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Abstract

The generalized Pólya urn has been extensively studied and is widely applied in many
disciplines. An important application of urn models is in the development of randomized
treatment allocation schemes in clinical studies. The randomly reinforced urn was
recently proposed, but, although the model has some intuitively desirable properties,
it lacks theoretical justification. In this paper we obtain important asymptotic properties
for multicolor reinforced urn models. We derive results for the rate of convergence of the
number of patients assigned to each treatment under a set of minimum required conditions
and provide the distributions of the limits. Furthermore, we study the asymptotic behavior
for the nonhomogeneous case.
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1. Introduction

Randomization is often a preferred way of assigning patients to different treatments in a
clinical trial. Response adaptive designs that link the randomization procedure to the responses
of treated patients have proved to be extremely valuable from an ethical perspective, because
these designs are able to reduce the expected number of patients receiving the inferior treatments.
In an adaptive design, patients enter the experiment sequentially and are randomly allocated
to a treatment, according to a rule that depends on the previous allocations and the previous
observed responses. A vast number of novel adaptive designs have been proposed in recent
years. For a review of these innovations, the reader is referred to [19] and [32]. In the long
history of the development of adaptive designs, urn models have remained an influential and
popular family of response adaptive-randomization procedures ever since Wei and Durham [33]
proposed the randomized play-the-winner rule. Recently, Zhang et al. [35] unified the most
classical urn models into a general family of urn models (the immigrated urn (IMU) models)
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and obtained their general asymptotic properties. However, they did not include the important
urn model that is the focus of this paper. The present paper studies the asymptotic properties of
a multicolor, randomized Pólya urn, referred to as a randomly reinforced Pólya urn (RRPU). It
is crucial to note that the RRPU is not a special case of the IMU, mainly because in the RRPU
the random selection of a ball rewards a random number of balls of the same type and ignores
all remaining types. When the number of balls rewarded at each selection is nonrandom and
equal, the model reduces to the original Pólya urn (cf. [15] and [30]) which is widely studied
in the literature.

The model proposed by Durham and Yu [13] for two treatments was possibly the first
RRPU model for adaptive designs in clinical trials. Numerous studies have been conducted
in this area, including [10], [11], [14], [23], [27], [28], [29], etc. Although the RRPU model
is of fundamental importance in many applied areas, such as economics (cf. [9] and [16]),
information science (cf. [24]), and resampling theory, in this paper we focus on clinical trial
applications due to the model’s important role in the treatment allocation process. However,
the results reported in this paper certainly have much wider applications.

For many adaptive designs in the literature, the proportion of patients allocated to each
treatment converges to a limit in (0, 1). Besides rare exceptions such as the response adaptive
design of Aletti et al. [1] that a two-color RRPU can target fixed asymptotic allocations (see
also [17]), a design driven by the RRPU usually allocates patients in an optimal manner so
that the proportion of patients assigned to the best treatment converges to 1. However, it is
important to know the (expected) number of patients in each treatment when the statistical test
for the treatment differences and the power of the test are considered.

Recently, for the two-treatment case, May and Flournoy [25] found the exact convergence rate
of the allocation proportion of the inferior treatment. They proved that the number of patients
allocated to the inferior treatment after being suitably normalized converges to a random limit η.
Similar results have also been found by Durham and Yu [13]. However, May and Flournoy
[25] proved that the limit η is strictly positive and showed that the power of the test for the
treatment difference is a decreasing function of η. As discussed in [25], the distribution of η
is of fundamental importance for calculating the exact power of the test. Aletti et al. [2], [4]
characterized the limiting distribution as the unique continuous solution of a functional equation
when the reinforcements have different bounded distribution with the same mean, and Aletti et
al. [3] proved that the limit distribution has no point mass by establishing a conditional central
limit theorem. For the Pólya’s original urn, a particular case of the RRPU, it is well known
that the limit distribution of the urn proportions is a beta distribution. Janson [22] studied the
limit distribution problem for a generalized two-color Pólya urn in which the number of balls
added at each time can differ from color to color but should be nonrandom. In the general case,
the limit distribution is an open problem. Furthermore, in the literature, including [2], [3], [4],
[22], [25], [27], and [29], the results for RRPU models are usually limited to the two-treatment
case and are established under the strict condition that the number of balls added at each stage
has a distribution on a bounded real set. Berti et al. [10] [11] derived central limit theorems
for a multicolor RRPU. However, their results were generally limited to treatments with equal
reinforcement means or the best treatments.

The main aims of this paper are

• to study the asymptotic properties, including the convergence, the convergence rate,
and the asymptotic normalities, of response-adaptive designs generated by a general
multicolor RRPU under the minimum requirement of conditions;
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• to find the distributions of both the limit of the normalized number of patients allocated
to each treatment and the limit of the normalized number of balls of each type; and

• to generalize the model to the nonhomogeneous case in which the updating of the urn
may use information from all previous stages.

In Section 2 we illustrate the almost-sure asymptotic properties of the first order for multicolor
reinforced Pólya urn models. We show that both the urn proportions and the allocation
proportions, after being suitably normalized, converge to a positive random limit. In Section 3,
the exact distributions of the limits are obtained by applying the theory of branching processes
to the case in which all of the balls have integer numbers. In Section 4, the asymptotic properties
of the second order, including the rates of almost-sure convergence and asymptotic normalities,
are established for both the urn proportions and the allocation proportions. In Section 5, the
nonhomogeneous case is considered. The proofs of the main results are given in Appendix A.
Throughout this paper, for two positive sequences {an} and {bn}, we write an = O(bn) if there
is a constant C such that an ≤ Cbn, an ∼ bn if an/bn → 1, and an ≈ bn if an = O(bn) and
bn = O(an).

2. The model and asymptotic properties of the first order

Consider a clinical study with K different treatments. Patients arrive sequentially and
respond without delay. Each incoming patient is allocated to one of theK treatments according
to a treatment allocation scheme. In urn models, an urn with K types of balls is used to
randomize incoming patients. Let Y0 = (Y0,1, . . . , Y0,K) be the initial urn components, where
Y0,k is the number of type k-balls. Afterm stages (m ≥ 0) and the firstm patients are assigned,
suppose that the urn components are Ym = (Ym,1, . . . , Ym,K). At the m + 1 stage, a ball is
drawn at random, its label noted, and the ball is replaced. If its label was k then the (m+ 1)th
patient is assigned to treatment k, i.e. the (m + 1)th patient is assigned to treatment k with a
probability

pm+1,k = Ym,k

|Ym| , where |Ym| = Ym,1 + · · · + Ym,K.

The urn is updated according to the response ξm+1,k of the (m+1)th patient. Different methods
of updating produce different types of urn models. Urn models have been widely studied in
the literature. Rosenberger [31] traced the historical development of generalized urn models,
their properties, and applications in sequential designs. The more recent literature includes,
for instance, studies by Bai and Hu [6], [7], Bai et al. [8], Chauvin et al. [12], Janson [21],
and Zhang et al. [34]. However, the RRPU that we consider here is not covered by their
assumptions. The main reason for this omission is that the mean replacement matrix of an
RRPU is not irreducible. In the RRPU, the urn is updated by adding Um+1,k ≥ 0 balls of
type k to the urn when the response ξm+1,k is observed, and so the mean replacement matrix
diag(EUm+1,1, . . . ,EUm+1,K) is diagonal. Usually, it is assumed that Um+1,k is a function
U(ξm+1,k) of the response ξm+1,k . In our setting, unless specifically noted otherwise, Y0,k
and Um,k, k = 1, . . . , K,m = 1, 2, . . . , take nonnegative real values and are not necessarily
integers. Furthermore, (Um,1, . . . , Um,K), m = 1, 2, . . . , are assumed to be independent,
identically distributed random vectors. We denote by mk = E[Um,k] the mean of the number
of balls of type k added. Throughout this paper, we assume that the means m1, . . . , mK are
finite and positive.

Let Xm,k be the result of the mth assignment, i.e. Xm,k = 1 if the mth patient is assigned
to treatment k, and 0 otherwise. Let Nm,k = ∑m

j=1Xm,k be the number of patients out of the
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first m patients assigned to treatment k. The asymptotic properties of Nn,k, k = 1, . . . , K , are
important in clinical trial studies (cf. [19]).

Suppose that m1 > mk, k �= 1. It has been shown that Yn,1/|Yn| → 1 and Nn,1/n → 1
almost surely (a.s.), i.e.

Yn,k

|Yn| → 0 and
Nn,k

n
→ 0 a.s. for k �= 1, (2.1)

ifUn,1, . . . , Un,K are distributed on a nonnegative and bounded set (cf. [9] and [28]). Recently,
May and Flournoy [25] studied the convergence rate of (2.1) in the two-treatment case.

Theorem 2.1. Suppose that K = 2,m1 > m2, and that Un,1 and Un,2 have distributions on a
nonnegative and bounded real set. Then

Yn,2

|Yn|m2/m1
→ ψ a.s.,

Nn,2

nm2/m1
→ η a.s., (2.2)

where ψ and η are two random variables with support in (0,∞).

Durham and Yu [13] obtained a similar result:

N
1/m2
n,2

N
1/m1
n,1

converges a.s. to a random variable (2.3)

(cf. their Theorem 4). May and Flournoy [25] showed that the limits ψ and η are strictly
positive and also proved that the power for testing μ1 = μ2 is a function of η. However, the
distributions have not been found.

We refer to convergences of the type (2.2) and (2.3) as first-order convergences because they
are related to the classical law of large numbers, and the limitsψ and η are called the first-order
limits. The convergence corresponding to the convergence rates of (2.2) and (2.3) is called
the second-order convergence. In this section we consider the first-order convergence. The
following theorem gives the convergence of both the urn components and the allocation numbers
of patients for a general multitreatment design driven by an RRPU. The exact distributions of
the limits are derived in the next section for the case in which all of the numbers of balls are
integers.

Theorem 2.2. Suppose that E[U1,k logU1,k] < ∞. Hereafter, log x = ln(x ∨ e). Thus, there
exist K positive random variables �i such that

Y
1/mi
n,i

Y
1/mj
n,j

→ �
1/mi
i

�
1/mj
j

a.s., (2.4)

N
1/mi
n,i

N
1/mj
n,j

→ (�i/mi)
1/mi

(�j/mj )
1/mj

a.s. (2.5)

As a consequence,
Yn,k

nmk/mmax
→ ψi :=

(
mmax∑

{j : mj=mmax}�j

)mk/mmax

�k a.s., (2.6)

Nn,k

nmk/mmax
→ ηk=̂ψk

mk
a.s., (2.7)

where mmax = maxi mi .
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The above theorem implies that Y 1/mk
n,k and N1/mk

n,k increase at the same rate for all k =
1, . . . , K . In Section 4 we consider the second-order convergence of Y 1/mk

n,k and N1/mk
n,k ,

including the almost-sure convergence rate of (2.4)–(2.7) and related asymptotic normalities.
The following theorem indicates that the condition E[U1,k logU1,k] < ∞ cannot be

weakened.

Theorem 2.3. Suppose that, for each k = 1, . . . , K , there is a δk > 0 such that Yn,k/nδk (or
Nn,k/n

δk ) converges in distribution to a finite limit � ∗
k with P(� ∗

k > 0) > 0. Then we must
have δk = mk/mmax, k = 1, . . . , K . Furthermore, if one of E[U1,k logU1,k], k = 1, . . . , K,
is finite then all of them are finite.

The main idea underlying the proofs of Theorems 2.2 and 2.3 is to find a common random
normalization factor ln such that, for each k, both Yn,k/ l

mk
n and its reciprocal look like nonneg-

ative supermartingales and converge a.s. to a positive limit if and only if E[U1,k logU1,k] < ∞.
The details of the proofs are postponed to Appendix A.1 as some preparations are required first.

In practice, the constants mi in the normalization factors are unknown and need to be
estimated. The following corollary tells us that they can be replaced by the sample means.

Corollary 2.1. Under the conditions of Theorem 2.2, (2.4)–(2.7) hold whenever some or all of
the means mi, i = 1, . . . , K, on the left-hand side are replaced by the corresponding sample
means

m̂i =: m̂n,i = Yn,i + 1/2

Nn,i + 1
, i = 1, . . . , K.

Here, 1 and 1
2 are added to the denominator and numerator, respectively, to avoid the case 0/0.

Proof. According to (2.6) and (2.7), we have logYn,k ≈ logNn,k ≈ log n a.s. To show that
mk can be replaced by m̂k , it is sufficient to show that(

1

mk
− 1

m̂k

)
logYn,k → 0 a.s. and

(
1

mk
− 1

m̂k

)
logNn,k → 0 a.s.,

which are equivalent to ∑n
l=1Xl,k(Ul,k −mk)

Nn,k/ logNn,k
→ 0 a.s.

if Nn,k → ∞. The proof is completed by Lemma A.1 in the appendix.

3. The limit distributions

May and Flournoy [25] pointed out that the distribution of η in (2.2) is of fundamental
importance in calculating the exact power of the test of treatment efficacy. For the two-treatment
model, Aletti et al. [2], [4] characterized the limit distribution of the urn proportions as the
unique continuous solution of a function equation for the case of equal reinforcement means,
where Un,1 and Un,2 are assumed to be bounded and have the same distribution, and Janson
[22] established a general result for unequal but nonrandom reinforcements. However, the
limit distribution remains unknown for general cases. The following theorem characterizes
the distributions of all of the limits in (2.4)–(2.7) for the general multitreatment RRPU model,
in which the number of random balls is an integer. In the general case, in which a fractional
number of balls is possible, the distribution of the limits is still an open problem.
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Theorem 3.1. Suppose that Y0,k and Un,k, k = 1, 2, . . . , K, are all integers. Let fk(s) =
E[sU1,k ], 0 ≤ s ≤ 1, be the probability generating function ofUn,k, and letmk = EU1,k be the
mean. Suppose that E[U1,k logU1,k] < ∞. Then �1, . . . ,�K in (2.4)–(2.7) can be chosen
such that they are independent, positive, continuous random variables, and the distribution of
�k is determined by E[e−u�k ] = [gk(u)]Y0,k with

invgk(u) = (1 − u) exp

{∫ u

1

(
mk

s(fk(s)− 1)
+ 1

1 − s

)
ds

}
, 0 < u ≤ 1. (3.1)

Remark 3.1. According to (3.1), the distribution of�k is uniquely determined by Y0,k and the
distribution ofU1,k . Therefore, according to (2.6), (2.7), and the independence of�1, . . . ,�K ,
the distributions of ψk and ηk are uniquely determined by Y0,1, . . . , Y0,K and the distributions
of U1,1, . . . , U1,K .

Remark 3.2. We conjecture that the results in Theorem 3.1 hold for all cases where Y0,k > 0
and Un,k ≥ 0 are real numbers.

Next, we provide an example for illustrative purposes before stating the proof of Theorem 3.1.
The example is a generalization of the Pólya urn as well as the randomized Pólya urn proposed
in [23].

Example 3.1. For the dichotomous response case in clinical trials, let ξm,k = 1 if the outcome
of the mth patient receiving treatment k is a success, and 0 if it is a failure. In addition, let
pk = P(ξm,k = 1) be the probability of success. Suppose that we add αk type-k balls to the
urn when we observe that treatment k has been a success, and so Um,k = αkξm,k, where αk
is a positive integer. Then mk = αkpk and fk(s) = 1 − pk + sαkpk . From (3.1), it follows
that gk(u) = (1 + αku)

−1/αk . Therefore, the distribution of �k is gamma with the parameters
Y0,k/αk and 1/αk .

Suppose that m1 = · · · = mm > mk, k > m. Then, for k > m, ηk is distributed as

m
mk/m1
1

mk

αk�k(Y0,k/αk, 1)

[∑m
j=1 αj�j (Y0,j /αj , 1)]mk/m1

, (3.2)

where the �j (Y0,j /αj , 1) are independent gamma-distributed random variables with the
parameters given in the parentheses; and, for k = 1, . . . , m, ηk is distributed as

αk�k(Y0,k/αk, 1)∑m
j=1 αj�j (Y0,j /αj , 1)

. (3.3)

The limit in (2.7) for the urn proportions is ψk = mkηk.

In particular, when the αk are equal (to α, say), the random variables in (3.2) and (3.3) are
respectively distributed as

p
pk/p1
1

pk

�k(Y0,k/α, 1)

[�(∑m
j=1 Y0,j /α, 1)]pk/p1

and Beta

(
Y0,k

α
,

m∑
j=1,j �=k

Y0,j

α

)
;

when the pk are equal (to p, say), the random variables in (3.2) and (3.3) are respectively
distributed as

pαk/α1−1 �(Y0,k/αk, 1)

[�(∑m
j=1 Y0,j /α1, 1)]αk/α1

and Beta

(
Y0,k

α1
,

m∑
j=1,j �=k

Y0,j

α1

)
. (3.4)
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This example provides the limit distribution for the randomized Pólya urn proposed in [23]
which is a special case with equal αk . Also, the Pólya urn is a special case of the example with
pk ≡ 1. For the Pólya urn, it is well known that the limit distribution of the urn proportion is
a beta distribution when the αk are equal, and Theorem 1.4 of [22] gives a general result for
the urn components in the two-treatment case. Our (3.4) provides the distribution for all the
cases. Recently, Aletti et al. [4] proved that the limiting distribution of the urn proportions for
a two-color RRPU with equal reinforcement means is the solution of a function equation, and
found several new families of distributions generalizing the beta family. It is easy to show that
the distribution in (3.3) is linked to the new distribution in their Section 6.2, with both being
members of a generalized beta family.

To conclude this section, we give the proof of Theorem 3.1.

Proof of Theorem 3.1. As the number of balls is an integer, we can use the embedding
method of [5] to derive the limit. Let {Z(t) = (Z1(t), . . . , ZK(t)); t ≥ 0} be aK-type Markov
branching process with Zk(t), k = 1, 2, . . . , K (the K branching processes are independent)
and Z(0) = Y0. Assume that (i) each particle lives for a unit exponential random time, and (ii)
when a type-k (k = 1, 2, . . . , K) particle dies, new type-k particles are born according to the
probability generating function sfk(s), i.e. the random number of born particles has the same
distribution as U1,k + 1. Let τ0 = 0 and τn be the time of the nth death in the system. Then,
following the same argument as that given in Theorem 9.2 of [5], {Z(τn); n ≥ 0} is equivalent
to {Yn; n ≥ 0}; in other words, these two random sequences have the same distribution. By
Theorem 8.3 of [5] and the assumption that E[U1,k logU1,k] < ∞, for each Zk(t), there
exists a positive, continuous random variable �̃k , with E[e−u�̃k ] = [gk(u)]Zk(0) = [gk(u)]Y0,k

satisfying (3.1) such that
e−mktZk(t) → �̃k a.s. (3.5)

Furthermore, �̃k, k = 1, . . . , K , are independent because {Zk(t)}, k = 1, . . . , K , are K
independent processes. Now, it is obvious that τn → ∞ a.s. as n → ∞. From (3.5), we
conclude that e−mkτnZk(τn) → �̃k a.s. Hence,

Z
1/mi
i (τn)

Z
1/mj
j (τn)

→ �̃
1/mi
i

�̃
1/mj
j

a.s.

By (2.4), it follows that

�̃
1/mi
i /�̃

1/mj
j = �

1/mi
i /�

1/mj
j a.s.

So, without loss of generality, we can assume that �̃k = �k .

4. The second order of convergence

In this section we consider the convergence rate of (2.5) and (2.6). The first theorem
gives the strong convergence rates and the second is the central limit theorem. Although
the distributions of the first-order limits are unknown unless the numbers of the balls are
integers, the distributions of the second-order limits are mixing normal in general. We use the
notation mk = EU1,k, mmax = maxi mi , and ψi and ηi = ψi/mi as defined in Theorem 2.2.
Furthermore, let msec be the second largest value of mi, i = 1, 2, . . . , K, and define δi =
mi/mmax and δi∧j = δi ∧ δj .
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Theorem 4.1. Suppose that E[Up1,k] < ∞ and mk > 0, k = 1, . . . , K , where 1 < p < 2.
Then

Y
1/mi
n,i

Y
1/mj
n,j

− ψ
1/mi
i

ψ
1/mj
j

= o(n−δi∧j (1−1/p)) a.s., (4.1)

N
1/mi
n,i

N
1/mj
n,j

− η
1/mi
i

η
1/mj
j

= o(n−δi∧j (1−1/p)) a.s.

Theorem 4.2. Suppose that E[U2
1,k] < ∞ and mk > 0, k = 1, . . . , K . Define σ 2

U,k =
var(U1,k/mk). Therefore, there are independent, standard normal random variablesNk1(0, 1),
Nk2(0, 1), k = 1, . . . , K , which are also independent of ψk , ηk, k = 1, . . . , K, such that√

nδi∧j
(
(Yn,i/ψi)

1/mi

(Yn,j /ψj )
1/mj

− 1,
(Nn,i/ηi)

1/mi

(Nn,j /ηj )
1/mj

− 1

)
d−→ (

Aij , Aij + Bij
)

(stably) i, j = 1, . . . , K, (4.2)

and
Yn,k −mkNn,k

mk
√
nδk

d−→ √
ηkσU,kNk2(0, 1) (stably),

where

Aij = 1{mi ≤ mj }
mi

√
ηi

√
1 + σ 2

U,iNi1(0, 1)− 1{mi ≥ mj }
mj

√
ηj

√
1 + σ 2

U,jNj1(0, 1),

Bij = 1{mi ≤ mj }
mi

√
ηi

σU,iNi2(0, 1)− 1{mi ≥ mj }
mj

√
ηj

σU,jNj2(0, 1).

Hereafter, we simply use the notation ζn,j
d−→ ζj (stably) to denote the vector convergence

{ζn,j , j = 1, . . . , J } d−→ {ζj , j = 1, . . . , J } (stably). For the definition of stability, we refer the
reader to [18, p. 56].

By the delta method, from (4.1) we can prove the following corollary, which is consistent
with Theorem 4 of [10] (when mj = mmax) and Theorem 1.4 of [3].

Corollary 4.1. For fixed j , define �j = {i : mi = mj }, Z(j) = ηj/
∑
i∈�j ηj ,

(j) = η2
j

(
∑
i∈�j ηi)4

∑
i∈�j \{j}

ηi(1 + σ 2
U,i)+ ηj

(
∑
i∈�j ηi)2

(1 − Z(j))
2(1 + σ 2

U,j ).

Under the condition in Theorem 4.1, we have

nδj /2
(

Yn,j∑
i∈�j Yn,i

− Z(j),
Nn,j∑
i∈�j Nn,i

− Yn,j∑
i∈�j Yn,i

)
d−→ N(0, (j))N

(
0, (j) − 1∑

i∈�j ηi
Z(j)(1 − Z(j))

)
(stably).

The proofs of Theorems 4.1 and 4.2 are given in Appendix A.2. From these two theorems,
we can also derive the following corollary on the convergence rate and asymptotic distribution
for Yn,k/nmk/mmax − ψk and Nn,k/nmk/mmax − ηk .
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Corollary 4.2. Write δsec = msec/mmax. Under the condition in Theorem 4.1, we have

Yn,k

nδk
− ψk = o((n−δk(1−1/p))+O(nδsec−1) a.s.,

Nn,k

nδk
− ηk = o((n−δk(1−1/p))+O(nδsec−1) a.s.,

for all k = 1, . . . , K . Under the condition in Theorem 4.2, we have

(nδk/2 ∧ n1−δsec)

(
Yn,k

nδk
− ψk

)
d−→ 1

{ 1
2δk + δsec ≤ 1

}
mk

√
ηk

√
1 + σ 2

U,kNk1(0, 1)

− 1
{ 1

2δk + δsec ≥ 1
}
mkδkηk

∑
{i : mi=msec}

ηi (stably) (4.3)

and

(nδk/2 ∧ n1−δsec)

(
Nn,k

nδk
− ηk

)
d−→ 1

{ 1
2δk + δsec ≤ 1

}√
ηk(

√
1 + σ 2

U,kNk1(0, 1)+ σU,kNk2(0, 1))

− 1
{ 1

2δk + δsec ≥ 1
}
δkηk

∑
{i : mi=msec}

ηi (stably), (4.4)

whenever mk < mmax. In particular, when msec < mmax/2, the asymptotic distributions are
mixing normal.

5. Nonhomogeneous case

When ξ1,k, ξ2,k, . . . are not identically distributed, the mean ofUn,k will depend onn. In some
practical problems, Un,k may depend on previous assignments and the outcomes of previous
trials. For example, the current estimators of the unknown distribution parameters may be
used to adjust the model. In such a case, Un,k and its mean are functions of the estimators θ̂i ,
i = 1, . . . , K , so the means of the replacement are not homogeneous. For the nonhomogeneous
cases, we still have the following limit results. Suppose that {Un,k, k = 1, 2, . . . , K} is
independent of Xn for given Y0, . . . ,Yn−1, and let mn,k = E[Un,k | Y0, . . . ,Yn−1].
Theorem 5.1. Suppose that supn E[Un,k logp Un,k | Y0, . . . ,Yn−1] < ∞ a.s. for some p > 1.
If

mn,k → mk > 0 a.s., k = 1, . . . , K, (5.1)

then
logYn,k ∼ logNn,k ∼ mk

mmax
log n a.s. (5.2)

If ∑
n

|mn,k −mk|
n

< ∞ a.s. and mk > 0, k = 1, 2 . . . , K, (5.3)

then there exist K positive random variables �i such that (2.4)–(2.7) hold.

Remark 5.1. For the nonhomogeneous case, the distribution of �i is also unknown.
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Theorem 5.2. Suppose that

sup
n

|mn,k| < ∞ a.s.,
∑
n

|mn,k −mk|√
n

< ∞ a.s., mk > 0, k = 1, 2 . . . , K, (5.4)

supn E[U2
n,k 1{Un,k ≥ x} | Y0, . . . ,Yn−1] → 0 in probability as x → ∞, and E[(Un,k −

mn,k)
2 | Y0, . . . ,Yn−1] → m2

kσ
2
U,k a.s. for some constants σU,k ≥ 0, k = 1, . . . , K . Then

(4.2), (4.3), and (4.4) hold.

Remark 5.2. Conditions (5.3) and (5.4) are similar to a condition that Bai and Hu [6], [7] used
to study a certain kind of nonhomogeneous generalized Pólya urn model in which the expected
total number of balls to be added at each stage is the same. The RRPU is not covered by their
assumptions because the expectation of the total number of balls to be added differs from stage
to stage.

The proof of Theorem 5.1 is given in Appendix A.3; the proof of Theorem 5.2 is very similar
to that of the homogeneous case and is therefore omitted.

Appendix A. Proofs of the main results

For the proofs in this section, some trivial steps are omitted, leaving them to the full online
version (see www.sta.cuhk.edu.hk/shcheung/supplementary-material.pdf). We first consider
the homogeneous case and prove Theorems 2.2 and 2.3 for the first-order convergence. We
then prove Theorems 4.1 and 4.2 for second-order convergence. Finally, we consider the results
in Section 5 for nonhomogeneous cases. Now, let us define Fn = σ(Ym,Xm,Um,k, m =
1, . . . , n, k = 1, . . . , K), which is the sigma-field that contains the history of the urn process.

A.1. Proofs of the first-order asymptotic properties

Before the proofs, we need two lemmas. The first lemma can be proved using the same
argument as that used to prove Lemma A.4 of [20] (see also [26]).

Lemma A.1. With a probability of 1, on the event {Nn,k → ∞}, we have

Yn,k =
n∑
l=1

Xl,kUl,k ∼ Nn,k if E[U1,k] < ∞,

n∑
l=1

Xl,k(Ul,k −mk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
o

(
Nn,k

logNn,k

)
if E[U1,k logU1,k] < ∞,

o(N
1/p
n,k ) if E[Up1,k] < ∞, 1 ≤ p < 2,

o(
√
Nn,k log logNn,k) if E[U2

1,k] < ∞.

The following is the key lemma for proving Theorems 2.2 and 2.3.

Lemma A.2. Suppose that, for each k, Un,k , n = 1, 2 . . . , are independent and identically
distributed, nonnegative random variables with 0 < mk = EUn,k < ∞. Then

logYn,k ∼ mk

mmax
log n a.s., k = 1, . . . , K, (A.1)

and there is a random variable �k such that

Yn,k exp

{
−

n∑
l=1

mk

|Yl−1|
}

→ �k a.s. (A.2)
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Furthermore, we have

either P(�k > 0) = 0 or P(�k > 0) = 1 (A.3)

and
�k > 0 a.s. ⇐⇒ E[U1,k logU1,k] < ∞. (A.4)

Proof. First, it is trivial that |Yn| ≤ ∑n
l=1

∑K
k=1 Ul,k = O(n); hence,

∞∑
n=1

P(Xn,k = 1 | Fn−1)) ≥ c

∞∑
n=1

1

|Yn−1| = ∞ a.s.,

which implies that P(Xn,k = 1 infinitely often) = 1. Furthermore, Yn,k ∼ mkNn,k → ∞ a.s.
by Lemma A.1. Write qn−1 = ∑n

l=1 1/|Yl−1|. It is obvious that

E[Yn,k | Fn−1] = Yn−1,k

(
1 + mk

|Yn−1|
)

≤ Yn−1,k exp

{
mk

|Yn−1|
}
.

It follows that Yn,k exp{−mkqn−1} is a nonnegative supermartingale and, hence, it converges
a.s. to a finite limit according to the fundamental convergence theorem for supermartingales.
Therefore, (A.2) is proved.

If we let Hk(x) = E[U2
1,k/(x + U1,k)], then

E

[
Yn−1,k

Yn,k

∣∣∣∣ Fn−1

]
= E

[
1 − Un,kXn,k

Yn−1,k
+ Xn,k

Yn−1,k

U2
n,k

Yn−1,k + Un−1,k

∣∣∣∣ Fn−1

]
= 1 − mk

|Yn−1| + Hk(Yn−1,k)

|Yn−1|
≤ exp

{
− mk

|Yn−1| + Hk(Yn−1,k)

|Yn−1|
}
.

It follows that

Y−1
n,k exp

{
mkqn−1 −

n∑
l=1

Hk(Yl−1,k)

|Yn−1|
}

converges to a finite limit a.s. (A.5)

because it is also a nonnegative supermartingale. In addition, Hk(Yl−1,k) → 0 a.s. because
EU1,k < ∞ and Yl−1,k → ∞ a.s. By combining (A.2) and (A.5) we conclude that

logYn,k ∼ mkqn−1 a.s. k = 1, . . . , K. (A.6)

From (A.6), it is obvious that Yn,k/|Yn| → 0 a.s. if mk < mmax. As Yn,k ∼ mkNn,k a.s., we
have

|Yn| ∼ mmax

∑
{i : mi=mmax}

Nn,i ∼ mmax

K∑
i=1

Nn,i = mmaxn a.s., (A.7)

which together with (A.6) implies that

logYn,k ∼ mk

mmax

n∑
l=1

1

l
∼ mk

mmax
log n a.s., k = 1, . . . , K.

Hence, (A.1) is proved.
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Finally, we show (A.3) and (A.4). Assume that E[U1,k logU1,k] < ∞. Then
∞∑
n=1

1

n
E

[
U2

1,k

nmk/(2mmax) + U1,k

]

≤
∞∑
n=1

1

n

nmk/(4mmax)EU1,k

nmk/(2mmax)
+

∞∑
n=1

1

n
E[U1,k 1{U1,k ≥ nmk/(4mmax)}] < ∞,

which together with (A.7) and (A.1) implies that
∞∑
n=1

1

|Yn−1|Hk(Yn−1,k) < ∞ a.s. (A.8)

From (A.8), (A.2), and (A.5), it follows that both Yn,k exp{−mkqn−1} and Y−1
n,k exp{mkqn−1}

have finite limits, and so �k > 0 a.s.
Now, suppose that mk = E[U1,k] < ∞ and E[U1,k logU1,k] = ∞. We will show that

�k = 0 a.s. DefineU(1)n,k = Un,k 1{Un,k < n}, Y (1)n+1,k = Y
(1)
n,k+Xn+1,kU

(1)
n+1,k with Y (1)0,k = Y0,k ,

U
(2)
n,k = Un,k−U(1)n,k, andY (2)n,k = Yn,k−Y (1)n,k . ThenY (2)n+1,k = Y

(2)
n,k+Xn+1,kU

(2)
n+1,k withY (2)0,k = 0.

Define m(1)n,k = E[U1,k 1{U1,k < n}]. Then

E[Y (1)n,k | Fn−1] = Y
(1)
n−1,k + Yn−1,k

|Yn−1|m
(1)
n,k = Y

(1)
n−1,k

(
1 + m

(1)
n,k

|Yn−1| + m
(1)
n,kY

(2)
n−1,k

|Yn−1|Y (1)n−1,k

)
.

Following the same argument as in the proof of (A.2), we find that

Y
(1)
n,k exp

{
−

n∑
l=1

m
(1)
l,k

|Yl−1| −
n∑
l=1

m
(1)
l,k Y

(2)
l−1,k

|Yl−1|Y (1)l−1,k

}
converges to a finite limit a.s. However, as E[U1,k] < ∞,

∑∞
n=1 P(Un,k ≥ n) < ∞.According

to the Borel–Cantelli lemma, P(U
(2)
n,k �= 0 infinitely often) = 0. It follows that Y (2)n,k = O(1)

and Yn,k = Y
(1)
n,k +O(1) a.s. Hence,

∞∑
l=1

m
(1)
l,k Y

(2)
l−1,k

|Yl−1|Y (1)l−1,k

≤ C

∞∑
l=1

mk

|Yl−1|Yl−1,k
≤ C

∞∑
l=1

1

l1+mk/(2mmax)
< ∞ a.s.

by (A.7) and (A.1). It follows that

Yn,k exp

{
−mkqn−1 +

n∑
l=1

m
(2)
l,k

|Yl−1|
}

= Yn,k exp

{
−

n∑
l=1

m
(1)
l,k

|Yl−1|
}

→ ζ

for some 0 ≤ ζ < ∞, where m(2)l,k = E[U1,k 1{U1,k ≥ l}]. It can be shown that

∞∑
l=1

m
(2)
l,k

|Yl−1| ≥ c

∞∑
l=1

m
(2)
l,k

l

≥ cE

[∫ ∞

e

U1,k 1{U1,k ≥ x}
x

dx

]
= cE[U1,k(logU1,k − 1)]
= ∞ a.s.

Hence, Yn,k exp{−mkqn−1} → 0 a.s. This completes the proof.
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Proof of Theorem 2.2. Equation (2.4) follows immediately from (A.2) and (A.4). By noting
that Yn,k = ∑n

m=1Xm,kUm,k ∼ mkNn,k a.s. due to Lemma A.1, (2.5) is also proven. To prove
(2.6) and (2.7), without loss of generality, we suppose that m1 = m2 = · · · = mk0 = mmax >

mk > 0, k = k0 + 1, . . . , K . Owing to (2.5),

Nn,k

Nn,1
→ �k

�1
a.s., k ≤ k0 and

Nn,k

Nn,1
→ 0 a.s., k > k0 + 1.

Note that Nn,1 + · · · +Nn,K = n. It follows that

Nn,k

n
→ 0 a.s., k > k0 + 1 and

Nn,k

n
→ �k

�1 + · · · +�k0

a.s., k ≤ k0,

which, together with (2.5), imply (2.7). Finally, (2.6) follows from (2.7) becauseYn,k ∼ mkNn,k
a.s.

Proof of Theorem 2.3. Note that logYn,k ∼ mk/mmax log n a.s. due to Lemma A.2. Hence,
if Yn,k/nδk converges in distribution to a finite limit � ∗

k with P(� ∗
k > 0) > 0, then δk =

mk/mmax. Whereas if Nn,k/nδk converges in distribution to a finite limit ϕ∗
k , then Yn,k/nδk

converges in distribution to mkϕ∗
k by the fact that Yn,k ∼ mkNn,k a.s. The first part of the

theorem is proven.
Now, suppose that

Yn,k

nmk/mmax

d−→ � ∗
k with P(� ∗

k > 0) > 0. (A.9)

By (A.2), we have

∑
{j : mj=mmax}

Yn,j exp

{
−

n∑
l=1

mmax

|Yl−1|
}

→
∑

{j : mj=mmax}
�k a.s.

and
∑

{j : mj=mmax} Yn,j ∼ mmax
∑

{j : mj=mmax}Nn,j ∼ mmaxn a.s. We conclude that

n1/mmax exp

{
−

n∑
l=1

1

|Yl−1|
}

→
(∑

{j : mj=mmax}�k
mmax

)1/mmax := �̃ ∗ a.s., (A.10)

where P(�̃ ∗ > 0) = 0 or P(�̃ ∗ > 0) = 1 by (A.3).
If P(�̃ ∗ > 0) = 0 then, by (A.9) and (A.10), we have Yn,k exp{− ∑n

l=1mk/|Yl−1|} d−→ 0. It
follows that P(�k > 0) = 0 by (A.2).

If P(�̃ ∗ > 0) = 1 then (A.10) and (A.2) imply that Yn,k/nmk/mmax → �k/(�̃
∗)mk a.s. It

follows that P(�k > 0) = P(� ∗
k > 0) > 0 by (A.9). Hence, P(�k > 0) = 1 by (A.3). We

conclude that if one of the�k, k = 1, . . . , K, is positive, all of them are positive, while, if one
of �k, k = 1, . . . , K , is 0, all of them are 0. By (A.4), the proof is complete.

A.2. Proofs of the second-order asymptotic properties

To prove the second-order convergence, we need the following central limit theorem for
martingale vectors which is a multidimensional version of Corollary 3.1 of [18, p. 58] and can
be obtained using the Cramér-Wold device (cf. Lemma A.3 of [25]).
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Lemma A.3. Let {ζn,i = (ζ
(1)
n,i , . . . , ζ

(K)
n,i ),An,0,An,i; 1 ≤ i ≤ kn} be an array of martingale

differences with An,i ⊂ An+1,i , 0 ≤ i ≤ kn and n ≥ 1,∑
i

E[‖ζn,i‖2 1{‖ζn,i‖ ≥ ε} | An,i−1] P−→ 0 for all ε > 0,

Vn =:
∑
i

E[(ζn,i)′ζn,i | An,i−1] P−→ V := (Vij ).

Then
∑kn
i=1 ζn,i

d−→ N(0,V ) stably, where N(0,V ) is a multidimensional mixing normal dis-
tribution with the characteristic function E[exp{− 1

2

∑
i,j ti tjVij }].

Proof of Theorem 4.1. Recall that δk = mk/mmax. Let

qn−1 =
n∑
l=1

1

|Yl−1| and Qn,k = 1

mk
logYn,k − qn−1.

In addition, Nn,k ≈ Yn,k ≈ nδk a.s. due to Theorem 2.2. Also,

1

mk
log(mkNn,k)− 1

mk
log(Yn,k) = − 1

mk
log

(
1 +

∑n
l=1Xl,k(Ul,k −mk)

mkNn,k

)
= o(N

1/p−1
n,k )

= o(Y
1/p−1
n−1,k ) a.s.

due to Lemma A.1. So, according to the Taylor expansion, it is sufficient to prove that

Qn,k − log�k = o(Y
1/p−1
n−1,k ) a.s.

Now, we let U(δk)n,k = Un,k 1{Un,k ≤ nδk/p}, Ū (δk)n,k = Un,k − U
(δk)
n,k , and f (x) = x − log(1 +

x). Then 0 ≤ f (x) ≤ x2/(1 + x) (x ≥ 0), Qn,k − log�k = − ∑∞
l=n+1�Ql,k, and

�Qn,k =: Qn,k −Qn−1,k = 1

mk
Xn,k log

(
1 + Un,k

Yn−1,k

)
− 1

|Yn−1|
= 1

mk

[
Un,k

Yn−1,k
Xn,k − mk

|Yn−1| −Xn,kf

(
Un,k

Yn−1,k

)]
= 1

mk

[(
U
(δk)
n,k

Yn−1,k
Xn,k − E[U(δk)n,k ]

|Yn−1|
)

+
(
Ū
(δk)
n,k

Yn−1,k
Xn,k − E[Ū (δk)n,k ]

|Yn−1|
)

−Xn,kf

(
Un,k

Yn−1,k

)]
:= �Q

(11)
n,k +�Q

(12)
n,k −�Q

(2)
n,k

mk
.

It is obvious that

∞∑
l=1

Y
1−1/p
l−1,k E[|�Q(2)

l,k | | Fl−1] ≤
∞∑
l=1

Y
1−1/p
l−1,k

|Yl−1| E

[
U2
l,k

Yl−1,k + Ul,k

∣∣∣∣ Fl−1

]

≤
∞∑
l=1

Y
1−1/p
l−1,k

|Yl−1|
E[Upl,k]
Y
p−1
l−1,k
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≤ C

∞∑
l=1

l−1−δk(p+1/p−2)

< ∞ a.s. (A.11)

It follows that
∑∞
l=1 Y

1−1/p
l−1,k |�Q(2)

l,k | < ∞ a.s., and, hence,

∞∑
l=n+1

|�Q(2)
l,k | = o(Y

1/p−1
n−1,k ) a.s. (A.12)

On the other hand, it can be shown that {�Q(11)
n,k } and {�Q(12)

n,k } are both martingale differences
with

∞∑
l=1

Y
(1−1/p)
l−1,k E[|�Q(12)

l,k | | Fl−1] < ∞,

∞∑
l=1

Y
2(1−1/p)
l−1,k E[|�Q(11)

l,k |2 | Fl−1] < ∞.

It follows that
∑∞
l=1 Y

(1−1/p)
l−1 �Q

(1i)
l,k , i = 1, 2, converges a.s., and, hence,

∞∑
l=n+1

(�Q
(11)
l,k +�Q

(12)
l,k ) = o(Y

1/p−1
n−1 ) a.s.

Therefore, log�k −Qn,k = ∑∞
l=n+1�Ql,k = o(Y

1/p−1
n−1 ) a.s. This completes the proof.

Proof of Theorem 4.2. Let δk , qn, andQn,k be defined as in the proof of Theorem 4.1. With-
out loss of generality, we assume thatm1 = · · · = mk0 > mk, k = k0 +1, . . . , K . Define Ik =
1{mk = mmax}. Let N0(0, 1) be a standard normal variable which is independent of all other

variables, and let ς = ∑k0
k=1

√
ηk/(1 + σ 2

U,k)Nk1(0, 1)+
√

1 − ∑k0
k=1 ηk/(1 + σ 2

U,k)N0(0, 1).

Then ς is a standard normal variable such that E[ςNk1(0, 1) | ηk] =
√
ηk/(1 + σ 2

U,k) for a

given ηk, k = 1, . . . , k0.
According to the delta method, it is sufficient to show that√

nδk (Qn,k − log�k)
d−→ 1

mk
√
ηk

√
1 + σ 2

U,kNk1(0, 1)− ςIk

mk
(stably),√

nδk
(

log(mkNn,k)− qn−1 −Qn,k

) d−→ 1

mk
√
ηk
σU,kNk2(0, 1) (stably),

for k = 1, . . . , K . Note that (A.12) and (A.11) also hold for p = 2. It follows that

Qn,k − log�k = −
∞∑

l=n+1

1

mk
�Q

(1)
l,k + o(n−δk/2) a.s.,

where �Q(1)
n,k = �Q

(11)
n,k +�Q

(12)
n,k = Xn,kUn,k/Yn−1,k −mk/|Yn−1|, and

1

mk
log(mkNn,k)− qn−1 = Qn,k − 1

mk
log

(
1 +

∑n
l=1Xl,k(Ul,k −mk)

mkNn,k

)
= Qn,k − 1

mk

∑n
l=1Xl,k(Ul,k/mk − 1)

ηknδk
+ o(n−δk/2) a.s.
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Hence, it is sufficient to show that∑n
l=1Xl,k(Ul,k −mk)√

nδk

d−→ √
ηkmkσU,kNk2(0, 1) (stably), (A.13)

√
nδk

∞∑
l=n+1

�Q
(1)
l,k

d−→ 1√
ηk

√
1 + σ 2

U,kNk1(0, 1)− ςIk (stably). (A.14)

It can be checked that

nδk
∞∑

l=n+1

E[(�Q(1)
n,k)

2 | Fl−1] →

⎧⎪⎪⎨⎪⎪⎩
σ 2
U,k + 1

ηk
if mk �= mmax,

σ 2
U,k + 1

ηk
− 1 if mk = mmax,

a.s.,

√
nδknδj

∞∑
l=n+1

E[(�Q(1)
n,k)(�Q

(1)
n,j ) | Fl−1] →

{
−1 if mk = mj = mmax,

0 otherwise,
a.s.,

for k �= j , and

∞∑
l=n+1

E[(
√
nδk�Q

(1)
l,k )

2 1{(
√
nδk�Q

(1)
l,k )

2 ≥ ε} | Fl−1] → 0 a.s.

On the other hand, it is obvious that the martingales
∑n
l=1Xl,k(Ul,k −mk), k = 1, . . . , K , are

uncorrelated among themselves, and also uncorrelated with all
∑∞
l=n+1�Q

(1)
l,j , j = 1, . . . , K .

Furthermore,

n−δk
n∑
l=1

E[Xl,k(Ul,k −mk)
2 | Fl−1] → ηkm

2
kσ

2
U,k a.s.,

n−δk
n∑
l=1

E[Xl,k(Ul,k −mk)
2 1{(Ul,k −mk)

2 ≥ εnδk } | Fl−1] → 0 a.s.

Then, by Lemma A.3, (A.13) and (A.14) hold.

A.3. Proofs for the nonhomogeneous case

To prove Theorem 5.1, we need the following lemma. Since its proof utilizes similar
arguments as those given in Lemma A.2, it is only given in the online supplement.

Lemma A.4. Suppose that supn E[Un,k logp Un,k | Y0, . . . ,Yn−1] < ∞ a.s. for some p > 1.
Under (5.1) or (5.3), we have Nn,k → ∞ a.s., Yn,k ∼ mkNn,k a.s.,

min
k
mk ≤ lim inf

n→∞
|Yn|
n

≤ lim sup
n→∞

|Yn|
n

≤ max
k
mk a.s., (A.15)

and

Yn,k exp

{
−

n∑
l=1

ml,k

|Yl−1|
}

converges a.s. to a positive finite limit. (A.16)
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Proof of Theorem 5.1. If (5.1) is satisfied then

logYn,k ∼
n∑
l=1

ml,k

|Yl−1| ∼
n∑
l=1

mk

|Yl−1| a.s. (A.17)

Hence, (A.6) remains true, which together with Yn,k ∼ mkNn,k , implies (A.1). So (5.2) is
proven. Finally, (5.3) and the fact that |Yn| ≈ n imply that

∑∞
l=1 |ml,k −mk|/|Yl−1| < ∞ a.s.

It follows that Yn,k exp{− ∑n
l=1mk/|Yl−1|} converges a.s. to a positive finite limit by (A.16).

Then (2.4)–(2.7) follow by the same argument as used in the proof of Theorem 2.2.
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