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1. Introduction

Let K be a field andX be anm x n matrix of indeterminates ovdf. Denote by
K[X] the polynomial ringK'[X;;:1 < i < m,1 < j < n]. We equipK [X] with

a diagonal term order, that is,7 is a term order with the property that the initial
term with respect te- of a minor of X is the product of the elements of its main
diagonal. Denote by, the ideal of K[ X | generated by theminors of X. We are
interested in the following two questions:

(1) Is the Rees algeb@(l;) = @0l fT* Cohen-Macaulay?
(2) What is a Gobner basis off1?

If the characteristic oK is O or if ¢ = min(m,n), then the first question has a
positive answer; see Bruns [1] and Eisenbud and Huneke [9]. On the other hand,
there exist examples of algebrRgl;) which are not Cohen-Macaulay. They arise
when the characteristic is exceptional; see [1, 4.1]. (We say that the characteristic
of K is exceptional if 0< charK < min(t, m <t,n <t).) The best result that one

can hope for is a positive answer to (1) in non-exceptional characteristic. Answers
to the second question are known whies 1 ort = min(m, n) (for example see
Sturmfels [16] and Conca [5]). The two problems come together in the study of the
initial algebra ofR(1;). The initial algebra in(R(1;)) of R(l;) is ®xsoin, (1F)T*.

* The visit of the first author to the University of Genova that made this paper possible was
supported by the Vigoni program of the DAAD and the CRUI.
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It is known thatR(l;) is Cohen-Macaulay if in(R (1)) is finitely generated and
Cohen-Macaulay (Conca, Herzog, and Valla [7, 2.3]).

For the study of in(R(l;)) we will employ the Knuth—Robinson—Schensted
correspondence. It establishes a bijection between standard monomiélarad
ordinary monomials oK [X] (Knuth [12]). It is based on the Robinson-Schensted
algorithm introduced by Schensted [15] in order to determine the longestincreasing
subsequence of a sequence of integers. This correspondence was successfully used
by Sturmfels [16] in the determinination of a@mer basis of;l Later variants of
the correspondence were applied to the study dbGer bases of other classes of
determinantal ideals; see Conca [4], [5], and Herzog and Trung [11]. Throughout
this paper we will always refer to the version of the Knuth—Robinson—-Schensted
correspondence described in [11], and we will denote it by KRS.

Our main combinatorial result is a generalization of Schensted’s Theorem. It
relates the shape of a tableau to the ‘shapes’ of the decompositions of its KRS
sequence into increasing subsequences. It is similar to Greene’s generalization
[10] of Schensted’s Theorem, and its proof also uses the Knuth relations. While
Greene’s Theorem concerns the maximal length of subsequehoésa given
sequence of integers such that decomposes into inreasing subsequences
we are interested in a decompositionsafto increasing subsequences. . ., s
for which X max0, |s/| <t) is maximal.

The primary decomposition of the ideafs(and more generally of the prod-
ucts I, ... 1;,.) in non-exceptional characteristic is well-known; see Eisenbud, De
Concini, and Procesi [8] and Bruns and Vetter [3]. They are intersections of sym-
bolic powers of the ideals ] 1 < s < t, and the symbolic powers have standard
monomial bases. This fact in combination with the generalization of Schensted’s
Theorem allows us to describe the ‘ordinary’ monomial basis g} by combi-
natorial invariants analogous to those that determine the standard monomial basis
of 1¥. We then show that i{R(l;)) (and, more generally, {fR (I, ... 1;,))) is a
normal monomial algebra. By Hochster's Theoren{R(l;)) is Cohen-Macaulay,
so thatR(l;) is a normal Cohen-Macaulay ring as desired. Furthermore we will
prove that § has a minimal system of generators that simultaneously i$ar@r
basis. Further applications yield a description of the initial algebra of the subalge-
bra of K[ X] generated by theminors and the initial algebra of the symbolic Rees
algebra of a ladder determinantal ideal.

We expectthat one caninvestigate the powers of ideals of minors of a symmetric
matrix or of the Pfaffian ideals of an alternating one in a similar manner since all
the basic results used by us have variants for these cases.

2. Invariants of the Knuth—Robinson—-Schensted correspondence

The polynomial ringK’ [ X ] has two distinguishe -bases, the standard monomial
basis and the ordinary monomial basis. Hence KRS induces a degree preserving
K-linear map KRSK[X] — K[X] which is our bridge from standard monomial
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theory to ordinary monomial theory. To be precise, one has the following lemma,
whose part (a) is essentially due to Sturmfels [16].

LEMMA 2.1. (a)Let | be anideal of< [ X ] which has aK -basis, say3, of standard
monomials, and le$ be a subset of I. Assume that for @kt B there exists € S
such thain(s) | KRS(b). ThenS is a Grobner basis of | anéh, () = KRS(I).

(b) Let | and J be homogeneous ideals such that(l) = KRS(I) and
in;(J) = KRS(J). Thenin (I) + in;(J) = in (I +J) = KRS(I + J) and
in(I)Nin:(J) =in.(INJ)=KRS(INJ).

Proof. (a) Let@ denote the ideal generated by the initial monomials of the
elements ofS. By hypothesis one has KRB C @ C in.(I). But KRSI) and!
have the same Hilbert function because KRS is degree preserving,ahgand
I have the same Hilbert function because of the general properties of the initial
ideal. It follows that KR$I) = Q = in.(I).

(b) OnehasKRE+J) = KRS(I)+KRS(J) = in (I)+in.(J) Cin.(I+.J),
andKR§INJ) = KRS(I)NKRS(J) = in-(I)Nin-(J) 2 in;(INJ). The Hilbert
function argument concludes the proof. O

The ordinary and symbolic powers of determinantal ideals Hémases of stan-
dard monomials (in non-exceptional characteristic). We may use 2.1 to study the
initial ideals of these ideals provided we have some control on the KRS image of

their basis elements. The elements of the standard monéfrases ofgllﬂ) and of

I* are described in terms of certains functigngwe will recall the precise results

in Section 3). To this end we introduce some notation and define the funegtions
LetS = s1,...,s, be a sequence of positive integers. Fer N we define

r

Y(S) = (si &t +1)4,
=1

where(a)+ = max{a, 0}, and
I'y(S) =max{k € N.v;(S) > k(t+1sj) forallj =1,...,t}.

For instance ifS = 4, 3,3, 1 thenvy4(S) = 1,v3(S) = 4,72(S) = 7,71(S) = 11,
[4(S) =1,T3(S5) =3,I'2(S) =5,T'1(S) = 11.

Letd be a product of minors of, sayd = 6, ... 6, whered; is as;-minor. The
shapeof J is the sequence of intege$$d) = s1,. .., s,. Then we set

Y(6) = 1(S(0)), and T'y(d) =T(S(9))-

Now let M be a monomial o [X]. We define
Ye(M) = max{y,(d): 4 is a product of minors and ii} (0) = M},
T'y(M) = max{I';(d): 4 is a product of minors and iiy (0) = M }.
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We warn the reader that in general there does not exist a product of Mindtts
in;(6) = M and~y,(M) = ~(0) for all ¢; for instance see the monomial given in
3.9.

Schensted’s result [15] on the longest incresing subsequence of a sequence of
integers can be expressed in terms of the functjdoy saying that for a standard
monomialé one has

7:(8) # 0 < 7 (KRS(d)) # 0.

For the application we have in mind we need a much stronger result.
THEOREM 2.2 Leté be a standard monomial. Then one has fortall

(i) 7:(9) = %(KRS(9)), (i) T¢(6) = I'+(KRS(d)).

As we shall see, 2.2 can be reduced to a theorem on the decomposition of sequences
of integers into increasing ones. To this end we extend the functipts this
context. Leth = by, ..., bs be a sequence of integers. A subsequépge. . , b;, ,

with i1 < --- < 14y, is increasingif b;, < --- < b;,. A decompositiory of b

into increasing subsequencesjmarrdecompositiofor short, is said to have shape

S =s1,...,s, if theith subsequence haselements. We set

Ye(g) = (), Tilg) =Tu(9),
7:(b) = max{~:(g): g is an inc<decomposition ob},
T'y(b) = maxX{T(g): g is an inc&decomposition ob}.

Suppose thaf/ = KRS(d) = X3, ... Xa.b,, Where the factorsy,,,, are
ordered such thai; < a2 < -+ < as andb; > b1 whenevera; = a; 1. A
representation oM as in.(¢) with § a product of minors of shapg, ..., s, is
equivalent to an inc-decomposition bf,...,bs of shapes,...,s,. Therefore
Y (M) = v(b) andT'y(M) = T';(b). Since the shape of the standard monorial
and, hencey;(d) andIl';(d) are determined only by, . .. , b5, we may assume that
a; =1 fori =1,...,s. Furthermore, exchanging the roles of rows and columns
and using [11, 1.1(b)], we may also assume f#at. .., b} = {1,...,s}. After
this reduction, 2.2 follows from:

THEOREM 2.3.Letb = by,...,bs be a sequence of distinct integers andRet
be the tableau obtained fromby the Robinson—Schensted algorithm. Denote the
shape ofP by S = s1,...,s,. Then

(1) 7(0) = 2(S), (i) Te(b) =T4(S).

Proof. We first recall the definition of Knuth relation (Sagan [14, 3.6.2]).d.et
andb be two sequences of integers. One saysdlzatds differ by a Knuth relation
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if one of the following conditions holds with< y < w orw < y < z:

(1) a = z1,..., 24, Y, 2, W, Tiia,...,Ts and
b= 21, .., %, Y, W, 2, Tjt 4y .., Ls,

(2) a = z1,..., 23, 2, W, Y, Tisa,...,Tsand
b=2x1,...,%,W, 2,Y, Titd,-..,Ts.

Two sequences are said to Kauth equivalentf one can pass from one to the
other via a chain of Knuth relations.

Denote the entries of théh row of the tableauP by Pj1,..., P, . The
sequence’q, ..., P, , Pr—11, ..., Pr_1s, 4,..., P11,..., P15, IS said to be the
P-canonical sequencdt is known that the sequenéds Knuth equivalent to the
P-canonical one [14, 3.6.3]. So, to prove the theorem it suffices to show that

(iii)) v:(b) = v(S) andl'y(b) = I'y(S) if b is the P-canonical sequence, and
(iv) v, andl’; have the same values on sequences that differ by a Knuth relation.

For the proof of (iii) leth be theP-canonical sequence. First of all one notes that
b has an inc-decomposition into theubsequence3y, ..., P, i = 1,...,7. The
shape of this decompositionds, . . . , s,. Hencey;(S) < v:(b) andl';(S) < I'¢(b).
Now it is enough to show thaf,(Q) < v(S) forall ¢t if @ = q¢1,...,q, is the
shape of an inc-decomposition®fSince the longest increasing subsequenée of
hass; elements, one hag < ¢ for all i if ¢ > s3, and thusy,(Q) = 0. So we may
assume < si.

Let k be the integer for which; = s ands; > s,1. Letd' be the sequence
which is obtained frond by deleting the elemeri,, . Thend' is the P’-canonical
sequence where the tableRUis obtained fromP by deleting the last element of
thekth row. The shape af’ is S = s1, ..., 8¢ 1,8k <1, Sky1,- - -, Sr. EVEryinc-
decomposition ob gives, by restriction, an inc-decompositiorbbfSo we obtain a
decomposition of’ with shape&)’ = ¢}, .. ., ¢,,, and there existssuch thay, = ¢;
foralli # j andg; = ¢; 1. By induction on the number of entries Bfwe may
assume that (') < 7(S"). Theny(Q) < %(Q') + 1 < %(S") + 1= %(S).

For the proof of (iv) we consider sequeneeandb of integers that differ by a
Knuth relation. In order to prove that(a) = 7.(b) (respectivelf’;(a) = ['(b))
it suffices to show that for every inc-decompositigrof a there exists an inc-
decompositiorh of b such thaty,(g) < v:(h) (respectivelyl’;(g) < I'y(h)). So
let ¢ be an inc-decomposition ef. If z andw belong to distinct subsequences of
the decomposition, then the increasing subsequenceg afe not affected by the
Knuth relation, and we may takeequal tog.

It remains the case in whichandw belong to the same increasing subsequence.
In particularz < w and hence we are in the case< y < w. Denote by
u = p1, 2z, w, p2 andv = p3, y, pa the subsequences gfvhich containz, w andy.
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Here thep; are increasing subsequences.dflow we have to distinguish two cases.
Assume first the Knuth relation is of type (1). We have three ways of rearranging
the elements of the sequeneeandv into increasing subsequencesof

, u' = p1, w, p2, uf =pnYy,w,p2,
U = p1, z,pP4,
I { ’ (”) U,:p3ayap4a (”I) v = P3, P4,
v =p3Y,w,p2,
2, 2.

Now we show how to definé if one wants to control the functioty for a
givent. If |u| < t (respectivelyv| < t), then the sequenee(respectivelyw) does
not contribute toy,(¢g). Hence we may takg to be the decomposition éfthat is
obtained fromy by replacingu andv by the sequences in (Il) (respectively (),
and we havey(g) = v¢(h). If |u|, |v| > ¢, then we take: to be the decomposition
of b which is obtained frong by replacingu andv by the sequencesiin (I). Then it
is easy to see that

Yi(h) ©v(9) = (W' &t + 1) + (V| &t + 1)1 &lu| S| +2t <2 > 0.

Next we explain how to choosk in order to controll’; for a givent. Let
kE =Ty(g), and lete = min(|ul, |v]). If vi(g) > k(t+ 1<) foralli = 2,... e,
then we may use (l1) or (lll) (depending on whether < |v| or |u| > |v|) to define
h.Infact, inthis case we havg(h) = v;(g) <1 fori = 2,...,eandy;(h) = ~vi(g)
fori > e; hencel'y(h) > k as desired. Next assumgg) = k(t + 1<) for some
1, 2 < i < e. We claim that in this last case one may defingy means of (I). Note
that fori < e the above argument shows thatg) < v;(h). We have to control
what happenstg;(h) fore < j < ¢. To this end we set; = v;(g) ©k(t + 1<)
and denote by; the number of the subsequences in the decompogitiwith at
least: elements. By assumption one has > 0 for 1 < 5 < tanda; = O for
some 2< i < e. In order to conclude thdi;(h) > k it suffices to show that
vi(9) ©vj(h) < o fore < j < t. Itis easy to see that;(g) = v;+1(9) + ¢;.
Thereforen; <aj 1 = ¢; < k. We claim that(x) ¢c; < kforallj > e. If ¢; > k
for somej > e, then, since:, > ¢;, one hasc; > k for all i < e. But then
a; > ¢; &k > 0forallz < e, which contradicts the assumption. It follows from
the inequality(x) thata;1 > «j fore < j < t, and hencey; > j e <1 for
e < j < t. This is exactly what it is needed to show thatg) <;(h) < «; for
e < j < t. The proof of (iv) in the case of a Knuth relation of type (1) is complete,
and the dual argument works in the case of a Knuth relation of type (2). O

In the next section we shall need that the functipinehaves well with respect to
taking powers.

LEMMA 2.4. Let M be amonomial oK [X] andh € N. Theny,(M") = hy,(M).
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Proof. Let§ be the standard monomial such that KRS= M. Any power of§
is a standard monomial and it is easy to see that (§RS= M". From 2.2 it fol-
lows thaty; (M) = v;(8) andy; (M") = ~,(6"). Clearly one has,(6") = hv,(6),
and hencey,(M") = hry,(M). O

Note that in general’;,(M") # hT'y(M). One only hagl'y(M")/h] = Ty(M).
Furthermore note that the functionsare not additive: in generady (M1 M>) >
Ye(M1) + v (M2).

3. Grobner bases of powers of determinantal ideals

We keep the notation of the previous section and assume for simplicity:tkat.
Denote by ] the ideal of K[ X] generated by theminors of X. The set of all the
standard monomials of K[X] with ~;(d) > k is a K-basis of thekth symbolic
power Iﬁk) (see [8] or or [3]). Furthermore, a product of minargs in I,gk) if and

only if .(8) > k. It follows that the symbolic Rees algebRd (I;) = eabol,gk)T’c
is given by

RE(I;) = K[X][14T, 11 T?, ... 1, T Y,

PROPOSITION 3.1The set of products of minors withry,(d) = & is a Grobner
basis ofl{*). Furtherin. (1)) is generated by the monomialg with , (M) = k.
Proof. Let S be the set of the products of minafswith +;(d) = k. One has
S C ng). By virtue of 2.2(i) we know that for all standard monomialsvith
v:(6) > k there existso in S with in.(w) | KRS(d). Thus the claim follows from
2.1(a). O

Rewriting 3.1 in terms of the symbolic Rees algebra and its initial algebra yields

LEMMA 3.2. The initial algebrain. (R*(I;)) of the symbolic Rees algebR(l;) is
equal toK [ X][in, (1) T, in,(I;11)T2,...,in.(I,,)T™**1]. In particular, a mono-
mial MT* is inin, (R*(l;)) if and only ify, (M) > k.

An important consequence is

COROLLARY 3.3.The monomial algebran-(R*(l;)) is finitely generated and
normal. In particularin;(R*(l;)) andR?*(l;) are Cohen-Macaulay.

Proof. It follows from 3.2 that the algebra i(R*(l,)) is finitely generated. Let
NT* be a monomial of [X][T7]. For the normality of in(R*(l;)) it suffices that
NT* € in;(R*(I;)) whenever a power aVT* belongs to in(R*(l;)). So let us
assuméNT*)" € in.(R*(l;)). Theny,(N") > hk in view of 3.2. But by 2.4 we
havey;(N") = hy;(N), and hencey,(N) > k. Using 3.2 once more, one gets
NT* €in,(R*(l;)). The rest follows from 7, 2.3]. O
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Application of 2.1(b) yields

LEMMA 3.4. Letky, ..., kn, € N. Then

inT( N Ig-kj)>: N inT(Ig-kj)).

1<j<m 1<j<m

Lettq,...,t, be positive integers and sgt= v;(t1,...,t,). lfcharK = 0 or
charK > max (min(¢;, m <t;)), one has

1<i<m

see [3,10.9] and [8, 8.1]. Thus 3.4 implies

THEOREM 3.5.Suppose thatharK = 0 or charK > max(min(t;, m <t;)).
Then

in-(lyy .. 1,) = () in (1%

1<j<m

In particular, a monomiall/ belongs tan. (I, ...l ) if and only ify; (M) > g
forallj =1,...,m.

THEOREM 3.6.Suppose thatharK = 0 or charK > max (min(t;, m <t;)).
Then

(@) in-(R(ly, ...1s,)) is finitely generated and normal,
(b) R(l¢, ... 14,) is Cohen-Macaulay and normal, and

(c) the associated graded ring ok [X] with respect toly, ...l;, is Cohen-
Macaulay.

Proof SetJ = Iy, ...l;.. One has iR(R(J)) = ®ksoin,(J*)T*. By 3.5

in.(J%) = ﬂlgjgminr(lgkgj)). Hence

in-(R(J)) = Nicj<m ®r>0 inT(lgkgj))Tk-

The monomial ellgebr@;@oinT(Ig-kg’j))T’€ is isomorphic to theg;th Veronese sub-
algebra of the monomial algebra.{R*(1;)) (in the relevant casg; > 0 and
equal toK[X,T] otherwise). By 3.3 the latter is normal and finitely generated,
and therefor@,@oiml(.kgf))T’C is a normal, finitely generated monomial algebra.
Thusin.(R(.J)) is finitely generated and normal. In fact, the intersection of a finite
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number of finitely generated normal monomial algebras is finitely generated and
normal. (This follows easily from standard results about normal affine semigroup
rings; see Bruns and Herzog [2,6.1.2 and 6.1.4].)

For (b) one again applies [7, 2.3], and (c) is a standard consequencelf Kj):
and the associated graded ring are residue class rings of the Rees algebra modulo
the isomorphic idealdTR(J) andJR(J) respectively. O

We single out the most important case.

THEOREM 3.7 Suppose thatharK = 0 or charK > min(t, m <t). ThenR(l;)
is Cohen-Macaulay and normal.

Remarl3.8. In order to obtain a version of 3.7 that is valid in arbitrary character-
istic one mustreplace the Rees algebra by its integral closure. The integral closure is
always equal to the intersection of symbolic Rees algebras that in non-exceptional
characteristic gives the Rees algebra itself [1].

Theorem 3.5 is satisfactory if one only wants to determine the initial ideal of the
product}, ..., butitdoes nottell us how to find a Gwner basis. A natural guess
is that a Gobner basis of;| . .. I;, is given by the products of minors (standard or
not) which arein{, ... 1;,. Unfortunately this is wrong in general.

EXAMPLE 3.9. Suppose thatr > 4 and chai = 0 or > 3, and consider the
ideal bl4. The monomial\/ = X11X13X22X34X43X45 haS’)’4(M) = 1, ’yg(M) =
2,v2(M) = 4,v1(M) = 6. Hence, by virtue of 3.4, we know thaf € in,(l2ls).
The products of minors of degree 6 ii4 have the shapes 6 or b, or 4 2. Clearly
M is not the initial monomial of a product of minors of shape 6 or of shafge 5
The only initial monomial of a 4-minor that dividéd is X11X22X34X45 but the
remaining factorX',3X 43 is not the initial monomial of a 2-minor. Hendé is not
the initial monomial of a product of minors that belongs4ia.l

Nevertheless, if we confine our attention to powers of determinantal ideals, the
result is optimal.

THEOREM 3.10.Suppose thatharK = 0 or charK > min(¢, m <t). Then
a Grobner basis of¥ is given by the products of minosssuch thats has at
mostk factors,I'y(6) = k, anddegd = kt. Thereford} has a minimal system of
generators which is a @bner basis.

Proof. Since f = ﬁlgjgtlg(”l*])k), a K-basis of the idealflis given by the
standard monomialswith v;(9) > (¢t + 1<j)k for 1 < j < ¢, thatis,I',(0) > k.
Further a product of minor&is in ng) if and only if T';(6) > k. Consider the set
S of the products of minors with I';(6) > k. We haveS c 1¥, and by virtue of
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2.2(ii) the monomial KR&) is divisible by the initial term of an element &ffor
all standard monomialswith T';(6) > k. By 2.1(a)S is a Gbbner basis offl.

Let nowS; be the set of all the products of mindrsvith at mostk factors and
I',(6) = k. In order to show thas; is a Gibner basis off, it suffices to show
that for everyw € S with more thank factors orT';(w) > k there exist®) € S
such that in(d) is a proper divisor of ip(w). If w has more thak factors, then
0 is taken to be the product of minors which is obtained frorby skipping the
shortest minor. IT";(w) > &, thend is taken to be the product of minors which is
obtained fromw by replacing the longest minor, sy, ..., ap|b1,. .., by, with
[a1,...,ap_1|b1,...,bs_1]. Itis easy to see thatc S in both cases.

Next we chooses, as the set of alb € S; with degd = kt. Pickw € S7. If
degw > kt, then we define’ by omitting one position from the shortest minor in
w. Itis easily verified that’ € Sy, and proceeding iteratively we eventually reach
d € Sz such thatin(¢) divides in-(w).

In order to find a minimal set of generators we select a minimal sufyset
S, with the property that its set of initial terms still generategify). Since all the
elements o053 have degreét, |S3| = dimg (1¥) ;. O

We conclude this section by describing the initial algebra of the subalggbra
of K[X] that is generated by the minors of size

THEOREM 3.11.Suppose thatharK = 0 or charK > min(¢,m <t). Then the
productsi of minors withdegd = k¢ andI',(0) = k for somek € N form a Sagbi
basis of4;. The initial algebran,(A;) is finitely generated and normal. Hende
is a normal Cohen-Macaulay ring.

Proof. The degreé:t component of in(A;) is the degree:t component of
in;(I;). Therefore the first part of the theorem follows from 3.10.

Let B, be the subalgebra of iR (1;)) generated by all monomialg 7% such
that deg/ = kt. Then B, is obviously isomorphic to if(A;). Furthermore the
semigroupH of monomials belonging td; is the intersection of the semigroup of
monomials ofin (R (I;)) with the subset of monomials &f[ X, T'] whose exponent
vector satisfies a homogeneous linear equation. Theréfdsefinitely generated
and normal. O

4. Symbolic powers of ladder determinantal ideals

In this section we apply the results of the previous one to the study of the powers of
ladder determiantal ideals. For generalities about ladders and ladder determinantal
ideals we refer the reader [11] and [13]. Détbe a ladder ofX, and let }(Y)

denote the ideal oK [Y'] generated by theminors ofY'. It is known that J(Y") is

a prime ideal, that,(Y') = I; n K[Y] and that the-minors ofY" form a Gibbner

basis of }(Y'). Our goal is to gain some information about the symbolic powers of
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ladder determinantal ideals.
THEOREM 4.1.LetY be aladder and > 1.

(a) The set of products of minofsof Y with () = & is a Grobner basis of
L(Y)®) andl,(V)® = 1% 0 K[y,

(b) 1:(Y') has primary powers if and only ¥ does not contairi + 1)-minors,
©) R(1,(Y)) = K[Y])[l,(")T, 11 1(Y)T?, ..., 1, (Y)T™ 1], and

in,(R*(1:(Y)))
= K[X][|n7-(|t(y))T, inT(|t+1(Y))T2’ e, inT(Im(Y))Tmbel]’

(d) R*(1:(Y)) is normal and Cohen-Macaulay.

Proof. First we claim that a Gibner basis of the ideaﬁkI) N K[Y] is given by
the setS of the products of minor§ of Y with v:(d) = k. To show this one notes

thatS C I,Ek) N K[Y]. Further, iff € ng) N K[Y], then we know by virtue of 3.1
that there exists a product of minafof X with v.(§) = k& and in-(§) | in-(f).
Finally § € S becausé’ is a ladder and ifn(6) € K[Y].

Now, since }(Y)®) € 1%® n K[y, it suffices for (a) to verify thas c 1,(Y)®).
Letw be aminor of sizé+j <1 of Y, and let”Z be a submatrix of” which contains
w. Then by [3, Prop. 10.2] we have € 1,(Z)") and since {(Z)Y) c 1,(Y)W),
it follows thatw € 1,(Y)). The symbolic powers form a filtration, and hence
S C l(Y)*),

(b) If Y does not contairft + 1)-minors, then (a) implies;(Y)*) is equal
to 1,(Y))*. Conversely, assumg contains a(t + 1)-minor, sayw. Then pick a
t-minor « of Y. Sincey, (wa®~2) = k, it follows from (a) thatwa®—2 e 1,(Y)*)
forall k > 1. Butdegue* 2 =t + 1+ t(k ©2) = tk + L&t < tk, and hence
wak=2 g 1,(Y)k,

Statement () is just (a) rewitten in terms of the symbolic Rees algebra and its
initial algebra. Finally, to prove (d) one notes that(iR*(1:(Y'))) = in-(R*(l;)) N
K[Y][T],and henceip(R*(1:(Y))) inherits normality from in(R*(l;)). Then the
claim follows from [7, 2.3]. O

Unfortunately we are not able to determine the primary decompositilo§A.
Of course one has(Y)* C 1,(Y)® N1, 1(Y)@) ... n1y(Y) ), but equality
does not hold in general.

EXAMPLE 4.2. One can check with a computer algebra systemitgjls(Y') ¢
1,(Y')?, whereY is the ladder obtained from a& matrix by skippingX s, Xs4, Xss.
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Neither can we expect to descend propertieR0f.(Y")) directly from those

of R(l;), because the previous example tells us that in gengdd)’ is strictly
smaller than§i N K[Y].
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