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Summary

This study is aimed at improving the analysis of data used in identifying marker-associated effects
on quantitative traits, specifically to account for possible departures from a Gaussian distribution of
the trait data and to allow for asymmetry of marker effects attributable to phenotypic divergence
between parental lines. A Bayesian procedure for analysing marker effects at the whole-genome level
is presented. The procedure adopts a skewed #-distribution as a prior distribution of marker effects.
The model with the skewed #-process includes Gaussian prior distributions, skewed Gaussian

prior distributions and symmetric 7-distributions as special cases. A Markov Chain Monte Carlo
algorithm for obtaining marginal posterior distributions of the unknowns is also presented. The
method was applied to a dataset on three traits (live weight, carcass length and backfat depth)
measured in an F, cross between Iberian and Landrace pigs. The distribution of marker effects was
clearly asymmetric for carcass length and backfat depth, whereas it was symmetric for live weight.
The ¢-distribution seems more appropriate for describing the distribution of marker effects on

backfat depth.

1. Introduction

Recent development of molecular techniques has
provided a massive number of molecular markers
and, as a consequence, dense genetic maps are now
available for a number of species. An obvious
use of this molecular information is for marker-
assisted selection in livestock and plant populations
(Whittaker, 2001). The basic idea of marker-
assisted selection is to detect and exploit linkage
disequilibrium between mutations that cause genetic
variations and presumably neutral molecular
markers.

Over the last decade, many quantitative trait loci
(QTL) mapping experiments have been performed
to detect regions of the genome involved in genetic
regulation of quantitative traits (Pe et al, 1993;
Devicente et al., 1993; Andersson et al., 1994). In
these studies, statistical analyses were usually carried
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out via a genomic scan using likelihood (Lander &
Botstein, 1989) or regression techniques (Haley ez al.,
1994). With these approaches, the model of analysis
allows for one or a few genome locations at a time.
Recently some authors have proposed the com-
bined use of all available markers. For instance,
Whittaker (2001) and Lange & Whittaker (2001)
proposed ridge regression methods, while Gianola
et al. (2003) and Xu (2003) developed Bayesian ap-
proaches. The procedures of Gianola et al. (2003) and
Xu (2003) employ prior Gaussian distributions for
effects associated with molecular markers. Mekkawy
(2005) compared the two procedures by simulation,
and showed that the method of Gianola et al. (2003)
produced better predictions of genetic merit.
However, the assumption of a prior Gaussian
distribution, common to both Gianola et al. (2003)
and Xu (2003), for effects associated with molecular
markers may be unrealistic if some of the markers
are associated with major effects. Therefore, it is
possible that a more robust distribution, such as a
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t-distribution, could be more appropriate (Lange
et al., 1989) as prior. Further, asymmetric distri-
butions (Fernandez & Steel, 1998) may provide a
more flexible prior for effects associated with genetic
markers.

The objective of this paper is to describe a pro-
cedure based on Gianola et al. (2003), but with robust
asymmetric prior distributions instead, and to evalu-
ate its performance in a case involving data from a
crossing experiment with Iberian and Landrace pigs.

2. Asymmetric robust distribution

Under the assumption of prior independence between
markers, Gianola et al. (2003) assume the following
Gaussian prior distribution for additive marker
effects:

fglo)= exp| — 5
! HMZJIO% 207,

where q={gq,} is the vector of additive genetic marker
effects, o) is the variance of the additive genetic
marker effects and n is the number of markers.

Here, we present an alternative prior distribution
following Fernandez & Steel (1998), with density:
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where y is the asymmetry parameter, and f{x) is the
following univariate z-density:
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with v representing the degrees of freedom parameter
of the ¢-distribution.

3. Application
(1) Experimental design

Three Iberian boars from the genetically isolated
Guadyerbas line (Toro et al., 2000) were mated with
31 non-inbred Landrace sows. Six boars and 73 sows
from their offspring, generation F,, were the parents
of 577 F, animals. The Iberian pig is characterized by
its extremely fat body composition. Landrace animals
were the maternal line used at Nova Genetica S. A.
experimental farm. The two parental lines differ sub-
stantially in growth, carcass and meat quality traits
(Serra et al., 1998).

The F, pigs were raised under standard intensive
conditions on the experimental farm Nova Genetica.
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Feeding was ad libitum, and males were not castrated.
A total of 321 individuals from 58 full-sib families
were recorded for carcass weight, carcass length and
backfat depth. The average (+SD) age at slaughter
was 175-5+5-5 days. Average (+SD) carcass weight,
carcass length and backfat depth were 74-9 +9-82 kg.,
79:26+3-96 cm and 28-31 £+ 7-90 mm, respectively.

(ii) Genotyping

DNA of parent animals was extracted from blood
using a saline precipitation protocol, and DNA from
F, and F, pigs was extracted using a commercial
protocol (Boehringer Mannheim). Animals were
genotyped for 92 markers (90 microsatellites and 2
PCR-RFLP), chosen to provide highly informative
input based on the index of Ron et al. (1995). A broad
description of the markers is presented in Table 1.
Markers provided a uniform coverage of the 18
autosomes. PCRs were carried out in a MJ Research
Thermal Cycler. The microsatellite PCR products
were analysed with Genescan software on capillary
electrophoresis equipment with fluorescence detection
(ABI PRIMS 310 Genetic Analyzer). Genotypes
were stored in the Gemma database (Iannucelli ef al.,
1996).

(iii) Statistical analysis

Statistical analysis of carcass weight, carcass length
and backfat depth for the F, population was carried
out using univariate Bayesian methods. The likeli-
hood of the data given the parameters of the model
was

AYIB.q. 02, M)
1 —XB—Mq)(y—X—M
O(_nexp_(y Xp—Mq)'(y—Xf—Mq)
lopsd 202

where y is the vector of data (321 records); B is the
vector of systematic effects (2 levels for sex, 58 levels
for family, and a regression on age of slaughter);
q is the vector of additive effects associated with the
markers (92 levels); X is an incidence matrix relating
the systematic effects to the data; M is an unknown
incidence matrix relating the additive marker effects
to the data; o2 is the residual variance; and ny is the
number of data points.

The incidence matrix M is an n; (number of data
points) x n,,, (number of markers) random matrix,
with entries equal to 1, 0 or —1, depending on
whether the two alleles were of Iberian origin (1), one
was Iberian and the other was a Landrace allele (0),
or both were Landrace alleles (—1). The prior
distribution of the matrix was determined by the
probability of origin given the marker data
( fiM|Mks)), which was calculated using the algorithm
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Table 1. Marker positions (Pos) and information content (IC) at position sorted by chromosome (Chr)
Chr Marker Pos 1C Chr Marker Pos 1C Chr Marker Pos IC
1 SWI1515 0-0 053 6 S0035 0-0 065 12 S0143 0-0 0-78
CGA 301 0-99 SW1057 44-3 0-96 GH 314 0-71
S0113 46-2 0-57 S0087 577 1-00 SW8&74 48-6 0-98
S0155 55-0 0-78 SW316 812 0-90 S0106 81-7 0-79
SW1828 85-0 0-85 S0228 96-0 0-48 13 S0219 0-0 0-57
SWI1881 108-7 0-82 SW935 30-9 0-54
2 IGF2 00 070 SW2419 1453 096 SWRI00 640 097
S0141 303 093
SW240 41-8 098 7 S0025 0-0 0-73 SW398 81-4 0-96
SW395 64-7 0-95 S0064 40-1 0-76 SW1056 91-2 0-41
S0226 72-4 0-99 TNFB 689 0-93 SW769 121-5 0-58
S0378 87-0 0-93 S0066 87-8 099 14 SW857 0-0 0-89
SWR308 130-1 1-00 SW632 1119 0-94 SWI1125 18-8 092
S0101 137-7 0-92 SW210 422 0-82
3 SW72 0-0 1-00 SW764 160-3 0-94 S0007 55-8 0-87
S0206 256 051 ¢ SW2410 0-0 0-98 SW1557 90-8 0-43
S0216 551 1:00 SW905 260 060 SW2515 1140 075
2003%29 ;gg 833 SWRI110 447 1-00 15 SW919 0-0 1-00
W S0017 66:5 098 SWI111 163 056
4 SW2404 0-0 0-80 S0225 86-1 0-83 S0149 383 1-00
S0301 40-8 0-85 SWol 109-1 1-00 SWO936 560 0-85
S0001 59-5 088 9 SW983 00 0-99 SWI119 79:9 0-45
SW839 72-8 1-00 SWol1l 311 0-71 16 SW742 0-0 0-99
DECR2 78-8 0-18 SW2571 79-5 0-73 S0298 18-4 0-44
S0214 951 1-00 SW2093 109-2 0-99 SW2517 359 1-00
SW445 1168 1-00 SW1349 160-9 0-76 S0061 69-4 0-37
80097 1344 084 0038 00 074 17 SW24 00  1:00
5 SW413 0-0 0-98 S0070 455 0-82 SW1920 283 0-95
SW2425 66-1 0-50 SW1626 100-5 0-97 SW2431 72-2 0-51
S0005 81-8 1-:00 11 S0385 0-0 0-87 18 SW1023 0-0 0-85
IGF1 113-8 0-91 S0071 431 0-75 SW787 21-5 0-84
SWRI111 130-9 0-95 SW703 72-3 1-00 S0120 351 1-00
described by Haley et al. (1994); Mks stands for 0.6
markers. 05 |
The prior distribution of the additive marker effects ’
was as described in the previous section in expressions g 04
(1) and (2). In addition, the prior distribution for E 0.3
1 aQ-. )
systematic effects () was: Z o2
SBIB", 05) = NS, 10p) 0.1
0

where 1 f° is the vector of prior means for the
systematic effects, (1 is an #n,, x 1 vector of ones) and
g is the prior standard deviation. Here, 5° was set to
0, and og was set to 10°. Prior distributions of the
variance components (02 and o}) were set to

flo) =y Ve, 52)
Ao =1y 5})

with v,=v,=0, and s2=s2= —2, thus yielding uni-
form distributions. In addition, the prior distribution
of the degrees of freedom of the z-distribution (v) was
flat between 1 and 100. Finally, the prior distribution
of the asymmetry parameter (y) was assumed to be
uniform between 0 and 1 with density of 0-5, and with
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Density
Fig. 1. Prior density of the asymmetry parameter (y).

a density of & for values over 1. This distribution
assigns an equal probability (0-5) to values below and
over 1, and it is invariant with respect to an arbitrary
choice of the sign of the genetic effects favouring the
Landrace or the Iberian line. This prior distribution is
presented in Fig. 1.

(iv) Markov Chain Monte Carlo algorithm

A Gibbs sampling procedure (Gelfand & Smith, 1990)
was performed to obtain samples from marginal
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posterior distributions of the parameters. The Gibbs
sampling procedure involves an updating sampling
scheme of the fully conditional distributions of all
unknown parameters involved in the model. Here,
the conditional distributions of each level of the
systematic effects was univariate normal, and the
conditional distribution of the residual variance (o2)
was a scale inverted chi-square distribution. Sampling
of elements of the random incidence matrix (M) was
performed by drawing each element from a discrete
probability distribution in the following way:

p(Mlj:k|ﬁa q, Ui, Y, Mké)
— f(y‘ﬁsqsaiaMlj:k)f(Ml/:k|Mks)
Z/\»: 71,0,1f(y|ﬁa q, (7(2,, Ml]:k)ﬂMtj :k|MkS)

where fiM;=k|f.q,0%y) is the conditional distri-
bution of the elements of M={—1,0,1} given the
data, systematic and marker effects and the residual
variance. In contrast, sampling from the conditional
distribution for each level of the marker effects (g;),
the variance of the marker effects (07), the asymmetry
parameter (y) and the degrees of freedom of the
t-distribution (v) was performed using a Metropolis—
Hastings algorithm (Hastings, 1970) with a uniform
proposal distribution with a range of 10 units around
the value of the previous iteration.

Based on output from the Gibbs sampler, the per-
centage of variance explained by the marker effects
(h2) was calculated as

Ny
" .0-5¢7

h2: 1=

0y 0-5¢3 4 o2

since the additive variance explained by the ith
marker is 0-5¢7.

We also calculated an ‘empirical marginal prior’
distribution of the ith marker effect evaluated by
averaging the conditional prior distributions in (1)
over the posterior samples for o2 and y at each
iteration by using the Rao—Blackwell argument:

niter

fa)= Z f(‘]i|0121,, v;)/niter.

Above, niter is the total number of iterations after
convergence, and az,- and vy, are the variance of the
additive genetic marker effects and the asymmetry
parameter, respectively, sampled in the jth iteration.
The objective of this empirical marginal prior
distribution is to represent the prior influence on the
marker effects.

The Gibbs sampling analysis was performed
by running 110000 iterations, with the first 10000
discarded as burn-in. Convergence was checked
using the CODA software (Best er al., 1995). All
100000 samples were used for extracting posterior
features.
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4. Results
(1) Live weight

The distribution of posterior means of additive
marker effects with the Gaussian and the asymmetric
t prior distributions for live weight are presented in
Fig. 2 (top panel). The most extreme effect was the
—1-01 kg associated with marker SW24 in SSC17.
The mean of the posterior distribution of the asym-
metry parameter (y) was 1:00, and the posterior
standard deviation was 0-08 (Fig. 3, top panel). These
results imply that the probability mass below 0 in the
empirical marginal prior distribution of the marker
effects was 0-50, as can be observed in Fig. 4 (top
panel). In addition, the posterior mode of the degrees
of freedom of the t-distribution was 16, and the
probability that the degrees of freedom were larger
than 30 was 52:59 % (Fig. 5, top panel). Moreover,
the posterior mean estimate of the variance pertaining
to the effects associated with the markers was 0-411
(0-144), and the posterior mean estimate of residual
variance was 45:64 (4-63). Finally, the posterior
mean of the proportion of variance explained by the
markers in the F, population was 0-441 (0-:094).

(i1) Carcass length

Results for posterior mean estimates of the additive
marker effects with the Gaussian and asymmetric
t prior distributions on carcass length are presented
in Fig. 2 (centre panel). The effects with the highest
absolute values were associated with markers
S0001 (—0-28 cm), SW2571 (—0-31 cm) and SW24
(—0-40 cm), located in SSC4, SSC9 and SSC17, re-
spectively. The posterior distribution of y for carcass
length is presented in Fig. 3 (centre panel), and had a
mean of 1-27 and a standard deviation of 0-15. The
posterior probability of y being below 1-00 was only
1-02%. These results imply that the probability mass
below 0 in the empirical marginal prior distribution of
the marker effects was 0-61 (Fig. 4, centre panel). In
addition, the posterior distribution of the degrees of
freedom of the #-distribution had a mode at 13, and
the posterior probability of degrees of freedom being
greater than 30 was 4526 % (Fig. 5, centre panel). The
posterior mean estimate of the variance of the effects
associated with the markers was 0-:026 (0-014) and the
posterior mean estimate of the residual variance was
4-59 (0-48). The posterior mean of the proportion of
variance explained by the markers in the F, popu-
lation was 0-327 (0-121).

(ii1) Backfat depth

Posterior mean estimates of the additive marker
effects with Gaussian and asymmetric ¢ prior distri-
butions are presented in Fig. 2 (bottom panel). The
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Fig. 2. Posterior mean estimates with the Gaussian and asymmetric t models for marker effects for live weight, carcass

length and backfat depth.

most sizeable additive effects were associated with
markers S0001 (+0-99mm) in SSC4, SW316
(+1:09 mm) and S0228 (4+2-:30 mm) in SSC6, and
S0101 (—1:05 mm) in SSC7. The posterior mean and
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standard deviation of y were 0-87 and 0-08, respect-
ively (Fig. 3, bottom panel), with a posterior prob-
ability of y greater than 1 equal to 47%. As a
consequence, the probability mass below 0 in the
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Fig. 3. Posterior density of the asymmetry parameter ()
for live weight, carcass length and backfat depth.

empirical marginal prior distribution of the marker
effects was 043 (Fig. 4, bottom panel). In Fig. 5
(bottom panel), we present the posterior distribution
of the degrees of freedom of the ¢-distribution, with a
posterior mode of 2, and a probability of the degrees
of freedom being greater than 30 equal to only
17-98 %. The posterior mean estimate of the variance
of the effects associated with the markers was 0-195
(0-120), and the posterior mean estimate of the
residual variance was 22:94 (2-:31). The posterior
mean of the proportion of variance explained by the
markers in the F, population was 0-397 (0-170).

5. Discussion

The t-distribution has been widely used to model
deviations from Gaussian assumptions (Lange et al.
1989), even in the field of quantitative genetics
(Stranden & Gianola, 1999; Rosa et al., 2004).
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However, these z-distributions have been used mostly
to model residuals, due to the suspect unknown non-
random preferential treatment associated with some
observations (Stranden & Gianola, 1999). In our case,
we used it to model the prior distribution of effects
associated with molecular markers. The ¢-distribution
can account better than the Gaussian distribution for
heavy tails, and its use is justified on the basis of
evidence suggesting that some markers or segments of
the genome are strongly associated with major genes
or QTL. In the present study, we replaced the prior
Gaussian distribution with a robust ¢-distribution in
the procedure designed by Gianola et al. (2003).
Furthermore, the symmetric distribution of
Gianola et al. (2003) was replaced by an asymmetric
distribution (Fernandez & Steel, 1998), which allows
for differences in the density of positive and negative
effects. Most experiments for detecting QTL are based
on F, designs involving crosses between divergent
lines. With this scheme, most of the QTL effects are
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expected to favour the most productive line, whereas
only a few are expected to be cryptic, or to favour the
lowest production line. Therefore, the asymmetric
distributions described by Fernandez & Steel (1998)
can be very useful for modelling asymmetry of effects.

It must be noted that the symmetric Gaussian prior
defined by Gianola et al. (2003) is a particular case of
the proposed model. The asymmetric robust distri-
bution converges to the Gaussian distribution when
the asymmetry parameter (y) is equal to 1 and when
the degrees of freedom of the ¢-distribution are large
enough.

One of the most controversial points in Bayesian
analysis is the specification of prior distributions.
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Here, the prior distribution of y (Fig. 1) was assumed
flat between 0 and 1 with a probability of 0-5, and
with a density equal to ‘;—f when y is greater than 1.
This distribution ensured that 50% of prior prob-
ability was below y=1 and 50% over y=1 and, in
addition, that the probability of a subspace between
0 and 1 was equal to the probability between the
reciprocal of the boundaries of the subspace. For
example, the prior probability of y being between 0-3
and 0-5 was 0-1, which is the same as the probability
of it being between g5 and 3. In addition, the prior
distribution of the degrees of freedom was assumed to
be uniform between values of 1 and 100. The upper
limit of 100 was established by assuming that differ-
ences between ¢-distributions with degrees of freedom
over 100 are negligible, so the resulting formula would
be equivalent to that of a univariate Gaussian distri-
bution.

In the case analysed, we presented results for three
traits, leading to different pictures with respect to
asymmetry and degrees of freedom of the #-distri-
bution. The posterior distribution of y was centred on
1 for live weight, whereas the probability of y being
over 1 was higher for carcass length and lower for
backfat depth (Fig. 3). These results support the idea
that the empirical marginal prior distribution of the
marker effects should be asymmetric for backfat
depth and carcass length (Fig. 4). As a consequence,
such an empirical marginal prior distribution implies
an increase in the proportion of negative effects on
carcass length relative to a Gaussian prior distri-
bution (Fig. 2, centre panel). This would favour the
Landrace line, due to the differences between the two
breeds reported in the literature (Serra et al., 1998).
Similarly, an increase in the proportion of positive
effects (favouring the Iberian line) was observed for
backfat depth (Fig. 2, bottom panel). Again, these
results are consistent with differences between the
parental breeds reported in the literature. For
instance, Serra et al. (1998) reported that mean
backfat was 48 mm for the Iberian and 20 mm for the
Landrace pigs, respectively.

With respect to the degrees of freedom of the
t-distribution, posterior distributions for live weight
and carcass length had modes, means and medians
close to 20, while the probability of their respective
degrees of freedom being over 30 was around 50 %.
These results imply that the distribution of marker
effects does not differ substantially from a Gaussian
distribution, and that including a robustness correc-
tion is not strictly needed. On the other hand, for
backfat depth, the posterior distribution of the
degrees of freedom had a mode of 2, and the posterior
probability of being over 30 was only 17-98 %. Here,
the robustness ‘correction’ was useful, and these
results agree with those presented by Varona et al.
(2002), showing that some QTL with major effects
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could explain differences between the two lines.
These QTL effects associated with markers S0001
(+0-99 mm) in SSC4, SW316 (4 1:09 mm) and S0228
(+2:30 mm) in SSC6, and S0101 (—1:05mm) in
SSC7.

The case studied provided a simple description of
differences between two line origins in an F, exper-
iment. Marker effects for live weight were appropri-
ately described with a Gaussian prior distribution,
whereas marker effects for carcass length were
clearly asymmetric, and for backfat depth a skewed
t-distribution seemed more appropriate.

The 92 marker effects were assumed to be drawn
from a single distribution, but extensions to this
model can be implemented with ease. Marker effects
could be split into between- and within-chromosome
deviations, as suggested by Gianola et al. (2003).
Moreover, the evidence of co-expression in adjacent
regions of the genome (Caron et al., 2001) suggests a
covariance structure between the various marker
effects. In this sense, multivariate skew distributions
(Gupta, 2003; Gupta et al., 2004) could be used to
accommodate relationships between markers in the
prior distribution, and even to estimate the relation-
ship parameter(s) via a Metropolis—Hastings algor-
ithm (Hastings, 1970). In addition, background
polygenic effects could also be modelled by assuming
either a multivariate normal distribution with the
numerator relationship matrix (Quaas, 1976), or with
multivariate ¢-distributions as proposed by Stranden
& Gianola (1999), and the segregation variance could
be modelled as suggested by Birchmeier ez al. (2002).

The procedure proposed by Xu (2003) differs from
that proposed by Gianola ez al. (2003) in the defi-
nition of the prior distributions. The former author
proposed a prior distribution unique to each of the
marker effects, whereas Gianola et al. (2003) argued
that marker effects are a sample from a more general
prior distribution. A skewed ¢-distribution can also
be fitted in the procedure of Xu (2003), by assuming
that the asymmetry parameter (y) and the degrees of
freedom (¢) are common to all prior distributions of
the marker effects.

In conclusion, as illustrated in this study, the
skewed 7 prior distribution proposed offers flexibility
and robustness concerning the distribution of genetic
effects associated with molecular markers. The use
of shrinkage as suggested by Whittaker (2001) and
Lange & Whittaker (2001), and generalized into a
Bayesian setting by Gianola et al. (2003), avoids
problems due to overparameterization, and colinear-
ity causing unstable least-squares estimates. The
skewed ¢-distribution retains the desirable properties
described in Gianola et al. (2003) but also makes
it possible to describe differences between lines in an
F, cross more adequately. This procedure can also
be used to make a global description of differences
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between parental lines due to additive, dominance
and epistatic effects.

Some other possible extensions of the procedure
can be considered. First, the number of degrees of
freedom can vary between positive and negative
effects, accounting for possible differences in heavy
tails favouring each of the founder lines. Second, the
residual distribution considered here was Gaussian,
but it can be replaced by a skewed ¢-distribution,
following Von Rohr & Hoeschele (2002). In addition,
further research must be done to compare the pro-
posed model with other alternatives for modelling
asymmetry of effects, such us the use of mixtures of
distributions (Gianola et al., 2006).
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