At(XI + //,*)"'IUP < apk~xl\ \\(kl + H*rlAj\\p^p < 2ak~1'2

and \\Aj(kI + H*)~lAj\\p-,p < a"p uniformly for all k > A.oandp e (1, oo). Therefore
by repetition of these arguments one can add the term V = — Ylt=\ c'kAk to H* and
deduce the required bounds on the derivatives of (kl + / /*)" ' . These bounds require
that apk~l/2 < 1/2, so now k0 depends on p. Then, by duality, one obtains the bounds
on (XI + / / ) - ' . The uniformity of the constants for all H e <£""v(v, 0, 0, 0, /*, M)
follows from the proof.

5. Operators with L^.„-coefficients, n e N

In this section we consider strongly elliptic operators in non-divergence form (4),

d d

with coefficients cu e Lx-A and c,, c0 e L^ and again examine differentiability and
smoothness of the corresponding kernels. Since the operators are no longer expressed
in a symmetric form one would expect an imbalance between the differentiability
properties of the kernel with respect to the first and second variable. For example, the
kernel should be less smooth with respect to the second variable than in the earlier
case of divergence form operators. What is less evident is that the kernel is even
smoother with respect to the first variable. There is an improvement of regularity by
two derivatives and not just one as before.

For JV2 € N, NUNO £ No, v2, vuv0 e [0, 1), fj, > 0 and M > 0 such that
N2 + v2 > Ni + v, > No + v0 let <rnondiv(Af2 + v2, Nl + vl,N0 + v0, /x, M) be the set
of all second-order strongly elliptic operators of the form (4) such that c,; 6 L^.^,
lk,7lloo;w2 < M, the ellipticity constant fic > At and if v2 > Othen |||A"c,7|||c- < Mfor
all a e JN2(CI) and similar conditions on the c, and c0. Since ctj e Lx-A each operator
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in non-divergence form can be written as an operator in divergence form without the
terms with c\. Explicitly,

(36)
* + v2, (M + v,) A (N2 + v2 - 1), P, No + v0, n, (d + 1)M)

for all P > 0. Moreover, if N[ e N and vj € [0, 1) then

+ v2, JV, + v,, A*,' + v[, No + vo, n, M)

C ^nondiv(^V2 + v2, (Ni + v,) A (N[ + v[) A (N2 + v2- 1),

(37) (No + v 0 ) A (N[ + v[- 1 ) , M , (d + 2)M).

Similarly,

{H*:H € <?nondiv(^2 + v2, AT, + v,, Wo + v0, A

(38)
C ^ ( ^ + v2, />, (Af, + vi) A (W2 + v2 - 1), A'o + v0, fi, (d

for all P > 0.

PROPOSITION 5.1. Le? H be a strongly elliptic operator in non-divergence form (4)
with complex coefficients ctj € L^-x and c,, CQ e L^. If p e (1, oo) f/ien (XI +
# ) - ' L p c Lp.2 for large X.

Moreover, for all M, \x > 0 ^er^ exists a Xo > 0 JMC/I that for all p € (1, oo)
an a > 0 such that

(39) f|A"(A/ + W)-1 | | ^ p < aX-(2-M)/2

for all a with |a | < 2 uniformly for all X>XoandHe <f nondiv(l, 0, 0, M, Af).
Similar statements are valid on the Lp-spaces.

PROOF. By Corollary 3.8 the bounds (39) for \a \ = 1 are valid for large A., uniformly
for all p e[l, oo].

For the case |a | = 2 it suffices to prove the bounds (38) for one particular X,

dependent on p, by the argument at the beginning of the proof of Theorem 4.4.

So fix p e ( l ,oo) . Let H2 = - Yft j=\ AicuAj- T^ 1 1 H = H2 + Hu where

Hi = E ' ; = i {(A,c,j) + cj) Aj + col.
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Next let i0, j0 e {I,... , d}. Then the operators Aio(kl + H2)~
x Ah are uniformly

bounded for all large k by an application of Theorem 4.9. Moreover,

Ak(kl + H2)~
x = (kl + H2)-

xAk - (kl + H2y
x[Ajo, H2](kl + H2)~

l

d

-{A + J2 c)AkI + H2y
xAcA(kI + H)~x= (kl + H2)-

{Ajo + J2 c)AkI + H2y
xAkcuAj(kI + H2)

i.j.k=\

d

I + H2y'AAAkCfrAjiU + H2)~
x

i.j.k=\

where c*. are the structure constants of the Lie algebra with respect to the basis
a\,... ,ad. Therefore

Ai0Ah(kI + H2y
] = Aio(kl + H2y

xAjo

d

+ y~l ch' (Ah(^I + H2y
lAk) Cjj (Aj(kl + H2)~

l)
i.j,k=\

d

+ ^2 (AiA*-1 + H2y
xAi) (AhCjj) (Aj(kl + H2y

x)

d
-.k ( A l \ J t L / \ — 1 j * \ „ ( A / 1 7 I U \ —1\

i.j.k=\

It now follows easily from Theorem 4.9 that the operators AioAJo(kI + H2)~
x are

uniformly bounded on Lp for all large k. Again by Corollary 3.8 one has

for some a > 0 uniformly for all large k and p e [ l , oo] . Then the perturbation series

(ki + //)- ' = f^(ki + H2y
x (-Htiki + H2y

x)n

converges and

oo

Ai0Ah(kl + H)~x = J2 (AioAjo(kI + H2y
x) (-Hdkl + H2y

x)"

is a bounded operator on Lp.
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COROLLARY 5.2. Let H be a strongly elliptic operator in non-divergence form (4)
with complex coefficients Cjj,Cj,c0 6 Loo;«. where n e N. If p e (l ,oo) then
D((XI + H)(n+2)/2) = Lp,n+2for all large X, with equivalent norms.

Moreover, for all M, (j, > 0 there exists a Xo > 0 such that for all p e (1, oo) there
exists ana > 0 such that

uniformly for all H e <fnondlv(n, n, «, ^ , M), X > Xo and a e Jn+2(d). Also, for all
X > Xo and p e (1, oo) there exists an a > 0 such that

uniformly for all <p e Lp:n+2 anrf / / e ^nondiv(n, n,n,n,M).
Similar statements are valid on the Lp-spaces.

PROOF. For each n e No introduce the hypothesis P(n) by

for all M, /x > 0 and p e (1, oo) there exist Xo > 0 and a > 0 such that

(A/ + H)-(n+2)/2Lp c Lp;n+2 and

|| A"(A/ + / / ) - ( " + 2 ) / 2 | | ^ p < a x- ( " + 2 - | a | ) / 2

uniformly for all X>X0,ae Jn+2{d) and H e <fnondiv(n v l , n , n , / i , M).

Then Proposition 5.1 states that P(0) is valid. If we can prove that P(n) is valid for
all « then one deduces again from the holomorphic functional calculus that the first
part of the corollary is valid uniformly for all large X, independent of p.

Let n e N and suppose that P(n — 1) is valid. We have to distinguish between
even and oddn.

CASE 1. Suppose n — 2m — \ with m e N.
Let H be a strongly elliptic operator in non-divergence form with n -times differ-

entiable coefficients. Fix i e {I,... ,d] then

[(XI + H)m, A,] = 2^[, )(adtf)*(A,-)(A./ + H)\m—k

and

(40)

with gka e Loo. Therefore
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H)m](XI + Hym\\p^p <
k=l

y Ik* ii x-(k~ic

/ J WSk.aWoo^-
k=\ \ " V a<Ejk+x(d)

by the induction hypothesis P(n — 1), uniformly for all large A.. Hence

A, (XI + H)-(n+2)/2 = Ai(XI + Hym(XI + Hyy'2

= (XI + HymAi(XI + H)-l/2

So for all a e Jn+\ (d) = J2m (d) one has

< || (Aa(Xl + HT

+ || (Aa(XI + HTm) ([Ait (XI + H)m](XI + H)~m) (XI

x~(ra~|a|/2) +a'X~(m~lal/2)X~[/2 < a"x~(/1+2"( |a |

uniformly for all large X, by the induction hypothesis P(n — 1). Therefore P(n) is
valid if n is odd, since one always has the bounds \\(XI + H)~(n+2)/2\\p^p < aXHn+2)/2

for large A..

CASE 2. Suppose n — 2m with m e N.
Let H be a strongly elliptic operator in non-divergence form with n -times differ-

entiable coefficients. Now one has

[(XI + H)m, A,Aj] = 2 J , KadHy(A,Aj)(kI
k=i \ k /

and
(adH)k(AiAj) =

where gk_a e Lx. One concludes, again, that ||[ AtAh (XI+H)m](XI+H)^2m+i)/2\\p^p

is bounded uniformly for large X by the induction hypothesis. On the other hand,

AiAjikl + H)-(n+2}/2 = (XI + HymAiAj(XI + / / ) " '

+ {\ I A U\"m i\(\ 1 _i_ U\m A A 1/1 J i JL7\~(2m + l)/2\ /\ j \_ U\ —1/2
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and, arguing as above, one deduces that P(n) is valid for n even.
Finally we show that Lp.n+2 c D((XI + //) (n+2) /2) for each X > Xo. Fix X > A.o.

Suppose n = 2m is even, with m e N. Then

(XI + H)C+2)/2 = (XI + H)m+l = J^ faA
a

with /„ e Loo, and ||/a||oo depends only on M, X and m. Then

\\(xi + H

The case n = 2m + 1, with m e No is slightly more complicated. By Corollary 4.7
there exists an a > 0, depending only on /x, M and p, such that ||(A./ + H)l/2(p\\p <
a ||^ ||p; i for all <p e Lp;1. Now

(A/ + H)(n+y)l2 = (XI + H)m+X =

with /„ € Loo; i, and ||/«||oo;i depends only on M, X and m. Hence one has

- HYn+2)/2(p\\p = \\(XI + H)XI2(XI + H)m+l<p\\p < a\\(XI + H)^

< a

for all 99 € Lp.n+2 and an appropriate ax > 0.

Next we use these bounds to improve heat kernel bounds for semigroups generated
by non-divergence form operators with differentiable coefficients. We need several
lemmas.

LEMMA 5.3. For all n e {—1, 0, 1, 2 , . . . } , p e (1, oo) and M, fi > 0 there exist

a,o> Osuch that \\AaSf\\p^p ^arM'2e^l+^1 uniformly for all H e ^nondiv(« v
l , « v O , n v 0, ix, M), a e Jn+2(d), t > 0, p e K and perturbation functions
f 6 C™(G) with || A ^ Hoc < \ for all P 6 7(rf) wirt 1 < \fi\ < n + 2.

PROOF. The proof is by induction on n. The case n = — 1 has been proved in
Corollary 3.7.

Let n eH0, H e <fnondiv(« v l , n , n , / x , M ) a n d a e Jn+i(d). We may assume that
|a | = n + 2. Set H2 = - Z ^ = 1 c,vAj Ay. By Corollary 5.2 there exist a, Ao > 0,
depending only on M, /x and /?, such that
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uniformly for all y\ e Lp.n+2. Then for all <p e Lp.n+2 one has

Now

d d d d d

H2 = Hp + p ^ CijAii/j + p^2 CH f> AJ + P2^2 CU fi VO' ~Y1Ci Ai ~~ PY1Ci^' ~CQI

where Vi, V2, V3 are differential operators in non-divergence form of order 0, 1 and
1 with Loo;n coefficients, whose Loo^-norm depend only on M and the || A^lloo with
1 < |/3| < 2. So

We estimate the five contributions separately. First, by the induction hypothesis

Secondly, it follows from Corollary 3.7 and [Rob, Lemma III.4.4], that

(41) \\HpS?\\^i><aT1ea'0+<>2)'

for suitable a', a> > 0. Hence, by the induction hypothesis,

Thirdly, p2 | | V,S,>||#:fl = p 2 m a x ^ y , w ||A"V,S,V||p. But A^V, is a differential
operator in non-divergence form of order |/3| < n with Loo-coefficients, whose Loo-
norm depends on M and the HA^VIloo with 1 < \y I < n + 2. So

P2|

Fourthly, for all /J e Jn(d) the operator A^V2 is a differential operator in non-
divergence form of order |/J| + 1 < n + 1 with tM-coefficients, whose Loo-norm
depends on M and the || AY\j/W^ with 1 < \y\ < n + 2. So

The fifth term can be estimated similarly to the fourth. Adding the five contributions
one obtains the required induction step.
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PROPOSITION 5.4. Let n e M and H a strongly elliptic operator in non-divergence
form (4) with complex coefficients cijy ct, c0 e L^.^.

ThenAaS?Li c Cv(G)r\L00(G) for alia e Jn+X(d), t > 0, p e \Handv e (0, 1).
Moreover, for all v € (0, 1) and M, fj, > 0 there exist a, u> > 0 such that

and

uniformly for all H e SnonA\n, n, n, n, M), <p e L^G), t > 0, p e K, a G Jn+\(d)
and perturbation functions f e C™(G) with WA^W^ < 1 for all ft e J(d) with
l<\P\<n + 2.

PROOF. It follows by interpolation from the L^-version of (7) and from (29) in
[E1R6] that for all p e [2, oo] there exist a, a> > 0 such that

uniformly for all f e C™(G) with ||A,-^lloo < 1 for all / e { 1 , . . . , d). Hence by
Lemma 5.3 for each p e [2, oo) there exist a, u> > 0 such that

and

uniformly for all <p e L~2, a e Jn+1(d), t > 0, p e E and perturbation functions
x/r e C™(G) with ||AVlloo < 1 for all /3 e 7(d) with 1 < |^ | < n + 2.

Next, if p e (d,oo) then there exists ab > 0 such that

uniformly for all <p e LpA and e e (0, 1] by inequality [Rob, (IV.5.25)]. Setting
s = tl/2 one obtains the bounds

for all a e Jn+I (d) and t < 1, and then, by the semigroup property, for all t > 0 with
increased values of a and co.

Finally, the Holder bounds follow from the Sobolev inequality

for all p > d{\ — v)~'. The latter inequality follows as in [Rob, Section IV.5].
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We can translate the bounds for non-divergence form operators into bounds for
divergence form operators.

COROLLARY 5.5. For all n e N, v e (0, 1) and M, [x. > 0 there exist a,u> > 0
such that

II A"5>Hoc < a r ^

and
\\\AaS?<p\\\c« < ardl4

uniformly for all H e <?div(n,n - l,n,n- 1,/x, M), <p e L2{G), t > 0, p e R,
a G Jn(d) and perturbation functions \jf € C™(G) with \\Ap\j/ ||oo < I for all ft e J(d)
with 1 < \fi\ < n + 1.

This follows from Proposition 5.4 and (37).
The following is a non-divergence form version of Proposition 3.5. The proof is

almost the same, with minor changes, which we leave to reader.

PROPOSITION 5.6. Fix N, N* <= No and v, v* e (0, 1). Next, let N2 e N, Nx, No €
No, v2, V\, v0 e [0, 1), ix > OandN' e N. Suppose for all M > Othereexista > Oand
co > 0 such that 5/>C~(G) C L2,N, Aa5;Cc°°(G) C CiG^L^G) for alia G JN(d),
where A is the ^-derivative, S*PC^°(G) C L2,N., APS*"C^°(G) C CV'(G) n LX(G)
for all P € JN.(d),

ard/4rm+v)/2ea'(l+p2)'\\<p\\2,

uniformly for all H e Snonin(N2 + v2, Nt + vu No + v0, /*, M), <p e Cf°(G), a e
JN(d'\ 0 € JN.{d'), p eKandf € Cf°(G) with HA^II*. < I far all y e J{d)
with \<\y\<N'.

Then for all K > 0 and M > 0 there exist a, b > 0 and co > 0, such that for
each H e <^nondiv(A 2̂ + v2, Nl+vl,N0 + v0, fi, M) the kernel K of the semigroup S
generated by H is N-times differentiate in the first variable, the derivatives are N*-
times differentiate with respect to the second variable, the derivatives are continuous,

\(AaBfiK,)(g; h)\ < a r
< / / 2 r -

and

{k-'g- l~lh) - (AaBfiK,)(g; h)\

at-d/2t-M+\f>\)/2 wt I ( \k\ \ , ( \l\ \ | -b\gh-<f

{ { ^ l h ^ J + \ W \ h -
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uniformly for all a € Jnid), /? € -//v(d), t > 0, g,h e G and k,l e G such that
\k\ + \l\ <Kt"2 + 2-l\gh-'\.

THEOREM 5.7. Let n G M and let H be a strongly elliptic operator in non-
divergence form (4) with complex coefficients ctj, c,, CQ e L^,,. Then for all K > 0
and v e (0, 1} there exist a, b > 0 and co > 0, SMC/I rfotf the kernel K of the semigroup
S generated by H is (n + I)-times differentiable in the first variable, the derivatives
are (n — \)-times differentiable with respect to the second variable, the derivatives
are continuous,

\(AaB"K,)(g;h)\ <ard/2

and

-{AaBliKt)(g\h)\

J^L±J1L_ Y e-b\gh-'\h-'

uniformly for all a e Jn+\{d), (S G Jn-X{d), t > 0, g,h e G and k,l e G such that

\k\ + \l\<Ktlf2 + 2-l\gh-l\.

For all v, K, M and /u, the constants a, b and a> can be chosen uniformly for all

H G<fnondiv(A2,n,rc,/z, M).

PROOF. This follows by a combination of the inclusion (38) with Propositions 3.4,
5.4, 5.6 and Corollary 5.5.

6. Operators with C+w-coefficients, n e N, 0 < v < 1

In this section we consider strongly elliptic operators in non-divergence form (4)
with coefficients c,,, c,, c0 G Cn+V and again examine differentiability and smoothness
of the corresponding kernels. The aim is to prove that the kernel is again almost
(n + 2 + v)-times differentiable in the first variable. Precisely, for all e e (0, v) we
shall prove that the kernel is (n + 2)-times differentiable and the (n + 2)-nd derivative
is Holder continuous of order v — e in the first variable.

For all k e G introduce the operator Sk = I — L{k) on the L^-spaces with respect
to the left-, or right-, Haar measure. Since L{k)AjL{k~x) = dL(Ad(k)ai), it follows
that [Sk,Ai] = -[L(k),Aj] = dL((I - Ad(it))a,-)L(Jt). Moreover, \\L{k)(p\\j, =
A(kyl/p\\<p\\p and k i-> AA{k) is a continuous representation of G in the finite-
dimensional space g. From this it easily follows that for all a, fi G J(d), i e
{1, . . . , d) and p e [ l , oo] there exists an a > 0 such that

(42) \\Aa[8k, Ai]Ap(p\\p <
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uniformly for all <p e Lp-\a\+\p\+\ and k e B{\). This is essential in the proof of the
next lemma.

LEMMA 6.1. For all n e N, v € (0,1), p e (1, oo) and M, ̂  > 0 there exist
a, co > 0 such that

\\SkA
aSf \\p^p < a\k\vrm+v)/2ea>(l+p2)l

uniformly for all H e <?nondiv(n + v, n + v, n + v, n, M), a e Jn+2(d), k € fi(l),
f > 0, p e K and perturbation functions xfr e C™(G) with HA'Vlloo < I for all
P 6 J(d)with 1 < |/3| < « + 2.

PROOF. Let / / e <?nondiv(n + v, n + v, n + v, /x, M). First by Lemma 5.3 and the
Lp-version of (6) one has

and

||5tA
a5,V||^ < d\k\\\AaS?<p\\p.A <

for all a e Jn+\{d), for some c > 0 which depends only on n, M, fi, \\ Ar\/r\\o0 with
1 5 \Y\ 5 i + 2 and p. Hence, by interpolation,

(43) \\8kA
aSy\\p < c\k\vrw+v)i2e^+^'\W\\p

for all a € 7n+i(rf) and k e B(l).
Next we use the notation of Lemma 5.3, in particular the operators H2, Hp, Vu V2

and V3 for the proof of the bounds of the lemma if |a | = n + 2. Now, however, the
operators V1? V2 and V3 are non-divergence form operators with C"+"-coefficients of
order 0, 1 and 1, respectively.

Letfc € B ( l ) , l , m € { 1 , . . . , d } , a e J(d), \a\ = n , t > 0, p e K and <p e L p . n + 2 .
We estimate P^A/AmA"Sf(p\\p. By Corollary 5.2 there exist a, k0 > 0, depending
only on M, fi and p, such that \\r)\\Pa < a\\(X0I + H2)r)\\p uniformly for all r] e L^2.
Therefore,

| |hA,AmA"Sty\\p < \\AlAm8kA"S?<p\\t + \\[Sk, A,Am]Aasy\\p

H2)8kA
aS?<p\\p + \\[Sk, A/Am]A°S>||^

\\A,[Sk, Am]AaSy\\p + \\[Sk,
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Next,

H28kA
aS?<p

= 8kH2A
aS?<p + [H2, 8k]AaS?<p

= 8kA
aH2S?<p + 8k[H2, A"]Sf<p + [H2, 8k]AaS?<p

d

J2 ctJ[Sk,

'•7 = 1

So

\\8kA<AmAaS?<p\\p

< ako\\8kA
aSf<p\\p + \\A,[8k,

a\\8kA
aV3Sf<p\\f,+a\\8k[H2,A

a]S?<p\\ji

d d

\cu[8k,

a sum of eleven terms. We give the details of the estimates of four terms, the other
are similar, or follow easily from Lemma 5.3 and (42).

The fourth term can be estimated as follows. By (41) and (43) it follows that

The fifth term, p2\\SkA°'ViSf<p\\p, can be estimated by a finite sum of terms of the

\\8kA
aHpS?<p\\p <

for a suitable c > 0.
!||Ji. 4 « I/. C ^ l .

form p2\\8kA
arSf(p\lp, with r e C"+v. Then Leibniz' rule together with (5) gives

I

P
2\\8kA

arSy\\p < J2 E
1^1+1x1=1 7=0

1

l̂ l + lyl=« 7=0

< a'p2\k\vr(n+v)/2ea'(l+f'2)t\\<p\\p < a"\k\vriH*
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where we have used (43).
The sixth term can be estimated by a sum of terms of the form \p\\\SkA

a r A: Sf <p\\ ̂ ,
with T € Cn+V. By Leibniz' rule one deduces as for the fifth term that

All the other terms can be estimated with a better t singularity. For example, in the
second term one has

I, < a"\k\vr("+2+v)/2ea>'(l+f>2)'\\(p\\p,

where we have used (42), Lemma 5.3 and \k\ < \k\v for k € B(l). We leave the other
parts to the reader.

PROPOSITION 6.2. Letn £ N, v G (0, 1> and let H be a strongly elliptic operatorin
non-divergence form (4) with complex coefficients ctj, c,, c0 e Cn+V. Let y e (0, v).
Then AaS?L-2 C C ( G ) D L^G) for all a e Jn+2{d), t > 0, p 6 R.

Moreover, for all M, \x > 0 there exist a, co > 0 such that

(44) I I A ^ I l o o < at-<"4rla"2e^+pl)'\\<p\\
i

and

III A" S>| | |cr < at-dl\-m+Y)l2eu>iX+pl)'\\<p\\2

uniformly for all H € <?nondiv(n + v, n + v, n + v, /x, M), <p e L^G), t > 0, p € R,
a € Jn+i(d) and perturbation functions f e C™(G) with HA^^Iloo < \ for all
P € J(d)with 1 < \p\ <n + 2.

PROOF. Arguing as in the proof of Proposition 5.4 it follows that for all r e (0, 1)
and M, p. > 0 there exist a,co > 0 such that

uniformly for all H € <?nondiv(n + v, n + v, n + v, fx, M), <p e L^G), k e B(l), t > 0,
p e R, a e Jn+\(d) and perturbation functions f e C™(G) with \\Ap\jf ||oo < 1 for
all p e 7(d) with 1 < |yS| < n + 2. So

<asv+Tt-d/4t-(M+v+T)/2ea>0+p2)'\\<p\\
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uniformly for all s e (0, 1] and g, k e B(s). As a consequence, using the uniform
Lipschitz spaces in [E1R1, p. 185] and [E1R1, Theorem 3.2], one then deduces that
AaSfip e (Loo, LOC;2)(I-K)/2,OC;A- and

(45) \\AaSy\\{Lx.Lx:2)^)/2oo.K < at-"l*t-^+v+^2e^+pl)l\\<ph.

Choosing r = 1+y-y and using the identity (Loo, L00;2)(i+),,/2,oo;K = (Loo, Loo; Oy.oc.^,
= C1+y, with equivalent norms (see [E1R1, Theorem 2.1.Ill]), it follows that AaS?<p €
Loo; i and

uniformly for all a e Jn+i(d) and / 6 { 1 , . . . , d}.
Finally, interpolation (see [E1R1, Proposition 4.3.1]) between the bounds (45) and

the first bounds of Proposition 5.4 then gives the bounds (44).

This proposition immediately leads to the next theorem.

THEOREM 6.3. Let n e K v e (0, 1) and let H be a strongly elliptic operator in
non-divergence form (4) with complex coefficients C/j, c,, c0 G C"+v. Then for all
K > 0 and y e (0, v) there exist a, b > 0 and co > 0, such that the kernel K of
the semigroup S generated by H is (n + 2)-times differentiable in the first variable,
the derivatives are n-times differentiable with respect to the second variable, the
derivatives are continuous,

\{AaB^K,){g\ h)\ < a r ' / 2 r

and

\{AaBpK,)(k-'g\ rlh) - {AaB^K,){g- h)\

uniformly for all a e Jn+2(d), (3 € Jn(d), t > 0, g, h e G and k,l e G such that
\k\ + \l\ < Ktl/2 + 2~l\gh~l\. Moreover, for all y, K, M and fx the constants a, band
co can be chosen uniformly for all H e S^°nd'v(n + v, n + v, n + v, fi, M).

Finally we discuss the regularity of the operators (XI + H)s on Lp if all the
coefficients are in Cn+V.

THEOREM 6.4. Let n e N, v e (0, 1) and let H be a strongly elliptic operator in
non-divergence form (4) with complex coefficients c,j, c,, c^ € C+v. Then

+yD((XI + Hy+2+v)/2) = Lp[n+2
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for all large X, y 6 (0, v) and p € (1, oo>, with equivalent norms.
Moreover, for all M, fj, > 0 there exists a Xo > 0 such that for all y € (0, v) and

p € ( l , oo) there exists an a > 0 and for all X > A.o and ax > 0 SMC/J

uniformly for all H € <?nondiv(/z + v, n + v, « + v, (X, M) and <p € Z.p;n+2+K-

Similar conclusions are valid on the Lp-spaces.

PROOF. For the upper bounds it suffices to prove the bounds for one X, dependent
on p. It follows from Corollary 5.2 that D((XI + H)in+2)/2) = Lp.n+2, with equivalent
norms. So by interpolation the operators (/ + HL)S(X.I + H)~s are bounded on Lp

for all S e [0, {n + 2)/2]. Moreover, the operator (A./ + //)-<"+2>/2 is bounded from
Lp into Lp-n+2, if A, is large enough. We have to distinguish between even and odd n
in the proof. We only prove the case for odd n, the other case is slightly easier and is
left to the reader.

Let m € N be such that n + 1 = 2m. Write (XI + H)m = Ea e 7 ,m ( d ) faA", with
/„ e Cl+V. For all a e Jim(d) there exists by Proposition 2.3.1 V a continuous operator
Fa: Lp ; i -*• Lp such that

Fa<p = [/„, (/ + HL)ll+r)/2]<p

for all <p e Lp-]+r. Moreover, by [E1R2, Theorem 3.13], there exists a continuous
operator Da: Lp-<2m+y ~* ^ P such that

Da<p = [Aa, ( / + HLYl+y)/2]<p

for all <p e L p . 2 m + i + K . Then

(Vr, (A./ + H)m(I + HL)il+r)/2<p) - (&, (I + HL)0+y)/2(XI + H)m(p)

for all (p e Lp:2m+[+r and f e L?. Now //* € <fdiv(n + v, P, n - 1 + v, n + v, /x,
(d + l)M)forallP e [0, oo},by(38). SoD((XI + H*)m) c D((XI+ H*)l/2) = Lq.A
by Corollary 4.8. Therefore

) - (( / + HL)x'2f, (I + HLY'2{Xl + H)m<p)

(46)
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for all <p e L2m+i+y and $ e D((XI + H*)m). But <p ^ (I + HL)y/2(XI + H)m<p
is continuous from Lp-2m+i into Lp (Corollary 5.2) and Lp-2m+i+Y is dense in Lp[2m+i.
Hence (46) is valid for all <p e Lp,2m+I and f e D((XI + H*)m).

Now let <p e D((XI + HYn+2+y)'2) and xfr e Lq,n+2+Y. Then (/ + HL)mf e Lq and
(XI + H*)~m(I + / / / .)"> e D((A./ + //*)m). Moreover, ^ e D((XI + //)(2m+1)/2) =
Lp,2m+\. Therefore

I + HL)0+r)/2(p)\

I + HLY'2(XI + H)m<p)\

r, faDa<p)\.

\((XI + H*)m(XI + H*Tm(I

HL)l/2(XI + H*Ym(I

\((XI + H*ym(I

We estimate the contributions of the three types of terms. The first can be bounded
by

|(( / + HL)l/2(XI + H*ym(l + HL)mi/,, (I + HLYI2(XI + H)m(p)\

= \(ir, ((I + HL)m(XI + Hym) ((I

• (XI + H)(n+2+y)/2<p)\

< \W\\q\\(I + HL)m(XI + Hym\lp^

• | | ( / + HL)(1+y)/2(XI + H p p

For all a e J2m(d) one has for the second term

\((XI + # • ) - " ( / + HL)mxlr, FaA
a<p)\

= \(ir, ((I + HL)m(XI + Hym) (FaA
a(XI + Hyam+l>/2)

• (XI + Hyy/2(XI + H)(n+2+r)/2<p)\

| ( / + HL)m(XI + 77)-m||,_>p

\\p.

Finally,

+ 77*)-m(7 + HL)m1r, faDa<p)\

= \(f, ((I + HL)m(XI + HYm) fa (Da(XI + Hyi2m+X)'2)

• (XI + H)~y/2(XI +- H)(n+2+y)/2<p)\
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Hence
\((XI + HLYn+2+r)/2f, <p)\ < c\\xlf\\qUXI + H

for a suitably chosen c > 0 and <p e D(((XI + HLYn+2+r)/2)*) = Lp,n+2+Y. Thus
D((XI + HYn+2+^2) £ Lp:n+2+y.

Conversely, by Corollary 5.2 and interpolation, again, there exists an ax > 0 such
that ||(A./ + H)(n+y)/2(I + HL)-("+y)/2<p\\p < ak\\<p\\p uniformly for all <p e Lp. Then
by duality \\{1+ HL)-(n+*)l2{U+ H*y+y)i2t\\q < ax\\ir\\q uniformly for all $ e Lq.
Next let V € D((XI + H*){n+2+Y)l2) and <p € Lp,n+2+y. Then

\((ki + H*
HLr(n+y)/2(XI + H*)(n+Y)/21/, (I + HLyn+r)/2(kI + H)<p)\

by the Cauchy-Schwarz inequality. Since all the coefficients of H belong to Cn+r

it follows from Proposition 2.3.II that there exist a, a' > 0, depending only on M,
such that \\H(p\\p.n+y < asupaeJiAd)\\A

a(p\\p,n+Y < a'\\(p\\p-n+2+y. Combining these
estimates then gives

\((XI + H*Yn+2+y)/2is, <p)\ <

Socp € D(((XI+H*)ln+2+y)/2y) = D((A.7+//)(n+2+)/)/2)and||(A.7+7/)<"+2+>/)/Vllp <
ax(k + a')\\<p\\p.n+2+Y. This completes the proof of the theorem.

Appendix 1: Singular integration

The standard theory of singular integration, [CoW, Sections III. 1 and III.2], is
developed for homogeneous spaces with the doubling property. In particular it does
not apply directly to spaces which only have a local doubling property such as non-
unimodular Lie groups with Haar measure and the metric associated with an algebraic
basis. Nevertheless the arguments underlying the theory can be adapted to the general
situation.

THEOREM A. 1. Let X be a space with metric p and Borel measure /x. Assume that
for each bounded set Xo C X and M > 0 there exists a cd > 0 such that

0 < ix{B{x\ 2r)) < cdfi(B(x; r)) < oo

uniformly for all x € Xo and r e (0, Af ]. Let K e L2(X x X, dy, <g) d[i) and suppose
that supple is bounded in X x X. Define the operator T: L2(X) —> L2(X) by

(T(p)(x) = I d/j,(x)K(x\y)<p(y).
Jx
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Suppose there exists a c, > 0 such that \\ T<p ||2 < C\\\<p\\2 for ally e L2(X). Moreover,
suppose there exist c2, CT, > 1 such that

sup / \K(X; y) - K(X\ yo)\ < c3

where Q(y, y0) = {x e X : p(x; y) > c2p(y; yo)}- Then there exists a constant
A > 0 such that

e X : \(T<p)(x)\ > y}) < Ay-l\\<ph

uniformly for all tp € L\(X) n L2(X) and y > 0. The constant A depends on the
constants C\,c2 and c3, a suitable doubling constant cd and the set Y, but is independent
of K.

PROOF. The proof is very similar to the proof in [CoW, Sections III. 1 and III.2] for
homogeneous spaces which have the doubling property. If there were a measurable set
Y (Z X such that supper c Y x Y and the set Y, with the relative metric and measure,
had the doubling property then one could apply [CoW, Theorem III.2.4] directly. The
problem, however, is that subsets often fail to have the doubling property, even if X
itself has the doubling property. This depends crucially on the geometric details of
the subsets.

In the proof of this theorem one has to make the functions local, and exploit the
localized doubling property, to obtain a Calderon-Zygmund decomposition, as we
show below with some care.

There exist x0 e X and Ro > 0 such that supp/t c B(x0; Ro) x B(x0; Ro). Let
cd > 0 be such that

0 < ix(B(x; 2r)) < cd/x(B(x; r)) < oo

uniformly for all x e B(x0; 6R0) and r e (0, 24R0 v 2-lc2R0].

THEOREM A.2. ( [COW, Theorem III. 1.2]). Let E c B(x0; 2R0), J c X, andr: J
—> (0, 8^?0]- IfE C {JxeJ B(x; r(x)) then there exists a sequence x\, x2, • • • € J, pos-
sibly finitely many, such that the B(xi\ r{x,)) are disjoint and E c {J°^=[ B(xt\ 5r(Xj))

PROOF. This theorem is well known, see also [Ste, Section 1.7].

THEOREM A.3. ([CoW, Theorem III. 1.3]). Let 6 c B(xo;2R0) be open. Then
there exist xx, x2, •.. G 6 and />,, p2, ... e (0, Ro] such that & = ( J ^ , B(Xj\ p,),

c5
d

for alii € N.
each point of'6 is in at most c5

d balls B{XJ\ p,) and, moreover, B(x,; 4pi)C\(X\^) / 0
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PROOF. Apply Theorem A.2 with J — 6 and r(x) = lO~]p(x, X\G), the distance
from x to X\€?. Then set p, = 5r(jc,), where the xt are obtained by Theorem A2.
It remains to estimate a maximum on the overlap of the balls. Let x e & and sup-
pose x e B(Xi\ pi) — B{Xj\ 2~ip(xi, X\ff)). Arguing as in [CoW] one deduces that
2p(x, X\0)/3 < p(Xi, X\0) < 2p(x, X\&) and therefore B{x,, 10" VC*;, X\0))
CB(x, 6p(x, X\0)/5). Conversely, B(x, 6p(x, X\0)/5)cB(xt, 23p(xt,
Then by the localized doubling property one has fx(B(x, 6p(x, X\0)/5)) <
(B(XJ, IO~1 p(Xi, X\&))) and it follows from the disjointness of the balls
B(Xi, Kr'p(*> X\^)) that x is in at most c5

d balls B(JC,; pt).

The next lemma with its corollary are the key elements for the localization. We set

LEMMA A.4. Ify e B(xo\ 5R0) andr e [2- '^0, 4/?0] then fi(B(y; r)) > c4"'.

PROOF. Since B(x0; Ro) c B(y; 12r) one obtains by the localized doubling
lx(B(x0; Ro)) < n(B(y; 12r)) < cdn{B{y\ r)).

For <p e L{{X) with suppip C B(x0; Ro) define the local Hardy-Littlewood func-
tion M<p: X —*• [0, oo] by

(M<p)(x) = sup [A(B(y; r))~l I \<p\.
re(0,4R0] JB(y;r)

Moreover, define M<p: X —> [0, oo] by

(M<p)(x)= sup n{B{x\r)Tx f \q>\.
re(0,8R0] JB(x\r)

COROLLARY A.5. Let <p e L,(X) with supp^ c B(x0; Ro). Then

(M<p)(x) <

for all x € X\B(xo\ 2R0).

PROOF. We may assume that ||<p||, ^ 0 and (M<p)(x) ̂  0. Let r e (0,4R0],
y € B(^:; r) and suppose that /B(vr ) |<p| ^ 0. Then B(y; r) n BU0; /?o) ^ 0-
Since x $ B(xo;2Ro) this implies that r > 2"'/?0. Moreover, using again that
B(v;r)nB(jc0; Ro) ^ 0, it follows that p(v;x0) < r + R0 < 5/?0andy e S(JC0; 5/?0).
Then /i(fl(y; r))"1 /B(vr ) |^| < C4/y \<p\ = c4||^||i by Lemma A.4. So (A/«P)(JC) <
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THEOREM A.6. ([COW, Theorem III.2.1]). If<p e L{{X) with supp<p c B(x0; Ro)
anda > c4|Mh then n(Ea) < c5

da-[\\<p\\i and Ea c B(x0; 2R0), where Ea = {x e
X : (M<p)(x) > a}.

PROOF. It follows from Corollary A.5 that Ea c B(x0; 2R0).
Next, if x e B(x0; 2R0), r e (0, 4R0] and y e B(x; r) then B(y; r) C B(x; 2r)

and IL(B{X; 2r)) < /i(B(y; 3r)) < <*n(B(y; r)). So

cd(M<p)(x)/ \<P\ < c2
dn{B(x; 2 r ) )" ' f \<p\ <

JB(y;r) JB(x;2r)

and (M<p)(x) < c2
d(M<p)(x) for all x e fi(jc0; 2/?0). Therefore

£"„ C [x e B(x0; 2R0) : (M<p)(x) > cd
2a}.

Ifx 6 Ea then there exists an r(x) e (0, 8/?0] such that (M(B(X; r(x)))"1 fB(x.r(x)) \<p\ >

cfa. Apply Theorem A.2 with J = E = Ea. Then \\<ph > YT=i IBU,-^)) M -
"

THEOREM A.7. ([COW, Theorem III.2.2 and Corollary III.2.3]). If <p e L, (X)
with supp <p C B(x0; Ro) and a > c4 \\<p || i then there exists a sequence xux2,... e
B(x0; 2R0), possibly finite many, and p\, p2,... G (0, Ro] such that

I- \<p(x)\ < a for almost every x <= X\U,^i B(xi\ A)>
II. /x(S(x,; A ) ) " 1 /„(„.„, 1̂1 < c2

daforalli e N,
III. E/^l V-iBiXi' Pi)) < C^Oa"' H l̂li,

IV. eac/* point of X is in at most cd balls fi(jc,; A)-

Moreover, there exist ty, xx, r2,... e LX(X) such that

VI.
VII.

VIII. suppr, c B(xr, pi) for alii e N,
IX. ft,=0 for alii € N,
X. E " i IIT/Hi < 2^11^11,.

PROOF. Set e = Ea = {x e X : (M<p)(x) > a] and apply Theorem A.3. Then I
follows from the Lebesgue differentiation theorem. For the proof of II, let i e N.
Then B{xt,; 4p,) D (X\Ea) ^ 0, so there exists a yt e B{xt, ; 4 A ) n (X\Ea). Then
p{Xj\ _y,) < 4A < 4/?0 and (A/^))^,) < a. Therefore

/x(fi(x,; A ) ) ' / \<P\ < c>(fi(x,;4p,)) ' / \<p\ < c2
d(M(p)(yt) < cda.

JB(xr.Pi) JB(XiAPi)

The other statements follow as in [CoW].
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PROOF OF THEOREM A.I. Let <p0 s L,(X) n L2(X). Set <p = <p0 • l«^o;«O). Then
7>0 = T<p. If we can show that /x({x e X : | ( 7 » ( J C ) | > y}) < Ay ' lMl i for a
suitable A, uniformly for all a > 0, then

M({* e X : |(7>0)(;t)| > y}) = fi({x e X : |(7»(JC)| > y})

and we have proved the theorem.
Let a > 0. If a < c4\\(p\\i then fi({x e X : |(7»(jc)| > y}) < M(B(JC0; RO)) <

o; R0))a- since suppT<p c B(x0; Ro)-
So we may assume that a > c4||a||i. Now one can use Theorem A7 and argue as

in the proof of [CoW, Theorem III.2.4]. There is only one small step that needs care.
It is in the estimates of the measure of the set Fa of all x e | J ^ , B(xt; c2Pi) for which
| (7»(x) | > 2"'a. Letn e No be such that 2" < c2 < 2"+l. Then the localized doub-
ling property gives yu(B(jc,; c2pd) 5 c"d

+xix(B{Xj; p,)). So by Theorem A7.III one de-
duces that n{Fa) < A t ( U ~ i B ^ ; C2A)) < c3+V(U*i B t e ; A ) ) < c2+"a
Since « depends only on c2 one obtains the required uniform bounds.
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