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Abstract. The goal of this paper is to determine Gröbner bases of powers of determinantal ideals
and to show that the Rees algebras of (products of) determinantal ideals are normal and Cohen-
Macaulay if the characteristic of the base field is non-exceptional. Our main combinatorial result is a
generalization of Schensted’s Theorem on the Knuth–Robinson–Schensted correspondence.
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1. Introduction

LetK be a field andX be anm� n matrix of indeterminates overK. Denote by
K[X] the polynomial ringK[Xij : 1 6 i 6 m;1 6 j 6 n]. We equipK[X] with
a diagonal term order� , that is,� is a term order with the property that the initial
term with respect to� of a minor ofX is the product of the elements of its main
diagonal. Denote by It the ideal ofK[X] generated by thet-minors ofX. We are
interested in the following two questions:

(1) Is the Rees algebraR(It) = �k>0Ikt T
k Cohen-Macaulay?

(2) What is a Gr̈obner basis of Ikt ?

If the characteristic ofK is 0 or if t = min(m;n), then the first question has a
positive answer; see Bruns [1] and Eisenbud and Huneke [9]. On the other hand,
there exist examples of algebrasR(It) which are not Cohen-Macaulay. They arise
when the characteristic is exceptional; see [1, 4.1]. (We say that the characteristic
of K is exceptional if 0< charK 6 min(t;m� t; n� t).) The best result that one
can hope for is a positive answer to (1) in non-exceptional characteristic. Answers
to the second question are known whenk = 1 or t = min(m;n) (for example see
Sturmfels [16] and Conca [5]). The two problems come together in the study of the
initial algebra ofR(It). The initial algebra in� (R(It)) ofR(It) is�k>0 in� (Ikt )T
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112 WINFRIED BRUNS AND ALDO CONCA

It is known thatR(It) is Cohen-Macaulay if in� (R(It)) is finitely generated and
Cohen-Macaulay (Conca, Herzog, and Valla [7, 2.3]).

For the study of in� (R(It)) we will employ the Knuth–Robinson–Schensted
correspondence. It establishes a bijection between standard monomials ofX and
ordinary monomials ofK[X] (Knuth [12]). It is based on the Robinson–Schensted
algorithm introduced by Schensted [15] in order to determine the longest increasing
subsequence of a sequence of integers. This correspondence was successfully used
by Sturmfels [16] in the determinination of a Gröbner basis of It. Later variants of
the correspondence were applied to the study of Gröbner bases of other classes of
determinantal ideals; see Conca [4], [5], and Herzog and Trung [11]. Throughout
this paper we will always refer to the version of the Knuth–Robinson–Schensted
correspondence described in [11], and we will denote it by KRS.

Our main combinatorial result is a generalization of Schensted’s Theorem. It
relates the shape of a tableau to the ‘shapes’ of the decompositions of its KRS
sequence into increasing subsequences. It is similar to Greene’s generalization
[10] of Schensted’s Theorem, and its proof also uses the Knuth relations. While
Greene’s Theorem concerns the maximal length of subsequencess0 of a given
sequences of integers such thats0 decomposes intot inreasing subsequencess0i,
we are interested in a decomposition ofs into increasing subsequencess001; : : : ; s

00

u

for which�max(0; js00i j � t) is maximal.
The primary decomposition of the ideals Ik

t (and more generally of the prod-
ucts It1 : : : Itr ) in non-exceptional characteristic is well-known; see Eisenbud, De
Concini, and Procesi [8] and Bruns and Vetter [3]. They are intersections of sym-
bolic powers of the ideals Is, 1 6 s 6 t, and the symbolic powers have standard
monomial bases. This fact in combination with the generalization of Schensted’s
Theorem allows us to describe the ‘ordinary’ monomial basis of in� (Ikt ) by combi-
natorial invariants analogous to those that determine the standard monomial basis
of Ikt . We then show that in� (R(It)) (and, more generally, in� (R(It1 : : : Itr ))) is a
normal monomial algebra. By Hochster’s Theorem in� (R(It)) is Cohen-Macaulay,
so thatR(It) is a normal Cohen-Macaulay ring as desired. Furthermore we will
prove that Ikt has a minimal system of generators that simultaneously is a Gröbner
basis. Further applications yield a description of the initial algebra of the subalge-
bra ofK[X] generated by thet-minors and the initial algebra of the symbolic Rees
algebra of a ladder determinantal ideal.

We expect that one can investigate the powers of ideals of minors of a symmetric
matrix or of the Pfaffian ideals of an alternating one in a similar manner since all
the basic results used by us have variants for these cases.

2. Invariants of the Knuth–Robinson–Schensted correspondence

The polynomial ringK[X] has two distinguishedK-bases, the standard monomial
basis and the ordinary monomial basis. Hence KRS induces a degree preserving
K-linear map KRS:K[X] ! K[X] which is our bridge from standard monomial
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KRS AND POWERS OF DETERMINANTAL IDEALS 113

theory to ordinary monomial theory. To be precise, one has the following lemma,
whose part (a) is essentially due to Sturmfels [16].

LEMMA 2.1. (a)Let I be an ideal ofK[X]which has aK-basis, sayB, of standard
monomials, and letS be a subset of I. Assume that for allb 2 B there existss 2 S

such thatin� (s) j KRS(b). ThenS is a Gröbner basis of I andin� (I) = KRS(I).
(b) Let I and J be homogeneous ideals such thatin� (I) = KRS(I) and

in� (J) = KRS(J). Then in� (I) + in� (J) = in� (I + J) = KRS(I + J) and
in� (I) \ in� (J) = in� (I \ J) = KRS(I \ J).

Proof. (a) LetQ denote the ideal generated by the initial monomials of the
elements ofS. By hypothesis one has KRS(I) � Q � in� (I). But KRS(I) andI
have the same Hilbert function because KRS is degree preserving, and in� (I) and
I have the same Hilbert function because of the general properties of the initial
ideal. It follows that KRS(I) = Q = in� (I).

(b) One has KRS(I+J) = KRS(I)+KRS(J) = in� (I)+in� (J) � in� (I+J),
and KRS(I\J) = KRS(I)\KRS(J) = in� (I)\ in� (J) � in� (I\J). The Hilbert
function argument concludes the proof. 2

The ordinary and symbolic powers of determinantal ideals haveK-bases of stan-
dard monomials (in non-exceptional characteristic). We may use 2.1 to study the
initial ideals of these ideals provided we have some control on the KRS image of
their basis elements. The elements of the standard monomialK-bases of I(k)t and of
Ikt are described in terms of certains functions
t (we will recall the precise results
in Section 3). To this end we introduce some notation and define the functions
t.

LetS = s1; : : : ; sr be a sequence of positive integers. Fort 2 N we define


t(S) =
rX

i=1

(si � t+ 1)+;

where(a)+ = maxfa;0g, and

�t(S) = maxfk 2 N: 
j(S) > k(t+ 1� j) for all j = 1; : : : ; tg:

For instance ifS = 4;3;3;1 then
4(S) = 1, 
3(S) = 4, 
2(S) = 7, 
1(S) = 11,
�4(S) = 1,�3(S) = 3,�2(S) = 5,�1(S) = 11.

Let � be a product of minors ofX, say� = �1 : : : �r, where�i is asi-minor. The
shapeof � is the sequence of integersS(�) = s1; : : : ; sr. Then we set


t(�) = 
t(S(�)); and �t(�) = �t(S(�)):

Now letM be a monomial ofK[X]. We define


t(M) = maxf
t(�): � is a product of minors and ini� (�) =Mg;

�t(M) = maxf�t(�): � is a product of minors and ini� (�) =Mg:
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We warn the reader that in general there does not exist a product of minors� with
in� (�) = M and
t(M) = 
t(�) for all t; for instance see the monomial given in
3.9.

Schensted’s result [15] on the longest incresing subsequence of a sequence of
integers can be expressed in terms of the function
t by saying that for a standard
monomial� one has


t(�) 6= 0, 
t(KRS(�)) 6= 0:

For the application we have in mind we need a much stronger result.

THEOREM 2.2.Let� be a standard monomial. Then one has for allt:

(i) 
t(�) = 
t(KRS(�)); (ii) �t(�) = �t(KRS(�)):

As we shall see, 2.2 can be reduced to a theorem on the decomposition of sequences
of integers into increasing ones. To this end we extend the functions
t to this
context. Letb = b1; : : : ; bs be a sequence of integers. A subsequencebi1; : : : ; bik ,
with i1 < � � � < ik, is increasingif bi1 < � � � < bik . A decompositiong of b
into increasing subsequences, aninc-decompositionfor short, is said to have shape
S = s1; : : : ; sr if the ith subsequence hassi elements. We set


t(g) = 
t(S); �t(g) = �t(S);


t(b) = maxf
t(g): g is an inc� decomposition ofbg;

�t(b) = maxf�t(g): g is an inc� decomposition ofbg:

Suppose thatM = KRS(�) = Xa1b1 : : : Xasbs , where the factorsXaibi are
ordered such thata1 6 a2 6 � � � 6 as and bi > bi+1 wheneverai = ai+1. A
representation ofM as in� (�) with � a product of minors of shapes1; : : : ; sr is
equivalent to an inc-decomposition ofb1; : : : ; bs of shapes1; : : : ; sr. Therefore

t(M) = 
t(b) and�t(M) = �t(b). Since the shape of the standard monomial�

and, hence,
t(�) and�t(�) are determined only byb1; : : : ; bs, we may assume that
ai = i for i = 1; : : : ; s. Furthermore, exchanging the roles of rows and columns
and using [11, 1.1(b)], we may also assume thatfb1; : : : ; bsg = f1; : : : ; sg. After
this reduction, 2.2 follows from:

THEOREM 2.3.Let b = b1; : : : ; bs be a sequence of distinct integers and letP

be the tableau obtained fromb by the Robinson–Schensted algorithm. Denote the
shape ofP byS = s1; : : : ; sr. Then

(i) 
t(b) = 
t(S); (ii) �t(b) = �t(S):

Proof. We first recall the definition of Knuth relation (Sagan [14, 3.6.2]). Leta

andb be two sequences of integers. One says thata andb differ by a Knuth relation
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KRS AND POWERS OF DETERMINANTAL IDEALS 115

if one of the following conditions holds withz < y < w orw < y < z:

(1) a = x1; : : : ; xi; y; z; w; xi+4; : : : ; xs and

b = x1; : : : ; xi; y; w; z; xi+4; : : : ; xs;

(2) a = x1; : : : ; xi; z; w; y; xi+4; : : : ; xs and

b = x1; : : : ; xi; w; z; y; xi+4; : : : ; xs:

Two sequences are said to beKnuth equivalentif one can pass from one to the
other via a chain of Knuth relations.

Denote the entries of theith row of the tableauP by Pi1; : : : ; Pisi . The
sequencePr1; : : : ; Prsr ; Pr�11; : : : ; Pr�1sr�1; : : : ; P11; : : : ; P1s1 is said to be the
P -canonical sequence. It is known that the sequenceb is Knuth equivalent to the
P -canonical one [14, 3.6.3]. So, to prove the theorem it suffices to show that

(iii) 
t(b) = 
t(S) and�t(b) = �t(S) if b is theP -canonical sequence, and
(iv) 
t and�t have the same values on sequences that differ by a Knuth relation.

For the proof of (iii) letb be theP -canonical sequence. First of all one notes that
b has an inc-decomposition into thei subsequencesPi1; : : : ; Pisi , i = 1; : : : ; r. The
shape of this decomposition iss1; : : : ; sr. Hence
t(S) 6 
t(b) and�t(S) 6 �t(b).
Now it is enough to show that
t(Q) 6 
t(S) for all t if Q = q1; : : : ; qv is the
shape of an inc-decomposition ofb. Since the longest increasing subsequence ofb

hass1 elements, one hasqi < t for all i if t > s1, and thus
t(Q) = 0. So we may
assumet 6 s1.

Let k be the integer for whichs1 = sk ands1 > sk+1. Let b0 be the sequence
which is obtained fromb by deleting the elementPksk . Thenb0 is theP 0-canonical
sequence where the tableauP 0 is obtained fromP by deleting the last element of
thekth row. The shape ofP 0 isS0 = s1; : : : ; sk�1; sk� 1; sk+1; : : : ; sr. Every inc-
decomposition ofb gives, by restriction, an inc-decomposition ofb0. So we obtain a
decomposition ofb0 with shapeQ0 = q01; : : : ; q

0

v, and there existsj such thatq0i = qi
for all i 6= j andq0j = qj � 1. By induction on the number of entries ofP we may
assume that
t(Q0) 6 
t(S

0). Then
t(Q) 6 
t(Q
0) + 1 6 
t(S

0) + 1 = 
t(S).

For the proof of (iv) we consider sequencesa andb of integers that differ by a
Knuth relation. In order to prove that
t(a) = 
t(b) (respectively�t(a) = �t(b))
it suffices to show that for every inc-decompositiong of a there exists an inc-
decompositionh of b such that
t(g) 6 
t(h) (respectively�t(g) 6 �t(h)). So
let g be an inc-decomposition ofa. If z andw belong to distinct subsequences of
the decompositiong, then the increasing subsequences ofg are not affected by the
Knuth relation, and we may takeh equal tog.

It remains the case in whichz andw belong to the same increasing subsequence.
In particular z < w and hence we are in the casez < y < w. Denote by
u = p1; z; w; p2 andv = p3; y; p4 the subsequences ofg which containz, w andy.
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Here thepi are increasing subsequencesofa. Now we have to distinguish two cases.
Assume first the Knuth relation is of type (1). We have three ways of rearranging
the elements of the sequencesu andv into increasing subsequences ofb:

(I)

(
u0 = p1; z; p4;

v0 = p3; y; w; p2;
(II )

8>><
>>:
u0 = p1; w; p2;

v0 = p3; y; p4;

z;

(III )

8>><
>>:
u0 = p1; y; w; p2;

v0 = p3; p4;

z:

Now we show how to defineh if one wants to control the function
t for a
givent. If juj < t (respectivelyjvj < t), then the sequenceu (respectivelyv) does
not contribute to
t(g). Hence we may takeh to be the decomposition ofb that is
obtained fromg by replacingu andv by the sequences in (II) (respectively (III)),
and we have
t(g) = 
t(h). If juj; jvj > t, then we takeh to be the decomposition
of b which is obtained fromg by replacingu andv by the sequences in (I). Then it
is easy to see that


t(h)� 
t(g) = (ju0j � t+ 1)+ + (jv0j � t+ 1)+ � juj � jvj+ 2t� 2 > 0:

Next we explain how to chooseh in order to control�t for a givent. Let
k = �t(g), and lete = min(juj; jvj). If 
i(g) > k(t+ 1� i) for all i = 2; : : : ; e,
then we may use (II) or (III) (depending on whetherjuj 6 jvj or juj > jvj) to define
h. In fact, in this case we have
i(h) = 
i(g)�1 for i = 2; : : : ; e and
i(h) = 
i(g)
for i > e; hence�t(h) > k as desired. Next assume
i(g) = k(t+ 1� i) for some
i, 26 i 6 e. We claim that in this last case one may defineh by means of (I). Note
that for i 6 e the above argument shows that
i(g) 6 
i(h). We have to control
what happens to
j(h) for e < j 6 t. To this end we set�j = 
j(g)� k(t+1� j)
and denote byci the number of the subsequences in the decompositiong with at
leasti elements. By assumption one has�j > 0 for 1 6 j 6 t and�i = 0 for
some 26 i 6 e. In order to conclude that�t(h) > k it suffices to show that

j(g) � 
j(h) 6 �j for e < j 6 t. It is easy to see that
j(g) = 
j+1(g) + cj .
Therefore�j � �j+1 = cj � k. We claim that(�) cj < k for all j > e. If cj > k

for somej > e, then, sincece > cj , one hasci > k for all i 6 e. But then
�i > ci � k > 0 for all i 6 e, which contradicts the assumption. It follows from
the inequality(�) that�j+1 > �j for e < j < t, and hence�j > j � e � 1 for
e < j 6 t. This is exactly what it is needed to show that
j(g) � 
j(h) 6 �j for
e < j 6 t. The proof of (iv) in the case of a Knuth relation of type (1) is complete,
and the dual argument works in the case of a Knuth relation of type (2). 2

In the next section we shall need that the function
t behaves well with respect to
taking powers.

LEMMA 2.4. LetM be a monomial ofK[X] andh 2 N. Then
t(Mh) = h
t(M).
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Proof. Let� be the standard monomial such that KRS(�) =M . Any power of�
is a standard monomial and it is easy to see that KRS(�h) = Mh. From 2.2 it fol-
lows that
t(M) = 
t(�) and
t(Mh) = 
t(�

h). Clearly one has
t(�h) = h
t(�),
and hence
t(Mh) = h
t(M). 2

Note that in general�t(Mh) 6= h�t(M). One only has[�t(Mh)=h] = �t(M).
Furthermore note that the functions
t are not additive: in general,
t(M1M2) >

t(M1) + 
t(M2).

3. Gröbner bases of powers of determinantal ideals

We keep the notation of the previous section and assume for simplicity thatm 6 n.
Denote by It the ideal ofK[X] generated by thet-minors ofX. The set of all the
standard monomials� of K[X] with 
t(�) > k is aK-basis of thekth symbolic

power I(k)t (see [8] or or [3]). Furthermore, a product of minors� is in I(k)t if and

only if 
t(�) > k. It follows that the symbolic Rees algebraRs(It) = �k>0I
(k)
t T k

is given by

Rs(It) = K[X][ItT; It+1T
2; : : : ; ImTm�t+1]:

PROPOSITION 3.1.The set of products� of minors with
t(�) = k is a Gröbner

basis ofI(k)t . Further in� (I(k)) is generated by the monomialsM with 
t(M) = k.
Proof. Let S be the set of the products of minors� with 
t(�) = k. One has

S � I(k)t . By virtue of 2.2(i) we know that for all standard monomials� with

t(�) > k there exists! in S with in� (!) j KRS(�). Thus the claim follows from
2.1(a). 2

Rewriting 3.1 in terms of the symbolic Rees algebra and its initial algebra yields

LEMMA 3.2. The initial algebrain� (Rs(It))of the symbolic Rees algebraRs(It) is
equal toK[X][in� (It)T; in� (It+1)T

2; : : : ; in� (Im)Tm�t+1]: In particular, a mono-
mialMT k is in in� (Rs(It)) if and only if
t(M) > k.

An important consequence is

COROLLARY 3.3.The monomial algebrain� (Rs(It)) is finitely generated and
normal. In particularin� (Rs(It)) andRs(It) are Cohen-Macaulay.

Proof. It follows from 3.2 that the algebra in� (Rs(It)) is finitely generated. Let
NT k be a monomial ofK[X][T ]. For the normality of in� (Rs(It)) it suffices that
NT k 2 in� (Rs(It)) whenever a power ofNT k belongs to in� (Rs(It)). So let us
assume(NT k)h 2 in� (Rs(It)). Then
t(Nh) > hk in view of 3.2. But by 2.4 we
have
t(Nh) = h
t(N), and hence
t(N) > k. Using 3.2 once more, one gets
NT k 2 in� (Rs(It)). The rest follows from 7, 2.3]. 2
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Application of 2.1(b) yields

LEMMA 3.4. Letk1; : : : ; km 2 N . Then

in�

0
@ \

16j6m

I(kj)j

1
A =

\
16j6m

in� (I
(kj)
j ):

Let t1; : : : ; tr be positive integers and setgj = 
j(t1; : : : ; tr). If charK = 0 or
charK > maxi(min(ti;m� ti)), one has

It1 : : : Itr =
\

16j6m

I(gj)j ;

see [3, 10.9] and [8, 8.1]. Thus 3.4 implies

THEOREM 3.5.Suppose thatcharK = 0 or charK > maxi(min(ti;m � ti)).
Then

in� (It1 : : : Itr ) =
\

16j6m

in� (I
(gj )
j ):

In particular, a monomialM belongs toin� (It1 : : : Itr ) if and only if
j(M) > gj
for all j = 1; : : : ;m.

THEOREM 3.6.Suppose thatcharK = 0 or charK > maxi(min(ti;m � ti)).
Then

(a) in� (R(It1 : : : Itr )) is finitely generated and normal,

(b) R(It1 : : : Itr) is Cohen-Macaulay and normal, and

(c) the associated graded ring ofK[X] with respect toIt1 : : : Itr is Cohen-
Macaulay.

Proof. Set J = It1 : : : Itr . One has in� (R(J)) = �k>0in� (Jk)T k. By 3.5

in� (Jk) = \16j6min� (I
(kgj)
j ). Hence

in� (R(J)) = \16j6m �k>0 in� (I
(kgj)
j )T k:

The monomial algebra�k>0in� (I
(kgj)
j )T k is isomorphic to thegj th Veronese sub-

algebra of the monomial algebra in� (R
s(Ij)) (in the relevant casegj > 0 and

equal toK[X;T ] otherwise). By 3.3 the latter is normal and finitely generated,

and therefore�k>0in� I(kgj)j )T k is a normal, finitely generated monomial algebra.
Thus in� (R(J)) is finitely generated and normal. In fact, the intersection of a finite
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number of finitely generated normal monomial algebras is finitely generated and
normal. (This follows easily from standard results about normal affine semigroup
rings; see Bruns and Herzog [2, 6.1.2 and 6.1.4].)

For (b) one again applies [7, 2.3], and (c) is a standard consequenceof (b):K[X]
and the associated graded ring are residue class rings of the Rees algebra modulo
the isomorphic idealsJTR(J) andJR(J) respectively. 2

We single out the most important case.

THEOREM 3.7.Suppose thatcharK = 0 or charK > min(t;m� t). ThenR(It)
is Cohen-Macaulay and normal.

Remark3.8. In order to obtain a version of 3.7 that is valid in arbitrary character-
istic one must replace the Rees algebra by its integral closure. The integral closure is
always equal to the intersection of symbolic Rees algebras that in non-exceptional
characteristic gives the Rees algebra itself [1].

Theorem 3.5 is satisfactory if one only wants to determine the initial ideal of the
product It1 : : : Itr , but it does not tell us how to find a Gröbner basis. A natural guess
is that a Gr̈obner basis of It1 : : : Itr is given by the products of minors (standard or
not) which are in It1 : : : Itr . Unfortunately this is wrong in general.

EXAMPLE 3.9. Suppose thatm > 4 and charK = 0 or > 3, and consider the
ideal I2I4. The monomialM = X11X13X22X34X43X45 has
4(M) = 1; 
3(M) =
2; 
2(M) = 4; 
1(M) = 6. Hence, by virtue of 3.4, we know thatM 2 in� (I2I4).
The products of minors of degree 6 in I2I4 have the shapes 6 or 5;1, or 4;2. Clearly
M is not the initial monomial of a product of minors of shape 6 or of shape 5;1.
The only initial monomial of a 4-minor that dividesM is X11X22X34X45 but the
remaining factorX13X43 is not the initial monomial of a 2-minor. HenceM is not
the initial monomial of a product of minors that belongs to I2I4.

Nevertheless, if we confine our attention to powers of determinantal ideals, the
result is optimal.

THEOREM 3.10.Suppose thatcharK = 0 or charK > min(t;m � t). Then
a Gröbner basis ofIkt is given by the products of minors� such that� has at
mostk factors,�t(�) = k, anddeg� = kt. ThereforeIkt has a minimal system of
generators which is a Gröbner basis.

Proof. Since Ikt = \16j6tI
((t+1�j)k)
j , aK-basis of the ideal Ikt is given by the

standard monomials� with 
j(�) > (t+ 1� j)k for 1 6 j 6 t, that is,�t(�) > k.

Further a product of minors� is in I(k)t if and only if �t(�) > k. Consider the set
S of the products of minors� with �t(�) > k. We haveS � Ikt , and by virtue of
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2.2(ii) the monomial KRS(�) is divisible by the initial term of an element ofS for
all standard monomials� with �t(�) > k. By 2.1(a)S is a Gr̈obner basis of Ikt .

Let nowS1 be the set of all the products of minors� with at mostk factors and
�t(�) = k. In order to show thatS1 is a Gr̈obner basis of Ikt , it suffices to show
that for every! 2 S with more thank factors or�t(!) > k there exists� 2 S

such that in� (�) is a proper divisor of in� (!). If ! has more thank factors, then
� is taken to be the product of minors which is obtained from! by skipping the
shortest minor. If�t(!) > k, then� is taken to be the product of minors which is
obtained from! by replacing the longest minor, say[a1; : : : ; ahjb1; : : : ; bh], with
[a1; : : : ; ah�1jb1; : : : ; bh�1]. It is easy to see that� 2 S in both cases.

Next we chooseS2 as the set of all� 2 S1 with deg� = kt. Pick! 2 S1. If
deg! > kt, then we define!0 by omitting one position from the shortest minor in
!. It is easily verified that!0 2 S1, and proceeding iteratively we eventually reach
� 2 S2 such that in� (�) divides in� (!).

In order to find a minimal set of generators we select a minimal subsetS3 of
S2 with the property that its set of initial terms still generates in� (Ikt ). Since all the
elements ofS3 have degreekt, jS3j = dimK(Ikt )kt. 2

We conclude this section by describing the initial algebra of the subalgebraAt

of K[X] that is generated by the minors of sizet.

THEOREM 3.11.Suppose thatcharK = 0 or charK > min(t;m � t). Then the
products� of minors withdeg� = kt and�t(�) = k for somek 2 N form a Sagbi
basis ofAt. The initial algebrain� (At) is finitely generated and normal. HenceAt

is a normal Cohen-Macaulay ring.
Proof. The degreekt component of in� (At) is the degreekt component of

in� (It). Therefore the first part of the theorem follows from 3.10.
LetBt be the subalgebra of in� (R(It)) generated by all monomialsMT k such

that degM = kt. ThenBt is obviously isomorphic to in� (At). Furthermore the
semigroupH of monomials belonging toBt is the intersection of the semigroup of
monomials of in� (R(It))with the subset of monomials ofK[X;T ]whose exponent
vector satisfies a homogeneous linear equation. ThereforeH is finitely generated
and normal. 2

4. Symbolic powers of ladder determinantal ideals

In this section we apply the results of the previous one to the study of the powers of
ladder determiantal ideals. For generalities about ladders and ladder determinantal
ideals we refer the reader [11] and [13]. LetY be a ladder ofX, and let It(Y )
denote the ideal ofK[Y ] generated by thet-minors ofY . It is known that It(Y ) is
a prime ideal, that It(Y ) = It \K[Y ] and that thet-minors ofY form a Gr̈obner
basis of It(Y ). Our goal is to gain some information about the symbolic powers of
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ladder determinantal ideals.

THEOREM 4.1.LetY be a ladder andt > 1.

(a) The set of products of minors� of Y with 
t(�) = k is a Gröbner basis of

It(Y )(k) andIt(Y )(k) = I(k)t \K[Y ];

(b) It(Y ) has primary powers if and only ifY does not contain(t+ 1)-minors,

(c) Rs(It(Y )) = K[Y ][It(Y )T; It+1(Y )T
2; : : : ; Im(Y )Tm�t+1], and

in� (Rs(It(Y )))

= K[X][in� (It(Y ))T; in� (It+1(Y ))T
2; : : : ; in� (Im(Y ))T

m�t+1];

(d) Rs(It(Y )) is normal and Cohen-Macaulay.

Proof. First we claim that a Gr̈obner basis of the ideal I(k)
t \K[Y ] is given by

the setS of the products of minors� of Y with 
t(�) = k. To show this one notes

thatS � I(k)t \K[Y ]. Further, iff 2 I(k)t \K[Y ], then we know by virtue of 3.1
that there exists a product of minors� of X with 
t(�) = k and in� (�) j in� (f).
Finally � 2 S becauseY is a ladder and in� (�) 2 K[Y ].

Now, since It(Y )(k) � I(k)t \K[Y ], it suffices for (a) to verify thatS � It(Y )(k).
Let! be a minor of sizet+j�1 ofY , and letZ be a submatrix ofY which contains
!. Then by [3, Prop. 10.2] we have! 2 It(Z)(j) and since It(Z)(j) � It(Y )(j),
it follows that! 2 It(Y )(j). The symbolic powers form a filtration, and hence
S � It(Y )(k).

(b) If Y does not contain(t + 1)-minors, then (a) implies It(Y )(k) is equal
to It(Y )k. Conversely, assumeY contains a(t + 1)-minor, say!. Then pick a
t-minor� of Y . Since
t(!�k�2) = k, it follows from (a) that!�k�2 2 It(Y )(k)

for all k > 1. But deg!�k�2 = t + 1+ t(k � 2) = tk + 1� t < tk, and hence
!�k�2 62 It(Y )k.

Statement (c) is just (a) rewitten in terms of the symbolic Rees algebra and its
initial algebra. Finally, to prove (d) one notes that in� (R

s(It(Y ))) = in� (Rs(It))\
K[Y ][T ], and hence in� (Rs(It(Y ))) inherits normality from in� (Rs(It)). Then the
claim follows from [7, 2.3]. 2

Unfortunately we are not able to determine the primary decomposition of It(Y )k.
Of course one has It(Y )

k � It(Y )(k) \ It�1(Y )
(2k) \ � � � \ I1(Y )(tk), but equality

does not hold in general.

EXAMPLE 4.2. One can check with a computer algebra system that I1(Y )I3(Y ) 6�
I2(Y )2, whereY is the ladder obtained from a 5�5 matrix by skippingX45;X54;X55.
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Neither can we expect to descend properties ofR(It(Y )) directly from those
of R(It), because the previous example tells us that in general It(Y )

k is strictly
smaller than Ikt \K[Y ].
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