TOPOLOGICAL ENTROPY FOR THE CANONICAL COMPLETELY POSITIVE MAPS ON GRAPH C*-ALGEBRAS

JA A. JEONG AND GI HYUN PARK

Let $C^*(E) = C^*(s_e, p_v)$ be the graph C^* -algebra of a directed graph $E = (E^0, E^1)$ with the vertices E^0 and the edges E^1 . We prove that if E is a finite graph (possibly with sinks) and $\phi_E : C^*(E) \to C^*(E)$ is the canonical completely positive map defined by

$$\phi_E(x) = \sum_{e \in E^1} s_e x s_e^*,$$

then Voiculescu's topological entropy $\operatorname{ht}(\phi_E)$ of ϕ_E is $\log r(A_E)$, where $r(A_E)$ is the spectral radius of the edge matrix A_E of E. This extends the same result known for finite graphs with no sinks. We also consider the map ϕ_E when E is a locally finite irreducible infinite graph and prove that $\sup_{E'} \{\operatorname{ht}(\phi_{E'})\} \leq \operatorname{ht}(\phi_E)$, where the supremum is taken over the set of all finite subgraphs of E.

1. INTRODUCTION

Given a directed graph E with the vertex set E^0 and the edge set E^1 it is well known that there exists a universal C^* -algebra $C^*(E)$ generated by partial isometries $\{s_e \mid e \in E^1\}$ and mutually orthogonal projections $\{p_v \mid v \in E^0\}$ satisfying certain relations determined by the graph E. A classical Cuntz-Krieger algebra \mathcal{O}_A of an $n \times n$ $\{0, 1\}$ matrix A is now well understood as a graph C^* -algebra $C^*(E)$ of a finite directed graph E with the vertex matrix A ($\mathcal{O}_A \cong \mathcal{O}_B$ for the edge matrix B of E). If A has no zero rows or columns, the map $\phi_A : \mathcal{O}_A \to \mathcal{O}_A$ defined by

$$\phi_A(x) = \sum_{j=1}^n s_j x s_j^*, \ x \in \mathcal{O}_A$$

is unital and completely positive, where s_j 's, $1 \leq j \leq n$, are the partial isometries that generate \mathcal{O}_A . If A is the edge matrix of E, ϕ_A corresponds to the unital completely positive map $\phi_E : C^*(E) \to C^*(E)$ given by

$$\phi_E(x) = \sum_{e \in E^1} s_e x s_e^*.$$

Received 13th January, 2004

The first author was partially supported by KOSEF R01-2000-000-00001-0. The second author was partially supported by KOSEF R01-2001-000-00001-0.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

Then one can think of Voiculescu's topological entropy of ϕ_E (or ϕ_A), and it turns out that if E is a finite directed graph with no sinks

$$\operatorname{ht}(\phi_E) = \log r(A_E),$$

where r(A) is the spectral radius of the edge matrix A_E of E (see [15, 4, 7, 3, 5, 14]). One purpose of the present paper is to extend this result to a finite graph possibly with sinks, and the other is to provide a lower bound for $ht(\phi_E)$ when E is a locally finite irreducible infinite graph.

In Section 2, we review several definitions and properties of graph C^* -algebras, entropies, and Voiculescu's topological entropy of a completely positive map. Then Section 3 is devoted to obtaining $ht(\phi_E)$ for an arbitrary finite graph E with the sinks $\mathcal{S}(E)$. To this end we consider another completely positive map ψ_E on $C^*(E)$,

$$\psi_E(x) = \phi_E(x) + \sum_{v \in \mathcal{S}(E)} p_v x p_v,$$

and show that

$$ht(\phi_E) = ht(\psi_E) = \log r(A_E).$$

We first prove that $\log r(A_E) \leq \operatorname{ht}(\psi_E)$ by considering the topological entropy $h_{\operatorname{top}}(X_{E_S}, \sigma)$ of the (compact) edge shift space (X_{E_S}, σ) of the finite graph E_S which we obtain from E by adding a loop edge to each sink of E. For the reverse inequality $\operatorname{ht}(\psi_E) \leq \log r(A_E)$ we shall modify the proof of [3, Theorem 1] to cover our general situation. Then $\operatorname{ht}(\phi_E) = \operatorname{ht}(\psi_E)$ is proved.

In Section 4 we consider a locally finite (irreducible) infinite graph E, and prove that the map ϕ_E given by

$$\phi_E(x) = \sum_{e \in E^1} s_e x s_e^*, \ x \in C^*(E),$$

is a (well defined) completely positive contraction. But in this case the edge shift space X_E may not be compact, so we shall consider Gureyic's compactification \overline{X}_E of X_E in order to find its topological entropy $h_{top}(\overline{X}_E)$ as a lower bound for $ht(\phi_E)$. Note from [8] that $h_{top}(\overline{X}_E) = \sup_{E'} h_{top}(X_{E'})$, where the supremum is taken over all the finite subgraphs of E. Then it follows that $ht(\phi_E) = \infty$ for many infinite irreducible graphs E. Nevertheless it would be interesting and important to know the exact value of $ht(\phi_E)$ when $ht(\phi_E)$ is finite.

2. Preliminaries

2.1. GRAPHS AND GRAPH C^* -ALGEBRAS. Let $E = (E^0, E^1, r, s)$ be a directed graph (or simply a graph) with a countable vertex set E^0 and a countable edge set E^1 , where $r, s : E^1 \to E^0$ are the range and source maps. If each vertex of E emits and receives.

Topological entropy

only finitely many edges, E is called *locally finite*. By S(E) we denote the set of all sinks (vertices which emit no edges) of E. A sequence $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ of edges satisfying $r(\alpha_i) = s(\alpha_{i+1})$, $i = 1, \ldots, n-1$, is called a (finite) path of length $|\alpha| = n$. We simply write α as $\alpha = \alpha_1 \alpha_2 \cdots \alpha_n$ and extend the maps r, s to finite paths by $s(\alpha)$ $= s(\alpha_1), r(\alpha) = r(\alpha_n)$. E^n will denote the set of all finite paths of length n (each vertex is regarded as a finite path of length zero), and $E^* = \bigcup_{n=0}^{\infty} E^n$ denotes the set of all finite paths. Similarly an *infinite path* is defined to be an infinite sequence $\alpha = \alpha_1 \alpha_2 \cdots$ of edges with $r(\alpha_i) = s(\alpha_{i+1}), i = 1, 2, \ldots$. If a path α ($|\alpha| > 0$) satisfies $s(\alpha) = r(\alpha)$ we call α a loop. A loop α is called a *loop edge* if $|\alpha| = 1$.

For a graph E, a family $\{s_e, p_v \mid e \in E^1, v \in E^0\}$ of partial isometries s_e (with mutually orthogonal ranges) and mutually orthogonal projections p_v is called a *Cuntz-Krieger E-family* if it satisfies the following.

$$\begin{aligned} s_e^* s_e &= p_{r(e)}, \\ s_e s_e^* &\leq p_{s(e)}, \text{ and} \\ p_v &= \sum_{s(e)=v} s_e s_e^* \quad \text{if } 0 < \left| s^{-1}(v) \right| < \infty. \end{aligned}$$

It is known (see [2, 12] for example) that there exists a universal C^* -algebra $C^*(E)$ (or $C^*(s_e, p_v)$) generated by a Cuntz-Krieger E-family $\{s_e, p_v\}$. We call $C^*(E)$ the graph C^* -algebra associated with E. It is useful to note that span $\{s_\alpha s^*_\beta \mid \alpha, \beta \in E^*\}$ is dense in $C^*(E)$, where $s_\alpha = s_{\alpha_1} \cdots s_{\alpha_k}$ if $\alpha = \alpha_1 \cdots \alpha_k \in E^k$, $k \ge 1$, and $s_\alpha = p_v$ if $\alpha = v \in E^0$. 2.2. SHIFT SPACE AND ENTROPIES. Let \mathcal{A} be a finite set. Then a subset $X \subset \mathcal{A}^N$ is called a (one-sided) shift space if there is a collection \mathcal{F} of words over \mathcal{A} such that X is the set of all sequences x in which no word of \mathcal{F} can appear. By σ_X we denote the shift map on X. Since \mathcal{A} is finite (so compact in discrete topology), a shift space $X \subset \mathcal{A}^N$ is a compact space and σ_X is continuous, hence (X, σ_X) carries the entropies which we review below.

(i) ([13, Definition 4.1.1] or [10, p.23]) The entropy h(X) of X is defined by

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log |W_n(X)|,$$

where $W_n(X)$ is the set of all words of length *n* that appear in a sequence of *X*. If $X \neq \emptyset$ we have $0 \leq h(X) < \log |\mathcal{A}| < \infty$ since $1 \leq |W_n(X)| \leq |\mathcal{A}|^n$. In particular, the full shift space $X_n = \mathcal{A}^{\mathbb{N}}$ $(|\mathcal{A}| = n)$ has $h(X_n) = \log n$. If $X = \emptyset$ then $h(X) = -\infty$ by definition.

(ii) ([16, Chapter 7]) Let $T: X \to X$ be a continuous map on a compact space X. If \mathcal{U} is an open cover of X then so is $T^{-1}\mathcal{U}$. By $N(\mathcal{U})$ we denote the number of sets in a finite subcover of \mathcal{U} with smallest cardinality. Then the *entropy of* T relative to \mathcal{U} is given by

$$h_{\mathrm{top}}(T,\mathcal{U}) := \lim_{n \to \infty} \frac{1}{n} \log \left(N \left(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{U} \right) \right),$$

where $\mathcal{U} \vee \mathcal{V}$ denotes the join of \mathcal{U} and \mathcal{V} , and the *topological entropy* of (X, T) is defined to be

$$h_{\rm top}(X,T) = \sup_{\mathcal{U}} h_{\rm top}(T,\mathcal{U}),$$

where the supremum is taken over all the open covers (or equivalently, over all the finite open covers) of X.

REMARK 2.1. (a) If E is a finite graph we have the edge shift space

$$X_E = \{ \alpha = (\alpha_i) \in (E^1)^{\mathbb{N}} \mid r(\alpha_i) = s(\alpha_{i+1}), \ i \in \mathbb{N} \}$$

(or the infinite path space) and the shift map σ_E given by $\sigma_E(\alpha)_i = \alpha_{i+1}$ for each $i \in \mathbb{N}$. For *E* with no infinite paths, we have $h(X_E) = -\infty$. Otherwise it is known [16, Theorem 7.13] that

$$h_{top}(X_E, \sigma_E) = h(X_E).$$

(b) Let $\Sigma_E(\subset (E^1)^{\mathbb{Z}})$ be the two-sided shift space associated with a finite graph E. Then we know from ([10, p.23]) that

$$h(X_E) = h(\Sigma_E).$$

We call a graph *E* irreducible if for any two vertices v, w there exists a finite path α with $s(\alpha) = v, r(\alpha) = w$. So a finite graph *E* is irreducible if and only if its vertex matrix V_E (or edge matrix A_E) is irreducible. Here a real, nonnegative square matrix $A = (A_{ij})_{1 \le i,j \le n}$ is irreducible if for each i, j there exists an $m \ge 1$ such that $(A^m)_{ij} > 0$.

If E is a finite graph, the vertex matrix V_E has irreducible components V_1, \ldots, V_k in the sense that each V_i is an irreducible nonnegative square integer matrix and there exists a permutation matrix P such that PV_EP^{-1} is in a block triangular form with blocks V_1, \ldots, V_k on its diagonal. Let λ_{V_i} be the Perron-Frobenius eigenvalue of V_i . Then the Perron value $\lambda_E = \max_{1 \leq i \leq k} \lambda_{V_i}$ is the largest eigenvalue of V_E , hence $\lambda_E = r(V_E)$, the spectral radius of V_E (see [13, Section 4.4]). One can write E^0 as the disjoint union of vertices E_i^0 ($1 \leq i \leq k$) so that each V_i is a matrix with the index E_i^0 . Let E_i be the subgraph of E with the vertex set E_i^0 and edge set $E_i^1 = \{e \in E^1 \mid s(e), r(e) \in E_i^0\}$, then E_i is irreducible, and E_i 's are called the irreducible components of E. If E_i^0 is a singleton and $|E_i^1| = 1$, then $\log \lambda_{V_i} = 0$, thus the subgraph E_i makes no contribution to the value of $h(X_E)$ because

$$h(X_E) = \log \lambda_E = \max_{1 \le i \le k} \log \lambda_{V_i}$$

([13, Theorem 4.4.4]). On the other hand, it is easy to see that $r(A_E) = r(V_E)$. In fact, the rectangular matrices $R = (R_{ev})_{e \in E^1, v \in E^0}$, $S = (S_{ve})_{v \in E^0, e \in E^1}$, where

$$R_{ev} = \begin{cases} 1, & \text{if } r(e) = v, \\ 0, & \text{otherwise,} \end{cases} \quad \text{and} \quad S_{ve} = \begin{cases} 1, & \text{if } s(e) = v, \\ 0, & \text{otherwise,} \end{cases}$$

satisfy $RS = A_E$ and $SR = V_E$, which implies that λ is an eigenvalue of V_E if and only if λ is an eigenvalue of A_E . Hence we have the following.

[4]

PROPOSITION 2.2. Let E be a finite graph and X_E be the one-sided shift space associated with E. Then

$$h(X_E) = \log \lambda_E = \log r(A_E),$$

where λ_E is the Perron value of the edge matrix A_E (or the vertex matrix V_E) of E and $r(A_E)$ is the spectral radius of A_E .

2.3. TOPOLOGICAL ENTROPY OF A COMPLETELY POSITIVE MAP. We briefly review the definition of topological entropy for a completely positive map of a C^* -algebra which was first defined for automorphisms of unital nuclear C^* -algebras by Voiculescu [15] and then extended to automorphisms of exact C^* -algebras by Brown [4]. See also [7] and [3] for the following definition of topological entropy for a completely positive map.

Let $\pi : A \to B(H)$ be a faithful representation of a C^* -algebra A and Pf(A) be the set of all finite subsets of A. For $\omega \in Pf(A)$ and $\delta > 0$, we put

$$\begin{aligned} \operatorname{CPA}(\pi, A) &:= \big\{ (\phi, \psi, B) \mid \phi : A \to B, \psi : B \to B(H) \\ & \text{contractive completely positive maps, dim } B < \infty \big\}, \\ \operatorname{rcp}(\pi, \omega, \delta) &:= \inf \Big\{ \operatorname{rank}(B) \mid (\phi, \psi, B) \in \operatorname{CPA}(\pi, A), \big\| \psi \circ \phi(x) - \pi(x) \big\| < \delta, \\ & \text{for all } x \in \omega \Big\}, \end{aligned}$$

where rank(B) := the dimension of a maximal Abelian subalgebra of B.

It is well known [9] that every exact C^* -algebra A is nuclearly embeddable, that is, there exists a faithful representation $\pi : A \to B(H)$ such that for each finite subset $\omega \subset A$ and $\delta > 0$ there is $(\phi, \psi, B) \in CPA(\pi, A)$ with $\psi \circ \phi$ close to π within δ on ω . Moreover the value $rcp(\pi, \omega, \delta)$ is independent of the choice of π (see [4, 3]). Since graph C^* -algebras $C^*(E)$ are nuclear (see [11, p. 193]) we may write $rcp(\omega, \delta)$ for $rcp(\pi, \omega, \delta)$ assuming $C^*(E) \subset B(H)$ for a Hilbert space H.

DEFINITION 2.3: ([4, 3]) Let $A \subset B(H)$ be a C^{*}-algebra and $\Phi : A \to A$ be a completely positive map. Then we define

$$ht(\Phi, \omega, \delta) = \limsup_{n \to \infty} \frac{1}{n} \log \left(\operatorname{rcp}(\omega \cup \Phi(\omega) \cup \cdots \cup \Phi^{n-1}(\omega), \delta) \right),$$

$$ht(\Phi, \omega) = \sup_{\delta > 0} ht(\Phi, \omega, \delta),$$

$$ht(\Phi) = \sup_{\omega \in Pf(A)} ht(\Phi, \omega).$$

 $ht(\Phi)$ is called the *topological entropy* of Φ .

REMARK 2.4. We refer the reader to [3, 4], and [7] for the following useful properties. Let $\Phi: A \to A$ be a completely positive map on an exact C^* -algebra A. (a) If $\theta: A \to B$ is a C^{*}-isomorphism then

$$ht(\Phi) = ht(\theta \Phi \theta^{-1}).$$

(b) Let \widetilde{A} be the unital C^* -algebra obtained by adjoining a unit. Let $\widetilde{\Phi} : \widetilde{A} \to \widetilde{A}$ be the extension of Φ . Then

$$ht(\widetilde{\Phi}) = ht(\Phi).$$

(c) If A_0 is a Φ -invariant C^* -subalgebra of A, then

$$\operatorname{ht}(\Phi|_{A_0}) \leq \operatorname{ht}(\Phi).$$

(d) If $\{\omega_k\}$ is an increasing sequence of finite subsets in A such that the linear span of the set $\bigcup_{k,l\in\mathbb{Z}^+} \Phi^l(\omega_k)$ is dense in A, then

$$\operatorname{ht}(\Phi) = \sup_{k} \operatorname{ht}(\Phi, \omega_{k}).$$

(e) Let $T: X \to X$ be a continuous map on a compact metric space X. Then $ht(T^*) = h_{top}(X,T)$, where $T^*: C(X) \to C(X)$ is the completely positive map given by $T^*(f) = f \circ T$, $f \in C(X)$.

3. FINITE GRAPHS

In this section we consider the following two completely positive maps ϕ_E, ψ_E on the graph C^* -algebra $C^*(E)$ associated with a finite graph E,

$$\begin{split} \phi_E(x) &= \sum_{e \in E^1} s_e x s_e^*, \\ \psi_E(x) &= \sum_{e \in E^1} s_e x s_e^* + \sum_{v \in \mathcal{S}(E)} p_v x p_v \end{split}$$

We call ϕ_E the canonical completely positive map of $C^*(E)$ which is not unital if E contains a sink while ψ_E is always. A computation shows that

(1)
$$\psi_E^n(x) = \sum_{|\mu|=n} s_{\mu} x s_{\mu}^* + \sum_{\substack{0 < |\eta| < n \\ r(\eta) \in \mathcal{S}(E)}} s_{\eta} x s_{\eta}^* + \sum_{v \in \mathcal{S}(E)} p_v x p_v.$$

Hence if *E* has no infinite paths then there exists an *N* such that the first term $\sum_{|\mu|=n} s_{\mu}xs_{\mu}^*$ vanishes and $\psi_E^n(x) = \psi_E^N(x)$ whenever n > N. Thus it follows that $\operatorname{ht}(\psi_E) = 0$. But the edge matrix A_E has no nonzero irreducible components and so its Perron value is 0. Hence we see from Proposition 2.2 that $\log r(A_E) = -\infty$.

We now compute $ht(\psi_E)$ (and $ht(\phi_E)$) for E which contains an infinite path.

THEOREM 3.1. Let E be a finite graph with the edge matrix A_E . If E contains an infinite path then

$$\operatorname{ht}(\psi_E) = \log r(A_E),$$

where $r(A_E)$ is the spectral radius of A_E .

Let \mathcal{D}_E be the commutative C^* -subalgebra of $C^*(E)$ generated by projections of the form $p_{\mu} = s_{\mu}s^*_{\mu}$, $\mu \in E^*$. Then \mathcal{D}_E is ψ_E -invariant and

$$\mathcal{D}_E = \overline{\operatorname{span}} \{ p_\mu = s_\mu s_\mu^* \in C^*(E) \mid \mu \in E^* \}.$$

Now we seek a shift space (X, σ_X) such that there exists an isomorphism $w : \mathcal{D}_E \to C(X)$ satisfying $w(\psi_E|_{\mathcal{D}_E})w^{-1} = \sigma_X^*$ from which we deduce that $h(X) \leq ht(\psi_E)$. Let E_S be the graph obtained from E by adding a loop edge e_v to each sink $v \in S(E)$, that is,

$$E^{0}_{\mathcal{S}} = E^{0}, \ E^{1}_{\mathcal{S}} = E^{1} \cup \left\{ e_{v} \mid s(e_{v}) = r(e_{v}) = v, \ v \in \mathcal{S}(E) \right\}$$

and consider the shift space X_{E_S} of infinite paths. Then the cylinder sets $[\mu] = \{\mu \alpha \mid \mu \alpha \in X_{E_S}\}, \ \mu \in E_S^*$, are both open and compact, and form a basis for the subspace topology of the compact space $X_{E_S} \subset (E_S^1)^{\mathbb{N}}$. Hence the characteristic functions $\chi_{[\mu]}, \mu \in E_S^*$, are continuous on X_{E_S} . Moreover applying the Stone-Weierstrass theorem one sees that the linear span of the characteristic functions $\{\chi_{[\mu]} \mid \mu \in E_S^n, n \in \mathbb{N}\}$ is dense in $C(X_{E_S})$. Then as in [6, Proposition 2.5] and [14, Corollary 7.2], one obtains the following.

LEMMA 3.2. The linear map $w : \mathcal{D}_E \to C(X_{E_S})$ given by

$$w(p_{\mu}) = \begin{cases} \chi_{[\mu]}, & \text{if } |\mu| \ge 1, \\ \chi_{[e_{\nu}]}, & \text{if } \mu = \nu \in \mathcal{S}(E) \end{cases}$$

is a *-isomorphism such that $w(\psi_E|_{\mathcal{D}(E)})w^{-1} = (\sigma_{X_{E_S}})^*$.

PROPOSITION 3.3. $h_{top}(X_{E_{\mathcal{S}}}, \sigma_{X_{E_{\mathcal{S}}}}) = ht(\psi_E|_{\mathcal{D}_E}) \leq ht(\psi_E).$

PROOF: By Remark 2.4(e), we have $h_{top}(X_{E_S}, \sigma_{X_{E_S}}) = ht((\sigma_{X_{E_S}})^*)$. Also Remark 2.4(a) and Lemma 3.2 imply that $ht((\sigma_{X_{E_S}})^*) = ht(\psi_E|_{\mathcal{D}_E})$. The last inequality follows from Remark 2.4(c).

PROPOSITION 3.4.

- (a) $h(X_E) = h(X_{E_S}).$
- (b) Let G be the graph obtained from E by removing vertices v with $s^{-1}(v)$ consisting of a loop edge and all edges in $r^{-1}(v)$ and then adding a loop edge to each newly formed sink, if any. Then $h(X_E) = h(X_G)$.

PROOF: (a) immediately follows from Proposition 2.2 and the arguments before it. For (b), apply (a) and the arguments before Proposition 2.2 repeatedly. \Box

https://doi.org/10.1017/S0004972700035851 Published online by Cambridge University Press

for some partial isometries $X(\mu, \alpha, \beta, l, m)$.

PROPOSITION 3.5. $\log r(A_E) = h(X_E) \leq \operatorname{ht}(\psi_E)$.

PROOF: $h(X_E) = h(X_{E_S})$ by Proposition 3.4(a), and $h(X_{E_S}) = h_{top}(X_{E_S}, \sigma_{X_{E_S}})$ by Remark 2.1.(a). Then Proposition 3.3 proves the assertion.

J.A. Jeong and G.H. Park

For the proof of the reverse inequality $ht(\psi_E) \leq \log r(A_E)$, we modify the proof in [3] according to our general situation. But we have to deal with more complicated situation due to the existence of sinks which do not appear in case of [3], so we present a proof here. Put

$$W(n) := E^n \cup \bigg\{ \mu \in \bigcup_{k=0}^{n-1} E^k \ \Big| \ r(\mu) \in \mathcal{S}(E) \bigg\}.$$

Then there is a one to one correspondence between W(n) and the set $(E_{\mathcal{S}})^n$ of finite paths of length n in E_s , and so the following lemma is an immediate consequence of Proposition 3.4(a).

LEMMA 3.6. $\lim_{n \to \infty} (1/n) \log |W(n)| = \log r(A_E).$

As in [3] we define a map $\rho_m : C^*(E) \to M_{|W(m)|} \otimes C^*(E)$ by

$$ho_m(x) := \sum_{\mu,
u \in W(m)} e_{\mu
u} \otimes s^*_\mu x s_
u.$$

LEMMA 3.7. ρ_m is an injective *-homomorphism.

PROOF: Since $\sum_{\mu \in W(m)} s_{\mu} s_{\mu}^* = I$, the unit of $C^*(E)$, it easily follows that ρ_m is a *-homomorphism. To see that ρ_m is injective, suppose $\rho_m(x) = 0$ (in [3], $C^*(E)$ was simple). Then $s_{\mu}^* x s_{\nu} = 0$ for all $\mu, \nu \in W(m)$. Thus for each pair of vertices $v, w \in E^0$,

$$\sum_{\substack{\mu \in W(m), s(\mu) = v\\ \nu \in W(m), s(\nu) = w}} s_{\mu} s_{\mu}^* x s_{\nu} s_{\nu}^* = 0,$$

which implies that $p_v x p_w = 0$ since

$$p_v = \sum_{\mu \in W(m), s(\mu) = v} s_\mu s^*_\mu$$

Therefore x = 0 and ρ_m is injective.

LEMMA 3.8. Let $n \in \mathbb{N}$, $|\beta| \leq |\alpha| \leq n_0$, and $m \geq n + n_0$. Then for each $0 \leq l \leq n-1,$

$$\rho_m\big(\psi^l_E(s_\alpha s^*_\beta)\big) = \sum_{\mu \in W(|\alpha| - |\beta|)} X(\mu, \alpha, \beta, l, m) \otimes s_\mu$$

Π

[8]

PROOF: Note first that if $\mu, \nu \in W(m)$ and $|\mu| \neq |\nu|$ then $s_{\mu}^* s_{\nu} = 0$. Also if $\mu, \nu \in E^*$, $r(\mu) \in S(E)$, and $|\mu| < |\nu|$ then $s_{\mu}^* s_{\nu} = 0$. Then from the formula (1)

$$\rho_m(\psi_E^l(s_\alpha s_\beta^*)) = \sum_{\eta \in W(l)} \rho_m(s_\eta s_\alpha s_\beta^* s_\eta^*)$$

=
$$\sum_{\eta \in W(l)} \sum_{\mu,\nu \in W(m)} e_{\mu\nu} \otimes s_\mu^* s_\eta s_\alpha s_\beta^* s_\eta^* s_\nu$$

=
$$\sum_{\mu \in W(|\alpha| - |\beta|)} \sum_{\eta \alpha \mu', \eta \beta \mu' \mu \in W(m)} e_{\eta \alpha \mu', \eta \beta \mu' \mu} \otimes s_\mu,$$

and $X(\mu, \alpha, \beta, l, m) := \sum_{\substack{\eta \alpha \mu', \eta \beta \mu' \mu \in W(m) \\ \eta \in W(l)}} e_{\eta \alpha \mu', \eta \beta \mu' \mu}$ is a partial isometry with the range pro-

jection
$$X(\mu, \alpha, \beta, l, m)X(\mu, \alpha, \beta, l, m)^* = \sum_{\substack{\eta \alpha \mu' \in W(m)\\ \eta \in W(l)}} e_{\eta \alpha \mu', \eta \alpha \mu'}.$$

For each $n_0 \ge 1$, put

$$\omega(n_0) := \{ s_{\alpha} s_{\beta}^* \mid |\beta| \leq |\alpha| \leq n_0 \}.$$

Then the following proposition implies that

$$\operatorname{ht}(\psi_E) \leqslant \log r(A_E),$$

since the linear span of the set $\bigcup_{k \ge 1} (\omega(k) \cup \omega(k)^*)$ is dense in $C^*(E)$ (Remark 2.4.(d)).

PROPOSITION 3.9. Let $n_0 \ge 1$ and $\delta > 0$. Then

$$\operatorname{ht}(\psi_E,\omega(n_0),\delta) = \limsup_n \frac{1}{n} \operatorname{log\,rcp}\left(\bigcup_{i=0}^{n-1} \psi_E^i(\omega(n_0)),\delta\right) \leq \operatorname{log\,r}(A_E).$$

PROOF: Let H be a Hilbert space on which $C^*(E)$ acts faithfully. Since $C^*(E)$ is nuclear, there exists $(\phi_0, \psi_0, M_{m_0}) \in CPA(id_{C^*(E)}, C^*(E))$ such that

(2)
$$\left\|\psi_0\phi_0(s_\gamma)-s_\gamma\right\|<\frac{\delta}{|W(n_0)|},\qquad \gamma\in W(n_0).$$

Now for $n \ge 1$, let $m = m(n) = n + n_0$ and $B = M_{|W(m)|} \otimes M_{m_0}$. Then by Arveson's extension theorem (see [4, p. 349]) the *-isomorphism $\rho_m^{-1} : \rho_m(C^*(E)) \to C^*(E)$ extends to a unital completely positive map

$$\Psi_m: M_{|W(m)|} \otimes C^*(E) \to B(H).$$

Now consider the completely positive maps ϕ and ψ given by

$$\phi = (id \otimes \phi_0)\rho_m : C^*(E) \to B \text{ and } \psi = \Psi_m(id \otimes \psi_0) : B \to B(H).$$

Let $a = s_{\alpha}s_{\beta}^* \in \omega(n_0)$. Then by Lemma 3.8 there exist partial isometries $X(\mu) = X(\mu, \alpha, \beta, l, m)$ such that

(3)
$$\rho_m \psi_E^l(a) = \sum_{\mu \in W(|\alpha| - |\beta|)} X(\mu) \otimes s_\mu$$

Then as in [3] it follows from (2) and (3) that

$$\left\|\psi\phi\big(\psi_E^l(a)\big)-\psi_E^l(a)\right\|<\left|W(n_0)\right|\cdot\frac{\delta}{|W(n_0)|}=\delta.$$

Therefore

$$\operatorname{rcp}\left(\bigcup_{i=0}^{n-1}\psi_{E}^{i}(\omega(n_{0})), \delta\right) \leq m_{0}|W(m)| = m_{0}|W(n+n_{0})|,$$

and so $\limsup_{n} (1/n) \log \operatorname{rcp} \left(\bigcup_{i=0}^{n-1} \psi_{E}^{i}(\omega(n_{0})), \delta \right) \leq \log r(A_{E})$ (by Lemma 3.6).

COROLLARY 3.10. Let E be a finite directed graph and G be a subgraph of E obtained by removing sinks and edges going into them. Then

$$\operatorname{ht}(\psi_E) = \operatorname{ht}(\psi_G)$$

In the rest of the section we show that $ht(\phi_E) = ht(\psi_E)$.

LEMMA 3.11.
$$\psi_E^l(x) = \phi_E^l(x) + \psi_E^{l-1}\left(\sum_{v \in \mathcal{S}(E)} p_v x p_v\right), \ l \in \mathbb{N}.$$

PROOF: Since $\psi_E(x) = \phi_E(x) + \sum_{v \in \mathcal{S}(E)} p_v x p_v$, we have

$$\begin{split} \psi_E^2(x) &= \phi_E \bigg(\phi_E(x) + \sum_{v \in \mathcal{S}(E)} p_v x p_v \bigg) + \sum_{w \in \mathcal{S}(E)} p_w \big(\phi_E(x) + \sum_{v \in \mathcal{S}(E)} p_v x p_v \bigg) p_w \\ &= \phi_E^2(x) + \phi_E \bigg(\sum_{v \in \mathcal{S}(E)} p_v x p_v \bigg) + \sum_{w \in \mathcal{S}(E)} p_w \bigg(\sum_{v \in \mathcal{S}(E)} p_v x p_v \bigg) p_w \\ &= \phi_E^2(x) + \psi_E \bigg(\sum_{v \in \mathcal{S}(E)} p_v x p_v \bigg). \end{split}$$

For $l \ge 3$, use induction on l.

0

Let $\phi_L : C^*(E) \to C^*(E)$ be the completely positive map given by $\phi_L(x) = \sum_{\substack{e \in E^1 \\ r(e) \notin S(E)}} s_e x s_e^*$.

PROPOSITION 3.12. $ht(\phi_L) = ht(\phi_E) \leq ht(\psi_E)$.

PROOF: Let $\delta > 0$, $n \in \mathbb{N}$, and let $\omega \subset C^*(E)$ be a finite set of the elements of the form $s_{\alpha}s_{\beta}^*$, $\alpha, \beta \in E^*$ such that $\{p_v \mid v \in \mathcal{S}(E)\} \subset \omega$. Then choose an element $(\psi_1, \psi_2, B) \in \operatorname{CPA}(id_{C^*(E)}, C^*(E))$ satisfying $\operatorname{rank}(B) = \operatorname{rcp}\left(\bigcup_{j=0}^{n-1} \psi_E^j(\omega), \delta\right)$. If $x \in \omega$, $1 \leq l \leq n-1$, then by the above lemma

$$\begin{aligned} \left\|\psi_{2}\psi_{1}\left(\phi_{E}^{l}(x)\right)-\phi_{E}^{l}(x)\right\| &\leq \left\|\psi_{2}\psi_{1}\left(\psi_{E}^{l}(x)\right)-\psi_{E}^{l}(x)\right\| \\ &+\left\|\psi_{2}\psi_{1}\left(\psi_{E}^{l-1}\left(\sum_{v\in\mathcal{S}(E)}p_{v}xp_{v}\right)\right)-\psi_{E}^{l-1}\left(\sum_{v\in\mathcal{S}(E)}p_{v}xp_{v}\right)\right\| &\leq 2\delta, \end{aligned}$$

and $\operatorname{rcp}\left(\bigcup_{j=0}^{n-1}\phi_{E}^{j}(\omega), 2\delta\right) \leqslant \operatorname{rcp}\left(\bigcup_{j=0}^{n-1}\psi_{E}^{j}(\omega), \delta\right)$. Thus we have $\operatorname{ht}(\phi_{E}) \leqslant \operatorname{ht}(\psi_{E})$.

To prove the first equality, note that $\phi_E^l(x) = \phi_L^l(x)$ if $x = s_\alpha s_\beta^* \in \omega$ with $|\alpha| + |\beta| > 0$, and $\phi_L^l(x) = 0$ if $x = p_v$, $v \in \mathcal{S}(E)$. Thus

$$\bigcup_{i=0}^{n-1}\phi_L^i(\omega)\subseteq\bigcup_{i=0}^{n-1}\phi_E^i(\omega)\cup\{0\},$$

and hence $\operatorname{ht}(\phi_L) \leq \operatorname{ht}(\phi_E)$. Put $\overline{\omega} := \omega \cup \phi_E(\omega)$. From definitions of ϕ_E and ϕ_L it is easily seen that $\phi_E^l(x) = \phi_L^{l-1}(\phi_E(x)), l \geq 1$. Thus

$$\bigcup_{i=0}^{n-1}\phi_E^i(\omega)\subseteq\bigcup_{i=0}^{n-1}\phi_L^i(\overline{\omega}),$$

which also shows that $ht(\phi_E) \leq ht(\phi_L)$.

Note that the commutative C^* -subalgebra

$$\mathcal{D}'_E := \overline{\operatorname{span}} \{ p_\mu = s_\mu s_\mu^* \mid \mu \in E^*, \ r(\mu) \notin \mathcal{S}(E) \}.$$

of $C^*(E)$ is ϕ_L -invariant and so $\operatorname{ht}(\phi_L|_{\mathcal{D}'_E}) \leq \operatorname{ht}(\phi_L)$.

PROPOSITION 3.13. $ht(\phi_E) = ht(\psi_E)$.

PROOF: Let G be the graph obtained from E by removing the sinks S(E) and the edges going into them. Then as in Lemma 3.2, one can show that there is an isomorphism $w': \mathcal{D}'_E \to C(X_G)$ such that

$$\sigma_G^* = w' \big(\phi_L |_{\mathcal{D}'_E} \big) (w')^{-1}$$

where σ_G is the shift map on X_G . Thus $ht(\phi_L|_{\mathcal{D}'_E}) = h(X_G)$. Consequently,

$$\operatorname{ht}(\psi_E) = \log r(A_E) = h(X_E) = h(X_G) = \operatorname{ht}(\phi_L|_{\mathcal{D}'_E}) \leq \operatorname{ht}(\phi_E)$$

by Theorem 3.1, Corollary 3.10, and Proposition 3.12.

0

Π

EXAMPLE 3.14. The Toeplitz algebra \mathcal{T} can be viewed as the graph C^* -algebra $C^*(E)$ of $E = (E^0 = \{v, w\}, E^1 = \{e, f\})$, where s(e) = r(e) = s(f) = v, r(f) = w. In fact, if $\{s_e, s_f, p_v, p_w\}$ is a Cuntz-Krieger E-family generating $C^*(E)$ the element $U := s_e + s_f$ satisfies that $U^*U = I = p_v + p_w$, $UU^* = p_v$, $U^*U - UU^* = p_w$, $U^2U^* = s_e$, and $U - U^2U^* = s_f$. Thus $C^*(E) = C^*\{U\}$ and so by Coburn's theorem $\mathcal{T} = C^*\{U\} = C^*(E)$. Since $U^*U = I$, the linear span of the set $\{U^m(U^*)^n \mid m, n \ge 0\}$ is dense in $C^*(E)$, and one can show that $\phi_E(x) = UxU^*$ for each x of the form $U^m(U^*)^n$. Thus ϕ_E is the endomorphism $\mathrm{Ad}(U)$ on \mathcal{T} . Since $r(A_E) = 1$, it follows from Theorem 3.1 and Proposition 3.13 that $\mathrm{ht}(\phi_E) = \log r(A_E) = 0$. Thus $\mathrm{ht}(\mathrm{Ad}(U)) = 0$.

4. INFINITE GRAPHS

In this section we consider the topological entropy of ϕ_E for an infinite graph E.

PROPOSITION 4.1. Let E be a locally finite infinite graph and let $C^*(E) = C^*(s_e, p_v)$ be its associated C*-algebra. Then the sum $\sum_{e \in E^1} s_e x s_e^*$ exists for each $x \in C^*(E)$ and the map $\phi_E : C^*(E) \to C^*(E)$ given by

$$\phi_E(x) = \sum_{e \in E^1} s_e x s_e^*, \ x \in C^*(E)$$

is a completely positive contraction.

PROOF: For an $x \in C^*(E)$ and $\varepsilon > 0$, choose a finite subgraph F of E and an element $z = \sum_{\alpha,\beta\in F^*} \lambda_{\alpha\beta} s_\alpha s_\beta^*$ $(\lambda_{\alpha\beta} \in \mathbb{C})$ such that $||x - z|| < \varepsilon$. Put $E^1 = \{e_1, e_2, \dots\}$. Then by the local finiteness of E there is a number N such that

$$F^1 \cup \{e \in E^1 \mid r(e) \in F^0\} \subset E^1_N := \{e_1, e_2, \dots, e_N\},\$$

so that $zp_{r(e_k)} = 0$ for $k \ge N + 1$. For any finite set E' of edges, let $V_{E'} := \{r(e) \mid e \in E' \setminus E_N^1\}$ and $P := \sum_{v \in V_{E'}} p_v$. Then $||xP|| = ||(x-z)P|| < \varepsilon$, and

$$\left\|\sum_{e\in E'\setminus E_N^1} s_e x s_e^*\right\| = \left\|\sum_{e\in E'\setminus E_N^1} s_e (xP)^* (xP) s_e^*\right\|^{1/2} \leq \|xP\| < \varepsilon.$$

Thus if E', E'' are two finite sets of edges with $E_N^1 \subset E' \cap E''$, then

$$\left\|\sum_{e\in E'}s_exs_e^*-\sum_{e\in E''}s_exs_e^*\right\| \leqslant \left\|\sum_{e\in E'\setminus E_N^1}s_exs_e^*\right\|+\left\|\sum_{e\in E''\setminus E_N^1}s_exs_e^*\right\|<2\varepsilon,$$

which shows that the sum $\sum_{e \in E^1} s_e x s_e^*$ exists and the map ϕ_E is well defined. To see that ϕ_E is a contractive completely positive map, consider a sequence of completely positive

Topological entropy

maps $\phi_n : C^*(E) \to C^*(E)$ given by $\phi_n(x) = \sum_{i=1}^n s_{e_i} x s_{e_i}^*$. If $x \ge 0$ then $\phi_E(x) \ge 0$ as the limit of positive elements $\phi_n(x)$ in norm. The same argument also proves that ϕ_E is completely positive. Since each ϕ_n is contractive we have $\|\phi_E\| \le 1$.

The (one-sided) shift space X_E may not be compact for an infinite graph E, which makes the definition $h_{top}(X_E)$ meaningless. This leads Gurevic [8] to consider a compactification of X_E : Identify the edge set $E^1 = \{e_n\}_{n \in \mathbb{N}}$ with the metric space $\{1, (1/2), (1/3), \ldots\} \subset [0, 1]$ by $e_n \mapsto (1/n)$, and let $\overline{E}^1 := E^1 \cup \{0\}$ = $\{0, 1, (1/2), (1/3), \ldots\}$ be the one-point compactification. Then X_E becomes the subspace of the product space $(\overline{E}^1)^{\mathbb{N}}$ with the closure \overline{X}_E , where the metric

$$d((x_n), (y_n)) = \sum_{n=1}^{\infty} \frac{1}{2^n} |x_n - y_n|, \ x_n, y_n \in \overline{E}^1$$

is compatible with the product topology. The shift map $\overline{\sigma}_E := \sigma_{\overline{X}_E}$ on the compact metric space \overline{X}_E now has a well-defined topological entropy. Similarly we have the compact metric space $\overline{\Sigma}_E \subset (\overline{E}^1)^{\mathbb{Z}}$ and the shift map $\overline{\sigma}_E := \sigma_{\overline{\Sigma}_E}$. We use the same notation for two shift maps.

LEMMA 4.2. If E is a locally finite irreducible infinite graph then

$$h_{\mathrm{top}}(\overline{X}_E, \overline{\sigma}_E) = h_{\mathrm{top}}(\overline{\Sigma}_E, \overline{\sigma}_E).$$

PROOF: Consider the open cover $\mathcal{P}_n := \{[1], \ldots, [1/n], [\overline{1/n}]\}$ of $\overline{\Sigma}_E$, where

$$[1/k] = \{(x_i) \in \overline{\Sigma}_E \mid x_1 = 1/k\}, \ k = 1, \dots, n, [\overline{1/n}] = \{(x_i) \in \overline{\Sigma}_E \mid x_1 < 1/n\}.$$

Put $\mathcal{V}_n := \overline{\sigma}_E^n \mathcal{P}_n \vee \overline{\sigma}_E^{n-1} \mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E \mathcal{P}_n \vee \mathcal{P}_n \vee \overline{\sigma}_E^{-1} \mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E^{-n} \mathcal{P}_n$. Then

$$h_{top}(\overline{\sigma}_E, \mathcal{V}_n) = \lim_{k \to \infty} \frac{1}{k} \log N\Big(\bigvee_{l=0}^{k-1} \overline{\sigma}_E^{-l}(\mathcal{V}_n)\Big)$$

$$= \lim_{k \to \infty} \frac{1}{k} \log N\Big(\overline{\sigma}_E^n \mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E^1 \mathcal{P}_n \vee \cdots \vee \mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E^{-n-k+1} \mathcal{P}_n\Big)$$

$$(4) \qquad \leq \lim_{k \to \infty} \Big(\frac{1}{k} \log N(\overline{\sigma}_E^n \mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E^1 \mathcal{P}_n) + \frac{1}{k} \log N(\mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E^{-n-k+1} \mathcal{P}_n)\Big)$$

$$= \lim_{k \to \infty} \frac{1}{k} \log N(\mathcal{P}_n \vee \overline{\sigma}_E^{-1} \mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E^{-n-k+1} \mathcal{P}_n).$$

Similarly for the finite open cover $Q_n := \{[1], \ldots, [1/n], [\overline{1/n}]\}$ of \overline{X}_E , where

$$[1/k] = \{(x_i) \in \overline{X}_E \mid x_1 = 1/k\}, \ k = 1, \dots, n, \\ [\overline{1/n}] = \{(x_i) \in \overline{X}_E \mid x_1 < 1/n\},\$$

and for $\mathcal{U}_n := \mathcal{Q}_n \vee \overline{\sigma}_E^{-1} \mathcal{Q}_n \vee \cdots \vee \overline{\sigma}_E^{-n} \mathcal{Q}_n$, one has

(5)
$$h_{top}(\overline{X}_E, \mathcal{U}_n) = \lim_{k \to \infty} \log N \left(\mathcal{Q}_n \vee \overline{\sigma}_E^{-1} \mathcal{Q}_n \vee \cdots \vee \overline{\sigma}_E^{-n-k+1} \mathcal{Q}_n \right).$$

But $N(\mathcal{P}_n \vee \overline{\sigma}_E^{-1} \mathcal{P}_n \vee \cdots \vee \overline{\sigma}_E^{-n-k+1} \mathcal{P}_n) = N(\mathcal{Q}_n \vee \overline{\sigma}_E^{-1} \mathcal{Q}_n \vee \cdots \vee \overline{\sigma}_E^{-n-k+1} \mathcal{Q}_n)$ follows easily, thus from (4) and (5), we have

$$h_{\text{top}}(\overline{\Sigma}_E, \mathcal{V}_n) = h_{\text{top}}(\overline{X}_E, \mathcal{U}_n).$$

On the other hand, the sequence $\{\mathcal{U}_n\}$ ($\{\mathcal{V}_n\}$, respectively) is refining (see [1]), that is, \mathcal{U}_{n+1} is a refinement of \mathcal{U}_n and for every (finite) open cover \mathcal{B} there exists an n such that \mathcal{U}_n is a refinement of \mathcal{B} , which implies that

$$h_{\text{top}}(\overline{X}_E, \overline{\sigma}_E) = \lim_{n \to \infty} h_{\text{top}}(\overline{X}_E, \mathcal{U}_n)$$
$$h_{\text{top}}(\overline{\Sigma}_E, \overline{\sigma}_E) = \lim_{n \to \infty} h_{\text{top}}(\overline{\Sigma}_E, \mathcal{V}_n).$$

[14]

REMARK 4.3. For an infinite graph E, Gurevic [8] introduced an entropy

 $\sup\{h(\Sigma_{E'}) \mid E' \subset E \text{ finite subgraph}\},\$

and proved that $h_{top}(\overline{\Sigma}_E) = \sup_{E'} h(\Sigma_{E'})$ holds if E is irreducible. Moreover the supremum can be taken over all the irreducible finite subgraphs by [8, Lemma 2].

THEOREM 4.4. Let E be a locally finite irreducible infinite graph. Then

$$h_{top}(\overline{X}_E) = \sup_{E'} h(X_{E'}) \leq ht(\phi_E),$$

where the supremum is taken over all the finite subgraphs of E.

PROOF: Recall that $h(\Sigma_{E'}) = h(X_{E'})$ for any finite subgraph E' of E (see Remark 2.1(b)). Then the first equality follows from Lemma 4.2 and Remark 4.3.

Note that for the locally compact shift space $X_E (\subset (\overline{E}^1)^N)$ the cylinder sets

$$[\alpha] = \{ x = (x_1, x_2, \dots) \in X_E \mid x_i = \alpha_i, 1 \leq i \leq |\alpha| \}, \ \alpha \in E^*$$

are both compact and open and form a basis for the topology. Also one can easily show that the closure \overline{X}_E is nothing but the one point compactification of X_E . As in a finite graph case, let

$$\mathcal{D}_E := C^* \{ p_\alpha \mid \alpha \in E^* \}$$

be the commutative C^* -subalgebra of $C^*(E)$ generated by projections $p_{\alpha} = s_{\alpha}s_{\alpha}^*$. Then clearly $\phi_E(\mathcal{D}_E) \subset \mathcal{D}_E$, hence $\operatorname{ht}(\phi_E|_{\mathcal{D}_E}) \leq \operatorname{ht}(\phi_E)$. Thus it suffices to see that

$$\operatorname{ht}(\phi_E|_{\mathcal{D}_E}) = h_{\operatorname{top}}(\overline{X}_E).$$

Topological entropy

We prove that the map $w: \mathcal{D}_E \to C_0(X_E), w(p_\alpha) = \chi_{[\alpha]}$, is a *-isomorphism such that

(6)
$$w(\phi_E|_{\mathcal{D}_E})w^{-1} = \sigma_E^*,$$

which then implies that $ht(\phi_E|_{\mathcal{D}_E}) = ht(\sigma_E^*)$, and thus by Remark 2.4(b) we have

$$\operatorname{ht}(\phi_E|_{\mathcal{D}_E}) = \operatorname{ht}(\widetilde{\phi}_E|_{\widetilde{\mathcal{D}}_E}) = h_{\operatorname{top}}(\overline{X}_E).$$

Since it is tedious to show that w is an injective *-homomorphism satisfying (6), here we only prove that w is surjective. It is enough to see that the linear span of the characteristic functions $\chi_{[\alpha]}$ is dense in $C_0(X_E)$. Let $f \in C_0(X_E)$ and $\varepsilon > 0$. Then there is a compact subset $K \subset X_E$ such that $||f|_{X_E \setminus K} || < \varepsilon$. For each $x = (x_n) \in K$, consider the cylinder set

$$[x]_n := \{ y = (y_n) \in X_E \mid x_k = y_k, \ 1 \le k \le n \}.$$

Since f is continuous at x there is a neighborhood U_x of x such that

$$|f(x) - f(y)| < \varepsilon$$
 whenever $y \in U_x$.

Moreover we can choose $U_x = [x]_N$ for some $N \in \mathbb{N}$. Then there exists a finite subcover of $\{U_x \mid x \in K\}$ consisting of disjoint open sets, say $\{[x^1]_{N_1}, \ldots, [x^m]_{N_m}\}$. Put $g := \sum_{j=1}^m f(x^j)\chi_{[x^j]_{N_j}}$. Then g(y) = 0 for $y \notin \bigcup_{j=1}^m [x^j]_{N_j}$. If $y \in [x^j]_{N_j}$ for some j then $|f(y) - g(y)| \leq |f(y) - f(x^j)| + |f(x^j) - g(y)| < \varepsilon$.

Therefore $|g(y) - f(y)| < \varepsilon$ for each $y \in X_E$.

REMARK 4.5. It would be nice to obtain an upper bound for the topological entropy $ht(\phi_E)$ for E in Theorem 4.4. Let E be a locally finite irreducible infinite graph and let \mathcal{A}_E be the AF subalgebra of $C^*(E) = C^*\{p_v, s_e\}$ generated by the partial isometries of the form $s_\alpha s_\beta^*$ with $|\alpha| = |\beta|$. Then \mathcal{A}_E is ϕ_E -invariant and contains the commutative subalgebra \mathcal{D}_E , so that $ht(\phi_E|_{\mathcal{D}_E}) \leq ht(\phi_E|_{\mathcal{A}_E})$. We shall give an upper bound for $ht(\phi_E|_{\mathcal{A}_E})$ elsewhere.

References

- R.L. Adler, A.G. Konheim and M.H. McAndrew, 'Zoological entropy', Trans. Amer. Math. Soc. 114 (1965), 309-319.
- [2] T. Bates, J.H. Hong, I. Raeburn and W. Szymanski, 'The ideal structure of the C*-algebras of infinite graphs', *Illinois J. Math.* 46 (2002), 1159-1176.
- [3] F.P. Boca and P. Goldstein, 'Topological entropy for the canonical endomorphism of Cuntz-Krieger algebras', Bull. London Math. Soc. 32 (2000), 345-352.
- [4] N.P. Brown, 'Topological entropy in exact C*-algebras', Math. Annalen 314 (1999), 347-367.

0

[16]

- [5] M. Choda, 'Endomorphisms of shift type (entropy for endomorphisms of Cuntz algebras)', in Operator Algebras and Quantum Field Theory (Rome, 1996) (International Press, Cambridge, MA), pp. 469-475.
- [6] J. Cuntz and W. Krieger, 'A class of C*-algebras and topological Markov chains', Invent. Math. 56 (1980), 251-268.
- [7] V. Deaconu, 'Entropy estimates for some C*-endomorphisms', Proc. Amer. Math. Soc. 127 (1999), 3653-3658.
- [8] B.M. Gurevic, 'Topological entropy of enumerable Markov chains', (in Russian), Dokl. Akad. Nauk SSSR 187 (1969), 216-226.
- [9] E. Kirchberg, 'On subalgebras of the CAR-algebra', J. Funct. Anal. 129 (1995), 35-63.
- [10] B.P. Kitchens, Symbolic dynamics (Springer-Verlag, Berlin, Heidelberg, New York, 1998).
- [11] A. Kumjian, 'Notes on C*-algebras of graphs', Contemp. Math. 228 (1998), 189-200.
- [12] A. Kumjian, D. Pask and I. Raeburn, 'Cuntz-Krieger algebras of directed graphs', Pacific J. Math. 184 (1998), 161-174.
- [13] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding (Cambridge University Press, Cambridge, 1999).
- [14] C. Pinzari, Y. Watatani and K. Yonetani, 'KMS states, entropy and the variational principle in full C^{*}-dynamical systems', Comm. Math. Phys. 213 (2000), 331-379.
- [15] D. Voiculescu, 'Dynamical approximation entropies and topological entropy in operator algebras', Comm. Math. Phys. 170 (1995), 249-281.
- [16] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics 79 (Springer-Verlag, publaddr Berlin, Heidelberg, New York 1982).

Mathematical Sciences Division BK21, Seoul National University Seoul, 151–742 Korea e-mail: jajeong@math.snu.ac.kr Department of Mathematics Hanshin University Osan, 447–791 Korea e-mail: ghpark@hanshin.ac.kr