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Abstract. The existence of multiple positive solutions is presented for the singular
Dirichlet boundary value problems

{
x′′ + �(t) f (t, x(t), |x′(t)|) = 0,

x(0) = 0, x(1) = 0,

using the fixed point index; here f may be singular at x = 0 and x′ = 0.

1. Introduction. In [11], S. Staněk considered

{
x′′ + µq(t) f (t, x, x′) = 0,

x(0) = 0, x(T) = 0,

where q(t) > 0 for t ∈ [0, T ], A > 0 is a constant and f (t, x, x′) > 0 is continuous on
[0, T ] × (0,+∞) × [− 2A

T , 0) ∪ (0, 2A
T ] and may be singular at x = 0, x = A and x′ = 0.

Now x is a solution of the above equation if x(0) = x(T) = 0 and x satisfies x′′(t) +
µq(t) f (t, x(t), x′(t)) = 0 for all t ∈ {t ∈ (0, T) : x′(t) �= 0}. Existence of one solution was
established in [11] using regularity and sequential techniques. In [1] existence of the
above equation was established when f was singular at x = 0 but not at x′ = 0. However
in [1] f was allowed to change sign. Various other existence results for x′′ + f (t, x, x′) =
0 were established [7, 9–11] when f is singular at x′ = 0. If f (t, x, x′) = f (t, x) is singular
at x = 0 there are many results on the existence of multiple positive solutions to
x′′ + f (t, x) = 0 (see [2–4], [11]). However to date there are only a few results [6, 12]
on the existence of multiple solutions to x′′ + f (t, x, |x′|) = 0 when f has a derivative
dependence. The goal of this paper is to attempt to fill this gap in the literature.
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In this paper we consider the singular Dirichlet boundary value problems{
x′′ + �(t) f (t, x, |x′|) = 0,

x(0) = 0, x(1) = 0,
(1.1)

where f may be singular at x = 0 and x′ = 0. The definition of a solution to (1.1)
is as above (as in [11]). There are main three sections in our paper. In Section 2, we
define a special Banach space, construct a special cone in it and give its properties. In
Section 3, using the theory of fixed point index, we present a new result on the existence
of multiple solutions to (1.1) when f is singular at x′ = 0 and not singular at x = 0. In
Section 4 when f is singular at x = 0 and x′ = 0 we establish the existence of multiple
positive solutions to (1.1).

2. Preliminaries. Let q(t) = t(1 − t), t ∈ [0, 1] and C1
q [0, 1] = {x : [0, 1] → R| x is

continuous on [0, 1] and continuously differentiable on (0, 1) with supt∈(0,1) q(t)|x′(t)| =
supt∈(0,1) t(1 − t)|x′(t)| < +∞}. For x ∈ C1

q [0, 1], define ‖x‖ = max{‖x‖1, ‖x‖2}, where
‖x‖1 = maxt∈[0,1] |x(t)| and ‖x‖2 = supt∈(0,1) t(1 − t)|x′(t)|.

LEMMA 2.1. C1
q [0, 1] is a Banach space. For any x ∈ C1

q [0, 1], |x′(t)| ≤ ‖x‖
t(1−t) , t ∈

(0, 1).

Proof. Clearly C1
q [0, 1] is a linear space with zero element θ (t) ≡ 0 for t ∈ [0, 1] and

it is also easy to check that ‖·‖ is a norm on C1
q [0, 1].

We show that C1
q [0, 1] is complete. Assume {xn}∞n=1 ⊆ C1

q [0, 1] is a Cauchy sequence,
i.e., for any ε > 0, there exists an N > 0 such that ‖xn − xm‖ < ε for all n > N, m > N.
Since ‖xn − xm‖1 ≤ ‖xn − xm‖, {xn} ⊆ C[0, 1] is a Cauchy sequence with

lim
n→+∞ ‖xn − x0‖1 = 0, x0 ∈ C[0, 1]. (2.1)

Also for any given δ > 0, one has

δ(1 − δ) max
t∈[δ,1−δ]

|x′
n(t) − x′

m(t)| ≤ max
t∈[δ,1−δ]

t(1 − t)|x′
n(t) − x′

m(t)|
≤ sup

t∈(0,1)
t(1 − t)|x′

n(t) − x′
m(t)| = ‖xn − xm‖2 ≤ ‖xn − xm‖,

which means maxt∈[δ,1−δ] |x′
n(t) − x′

m(t)| ≤ 1
δ(1−δ)‖xn − xm‖, ∀n > N, m > N.

Consequently, x0 is continuously differentiable on [δ, 1 − δ] with limn→+∞ x′
n(t) =

x′
0(t) uniformly on [δ, 1 − δ]. Since δ is arbitrary, x0 is continuously differentiable

on (0, 1). Now supt∈(0,1) t(1 − t)|x′
n(t) − x′

m(t)| ≤ ‖xn − xm‖ < ε, so letting m → +∞
yields

sup
t∈(0,1)

t(1 − t)|x′
n(t) − x′

0(t)| ≤ ε. (2.2)

Also from (2.1) and (2.2), one has limn→+∞ ‖xn − x0‖ = 0.
Finally from (2.2), it is easy to see that x0 ∈ C1

q [0, 1]. Hence, C1
q [0, 1] is a Banach

space. If x ∈ C1
q [0, 1], then supt∈(0,1) t(1 − t)|x′(t)| = ‖x‖2 ≤ ‖x‖, which means |x′(t)| ≤

‖x‖
t(1−t) for all t ∈ (0, 1). �
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Let

G(t, s) =
{

(1 − t)s, 0 ≤ s ≤ t ≤ 1

t(1 − s), 0 ≤ t ≤ s ≤ 1
(2.3)

and

P = {
x ∈ C1

q [0, 1] : x(t) ≥ t(1 − t)‖x‖1,∀t ∈ [0, 1] and x
( 1

2

) ≥ 1
4‖x‖2

}
. (2.4)

The following lemmas are needed in Section 3 and Section 4.

LEMMA 2.2 (see [5]). Let � be a bounded open set in real Banach space E, P
be a cone of E, θ ∈ � and A : � ∩ P → P be continuous and compact. Suppose that
λAx �= x,∀x ∈ ∂� ∩ P, λ ∈ (0, 1]. Then

i(A,� ∩ P, P) = 1. (2.5)

LEMMA 2.3 (see [5]). Let � be a bounded open set in real Banach space E, P
be a cone of E, θ ∈ � and A : � ∩ P → P be continuous and compact. Suppose that
Ax �≤ x,∀x ∈ ∂� ∩ P. Then

i(A,� ∩ P, P) = 0. (2.6)

LEMMA 2.4. If x ∈ P (defined as in (2.4)), then ‖x‖ ≤ 4‖x‖1.

Proof. If x ∈ P, one has ‖x‖1 = max{|x(t)| : t ∈ [0, 1]} ≥ x( 1
2 ) ≥ 1

4‖x‖2. Then
‖x‖ = max{‖x‖1, ‖x‖2} ≤ max{‖x‖1, 4x( 1

2 )} ≤ max{‖x‖1, 4‖x‖1} = 4‖x‖1. �
LEMMA 2.5. Assume that � ∈ C((0, 1), R+) with

∫ 1
0 �(t) dt < ∞ and let F(t) =∫ 1

0 G(t, s)�(s) ds. Then⎧⎪⎨
⎪⎩

F(t) ≥ t(1 − t) maxs∈[0,1] F(s) = q(t)‖F‖1, ∀t ∈ [0, 1]

‖F‖2 ≤ ‖F‖1

‖F‖2 = supt∈(0,1) q(t)|F ′(t)| ≤ 4F
( 1

2

)
,

(2.7)

i.e., F ∈ P.

Proof. Assume that F(τ ) = maxt∈[0,1] F(t) = ‖F‖1. For t ∈ [0, 1], we have

G(t, s)
G(τ, s)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t(1−s)
(1−τ )s = t(1 − t) (1−s)

(1−τ )
1

(1−t)s ≥ t(1 − t), t ≤ s ≤ τ

(1−t)s
τ (1−s) = t(1 − t) s

τ
1

t(1−s) ≥ t(1 − t), τ ≤ s ≤ t
t(1−s)
τ (1−s) = t(1 − t) 1

τ (1−t) ≥ t(1 − t), t, τ ≤ s
(1−t)s
(1−τ )s = t(1 − t) 1

t(1−τ ) ≥ t(1 − t), t, τ ≥ s

= q(t), t ∈ [0, 1].

Then, for t ∈ [0, 1], we have

F(t) =
∫ 1

0
G(t, s)�(s) ds =

∫ 1

0

G(t, s)
G(τ, s)

G(τ, s)�(s) ds

≥ t(1 − t)
∫ 1

0
G(τ, s)�(s) ds = t(1 − t)F(τ ) = t(1 − t)‖F‖1,
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which implies that

F
(

1
2

)
≥ 1

2

(
1 − 1

2

)
‖F‖1 = 1

4
‖F‖1, i.e., ‖F‖1 ≤ 4F

(
1
2

)
.

Moreover, since F ′(t) = − ∫ t
0 s�(s) ds + ∫ 1

t (1 − s)�(s) ds for all t ∈ [0, 1] and
F(t) ≥ 0, one has

t(1 − t)|F ′(t)| ≤ t(1 − t)
∫ t

0
s�(s) ds + (1 − t)t

∫ 1

t
(1 − s)�(s) ds

≤ (1 − t)
∫ t

0
s�(s) ds + t

∫ 1

t
(1 − s)�(s) ds

=
∫ 1

0
G(t, s)�(s) ds ≤ ‖F‖1 ≤ 4F

( 1
2

)
, t ∈ [0, 1],

(2.8)

which means that ‖F‖2 = supt∈(0,1) t(1 − t)|F ′(t)| ≤ ‖F‖1 ≤ 4F( 1
2 ). Consequently,

F ∈ P. �
Now we list some conditions which will be needed in Sections 3 and 4:

� ∈ C[0, 1] with �(t) > 0 on (0, 1), (2.9)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is continuous with
f (t, x, y) > 0 for (t, x, y) ∈ [0, 1] × [0,+∞) × [0,+∞)
f (t, x, y) ≤ [h(x) + w(x)][g(y) + r(y)]
on [0, 1] × [0,+∞) × [0,+∞) with w > 0, g > 0
continuous and nonincreasing on [0,+∞),∫ 1

0 �(s)r
(
k0

1
s(1−s)

)
ds < +∞, for all k0 > 0, and

h ≥ 0, r ≥ 0 continuous and nondecreasing on [0,∞).

(2.10)

For x ∈ P, define an operator by

(Ax)(t) =
∫ 1

0
G(t, s)�(s) f (s, x(s), |x′(s)|) ds, t ∈ [0, 1]. (2.11)

LEMMA 2.6. Assume that (2.9) and (2.10) hold. Then A : P → P is continuous and
completely continuous. Moreover, for every x ∈ P, Ax ∈ C1[0, 1].

Proof. First, we show that A : P → P is well defined and Ax ∈ C1[0, 1] for each
x ∈ P. For x ∈ P, Lemma 2.1 yields |x′(t)| ≤ ‖x‖

t(1−t) , t ∈ (0, 1). Then, from (2.9) and
(2.10), we have that for t ∈ [0, 1],

|(Ax)(t)| =
∣∣∣∣∣
∫ 1

0
G(t, s)�(s) f (s, x(s), |x′(s)|) ds

∣∣∣∣∣
≤

∫ 1

0
G(t, s)�(s)[h(x(s)) + w(x(s))][g(|x′(s)|) + r(|x′(s)|)] ds

≤
∫ 1

0
G(t, s)�(s)[h(‖x‖) + w(0)]

[
g(0) + r

( ‖x‖
s(1 − s)

) ]
ds < +∞
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and

|(Ax)′(t)| =
∣∣∣∣−

∫ t

0
s�(s) f (s, x(s), |x′(s)|) ds +

∫ 1

t
(1 − s)�(s) f (s, x(s), |x′(s)|) ds

∣∣∣∣
≤

∫ 1

0
�(s)| f (s, x(s), |x′(s)|)| ds

≤
∫ 1

0
�(s)[h(‖x‖) + w(0)]

[
g(0) + r

( ‖x‖
s(1 − s)

)]
ds < +∞, t ∈ [0, 1],

which means that A is well defined. From Lemma 2.5, for every x ∈ P, we have Ax ∈ P,
which implies that AP ⊆ P. Moreover, since

|(Ax)′(t1) − (Ax)′(t2)|

≤
∣∣∣∣
∫ 1

t1

(1 − s)�(s) f (s, x(s), |x′(s)|) ds −
∫ 1

t2

(1 − s)�(s) f (s, x(s), |x′(s)|) ds
∣∣∣∣

+
∣∣∣∣−

∫ t1

0
s�(s) f (s, x(s), |x′(s)|) ds +

∫ t2

0
s�(s) f (s, x(s), |x′(s)|) ds

∣∣∣∣
≤ 2

∣∣∣∣
∫ t2

t1

�(s)[h(‖x‖) + w(0)]
[

g(0) + r
( ‖x‖

s(1 − s)

)]
ds

∣∣∣∣ ,
we see that limt→0+(Ax)′(t) exists and limt→1−(Ax)′(t) exists, which means that Ax ∈
C1[0, 1].

Now we show that A : P → P is continuous. Assume that {xm}∞m=1 ⊆ P and x0 ∈
P with limm→+∞ xm = x0. Then, there exists an M > 0 such that ‖xm‖ < M for all
m ∈ {1, 2, . . .} (note that Lemma 2.1 guarantees that |x′

m(t)| ≤ M
t(1−t) , ∀t ∈ (0, 1)). Thus,

limm→+∞ f (t, xm(t), |x′
m(t)|) = f (t, x0(t), |x′

0(t)|), t ∈ (0, 1) and

| f (t, xm(t), |x′
m(t)|)| ≤ [h(M) + w(0)]

[
g(0) + r

(
M

t(1 − t)

)]
.

The Lebesgue Dominated Convergence Theorem guarantees that

‖Axm − Ax0‖1

= max
t∈[0,1]

∣∣∣∣
∫ 1

0
G(t, s)�(s)[ f (s, xm(s), |x′

m(s)|) − f (s, x0(s), |x′
0(s)|)] ds

∣∣∣∣
≤

∫ 1

0
�(s)| f (s, xm(s), |x′

m(s)|) − f (s, x0(s), |x′
0(s)|)| ds → 0, as m → +∞

and

‖Axm − Ax0‖2

= sup
t∈(0,1)

t(1 − t)
∣∣ −

∫ t

0
s�(s)[ f (s, xm(s), |x′

m(s)|) − f (s, x0(s), |x′
0(s)|)] ds

+
∫ 1

t
(1 − s)�(s)[ f (s, xm(s), |x′

m(s)|) − f (s, x0(s), |x′
0(s)|)] ds

∣∣
≤

∫ 1

0
�(s)| f (s, xm(s), |x′

m(s)|) − f (s, x0(s), |x′
0(s)|)| ds → 0, as m → +∞,

which implies that limm→+∞ ‖Axm − Ax0‖ = 0. Hence, A : P → P is continuous.
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Finally we show for any bounded D ⊆ P, A(D) is relatively compact. Since D is
bounded, there exists an M > 0 such that ‖x‖ ≤ M for all x ∈ D (note that Lemma 2.1
guarantees that |x′(t)| ≤ M

t(1−t) , ∀t ∈ (0, 1) ). Now (2.9) and (2.10) yield

‖Ax‖1 = max
t∈[0,1]

∣∣∣∣
∫ 1

0
G(t, s)�(s) f (s, x(s), |x′(s)|) ds

∣∣∣∣
≤

∫ 1

0
�(s)[h(x(s)) + w(x(s))][g(|x′(s)|) + r(|x′(s)|)] ds

≤
∫ 1

0
�(s)[h(M) + w(0)]

[
g(0) + r

(
M

s(1 − s)

)]
ds

which implies that the functions belonging to {(AD)(t)} are uniformly bounded on
[0, 1], and

sup
t∈(0,1)

|(Ax)′(t)|

= sup
t∈[0,1]

∣∣∣∣−
∫ t

0
s�(s) f (s, x(s), |x′(s)|) ds +

∫ 1

t
(1 − s)�(s) f (s, x(s), |x′(s)|) ds

∣∣∣∣
≤

∫ 1

0
�(s)[h(x(s)) + w(x(s))][g(|x′(s)|) + r(|x′(s)|)] ds

≤
∫ 1

0
�(s)[h(M) + w(0)]

[
g(0) + r

(
M

s(1 − s)

)]
ds.

which implies that the functions belonging to {(AD)′(t)} are uniformly bounded on
[0, 1] and the functions belonging to {(AD)(t)} are equicontinuous on [0, 1].

For any t1, t2 ∈ [0, 1], x ∈ D, we have

|(Ax)′(t1) − (Ax)′(t2)|
=

∣∣∣∣ −
∫ t1

0
s�(s) f (s, x(s), |x′(s)|) ds +

∫ t2

0
s�(s) f (s, x(s), |x′(s)|) ds

+
∫ 1

t1

(1 − s)�(s) f (s, x(s), |x′(s)|) ds −
∫ 1

t2

(1 − s)�(s) f (s, x(s), |x′(s)|) ds
∣∣∣∣

≤ 2

∣∣∣∣
∫ t2

t1

�(s)[h(M) + w(0)]
[

g(0) + r
(

M
s(1 − s)

)]
ds

∣∣∣∣ .
Therefore, for any ε > 0, there exists a δ > 0 such that |(Ax)′(t1) − (Ax)′(t2)| <

ε, ∀|t1 − t2| < δ, x ∈ D, which means that the functions from {(Ax)′(t), x ∈ D} are
equicontinuous on [0, 1].

By the Arzela-Ascoli theorem, A(D) is relatively compact under the ordinary
norm ‖Ax‖0 = max{max{|(Ax)(t)|, t ∈ [0, 1]}, max{|(Ax)′(t)|, t ∈ [0, 1]}}. Since the
new norm ‖Ax‖ is less than the ordinary norm ‖Ax‖0, we know that AD is relatively
compact under the new norm ‖·‖.

Hence, A : P → P is continuous and completely continuous. �

3. Multiple positive solutions to (1.1) with singularity at x′ = 0 but not at x = 0. In
this section our nonlinearity f may be singular at x′ = 0 but not at x = 0 . Throughout
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this section we will assume that the following conditions hold:

� ∈ C[0, 1] with �(t) > 0 on (0, 1), (3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f : [0, 1] × [0,+∞) × (0,+∞) → (0,+∞) is continuous with

f (t, x, y) > 0 for (t, x, y) ∈ [0, 1] × [0,+∞) × (0,+∞),

f (t, x, y) ≤ h(x)[g(y) + r(y)] on [0, 1] × [0,+∞) × (0,+∞) with∫ 1
0 �(s)r

(
k0

1
s(1−s)

)
ds < +∞, for all k0 > 0, and

h ≥ 0, r ≥ 0 continuous and nondecreasing on [0,∞)

g > 0 continuous and nonincreasing on (0,∞),

(3.2)

{
supc∈(0,+∞)

c
I−1(h(c)

∫ 1
0 �(s) ds)

> 1,

where I(z) = ∫ z
0

1
g(u)+r(u) du, z ∈ (0,+∞),

(3.3)

⎧⎪⎪⎨
⎪⎪⎩

for constants H, H ′ > 0 there exists a function ψH,H ′

continuous on [0, 1] and positive on (0, 1)
and a positive constant 0 ≤ γ < 1 such that
f (t, x, y) ≥ ψH(t)xγ on [0, 1] × [0, H] × (0, H ′],

(3.4)

and

⎧⎪⎨
⎪⎩

there exists a g1 ∈ C([0,+∞) × (0,+∞), (0,+∞)) with

f (t, x, y) ≥ g1(x, y),∀(t, x, y) ∈ [0, 1] × [0,+∞) × (0,+∞) such that

limx→+∞
g1(x,y)

x = +∞ uniformly for y ∈ (0,+∞).

(3.5)

THEOREM 3.1. Suppose that (3.1)–(3.5) hold. Then (1.1) has at least two nonnegative
solutions x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1) with x0,1(t) > 0 and x0,2(t) > 0 on (0, 1).

Proof. From (3.3) and the continuity of I−1 and h, choose an R1 > 0, and a ε > 0
with ε < R1

2 and

R1

I−1(I(ε) + h(R1 + ε)
∫ 1

0 �(s) ds)
> 1. (3.6)

Let n0 ∈ {1, 2, . . .} be chosen so that 1
n0

< ε, and let N0 = {n0, n0 + 1, . . .}. For each
n ∈ N0, for x ∈ P, define

(Anx)(t) =
∫ 1

0
G(t, s)�(s) f

(
s, x(s) + 1

n
s, |x′(s)| + 1

n

)
ds, t ∈ [0, 1]. (3.7)

It is easy to see that f (t, x + 1
n t, |x′| + 1

n ) ≤ h(x + 1
n )[g( 1

n ) + r(|x′| + 1
n )], (t, x, x′) ∈

[0, 1] × [0,+∞) × [0,+∞). Now (3.2) implies that (2.10) is true for each n ∈ N0. Then,
Lemma 2.6 guarantees that An : P → P is continuous and completely continuous with
AnP ⊆ C1[0, 1] for each n ∈ N0.

Let

�1 = {
x ∈ C1

q [0, 1] : ‖x‖ < R1
}
.
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Choose 0 < a∗ < b∗ < 1 and let

N∗ =
(

a∗(1 − b∗)
1
4

min
t∈[a∗,b∗]

∫ b∗

a∗
G(t, s)�(s) ds

)−1

+ 1. (3.8)

Now from (3.5), there exists an R2 > R1 such that

g1(x, y) ≥ N∗x, ∀x ≥ R2, y ∈ (0,+∞). (3.9)

Let

�2 =
{

x ∈ C1
q [0, 1] : ‖x‖ <

4R2

a∗(1 − b∗)

}
.

Then, for each n ∈ N0, we claim that

µAnx �= x, ∀µ ∈ (0, 1], x ∈ P ∩ ∂�1, (3.10)

and

Anx �≤ x, ∀x ∈ P ∩ ∂�2. (3.11)

First we show that (3.10) is true. Suppose there exists an x0 ∈ P ∩ ∂�1 and a
µ0 ∈ (0, 1] such that x0 = µ0Anx0. Then

x′′
0(t) + µ0�(t) f

(
t, x0(t) + 1

n
t, |x′

0(t)| + 1
n

)
= 0, t ∈ (0, 1), and x0(0) = 0, x0(1) = 0,

which means that x0(t) > 0 on (0, 1) with x0(0) = x0(1) = 0 and x′
0(t) is decreasing on

(0, 1). Thus, there exists a unique t0 ∈ (0, 1) with x′
0(t0) = 0, x′

0(t) > 0 on (0, t0) and
x′

0(t) < 0 on (t0, 1) and ‖x0‖1 = x0(t0). From (3.2), we have

−x′′
0(t) ≤ �(t)h

(
x0(t) + 1

n
t
) [

g
(

x′
0(t) + 1

n

)
+ r

(
x′

0(t) + 1
n

)]
,∀t ∈ (0, t0),

which means that

−x′′
0(t)

g
(
x′

0(t) + 1
n

) + r
(
x′

0(t) + 1
n

) ≤ h
(

x0(t) + 1
n

t
)

�(t), ∀t ∈ (0, t0). (3.12)

Integration from t to t0 yields I(x′
0(t) + 1

n ) − I(x′
0(t0) + 1

n ) = I(x′
0(t) + 1

n ) − I( 1
n ) ≤

h(x0(t0) + 1
n )

∫ 1
0 �(s) ds, i.e., I(x′

0(t) + 1
n ) < I(ε) + h(R1 + ε)

∫ 1
0 �(s) ds. Then,

x′
0(t) < x′

0(t) + 1
n

< I−1
(

I(ε) + h(R1 + ε)
∫ 1

0
�(s) ds

)
,∀t ∈ (0, t0]. (3.13)

Now integrate from 0 to t0 to obtain

‖x0‖1 = x0(t0) = x0(t0) − x0(0) ≤ I−1
(

I(ε) + h(R1 + ε)
∫ 1

0
�(s) ds

)
. (3.14)
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Similarly, if t > t0, we have

−x′′
0(t)

g
(−x′

0(t) + 1
n

) + r
(−x′

0(t) + 1
n

) ≤ h
(

x0(t) + 1
n

t
)

�(t), (3.15)

and I(−x′
0(t) + 1

n ) − I(−x′
0(t0) + 1

n ) = I(−x′
0(t) + 1

n ) − I( 1
n ) ≤ ∫ 1

0 �(s) ds h(R1 + ε),
which implies

−x′
0(t) ≤ I−1

(
I(ε) + h(R1 + ε)

∫ 1

0
�(s) ds

)
, t ∈ (t0, 1). (3.16)

Now (3.13) and (3.16) guarantee that

‖x0‖2 = sup
t∈(0,1)

t(1 − t)|x′(t)| ≤ I−1
(

I(ε) + h(R1 + ε)
∫ 1

0
�(s) ds

)
. (3.17)

Combining with (3.14) one has R1 = max{‖x0‖1, ‖x0‖2} ≤ I−1(I(ε) + h(R1 +
ε)

∫ 1
0 �(s) ds), which means

R1

I−1
(
I(ε) + h(R1 + ε)

∫ 1
0 �(s) ds

) ≤ 1,

a contradiction to (3.6). Then, (3.10) is true.
Next we show that (3.11) is true. Suppose that there is an x0 ∈ P ∩ ∂�2 with x0 ≥

Anx0. By the definition of the cone and Lemma 2.4, one has x0(t) ≥ t(1 − t)‖x0‖1 ≥
a∗(1 − b∗) 1

4‖x0‖ = a∗(1 − b∗) 1
4

4R2
a∗(1−b∗) = R2, ∀t ∈ [a∗, b∗]. Clearly for t ∈ [a∗, b∗],

x0(t) + 1
n t ≥ R2, ∀t ∈ [a∗, b∗]. Then, for t ∈ [a∗, b∗], from (3.9), one has

x0(t) ≥ (Anx0)(t) ≥
∫ b∗

a∗
G(t, s)�(s)g1

(
x0(s) + 1

n
s, |x′

0(s)| + 1
n

)
ds

≥
∫ b∗

a∗
G(t, s)�(s)N∗

(
x0(s) + 1

n
s
)

ds ≥
∫ b∗

a∗
G(t, s)�(s) dsN∗R2

≥ a∗(1 − b∗)
1
4

min
t∈[a∗,b∗]

∫ b∗

a∗
G(t, s)�(s) dsN∗ 4R2

a∗(1 − b∗)
>

4R2

a∗(1 − b∗)
,

which implies that ‖x0‖ ≥ ‖x0‖1 > 4R2
a∗(1−b∗) , a contradiction to x0 ∈ P ∩ ∂�2. Thus,

(3.11) is true.
From Lemma 2.2 and Lemma 2.3, for each n ∈ N0, we have

i(An, P ∩ �1, P) = 1, and i(An, P ∩ �2, P) = 0,

which implies that

i(An, P ∩ (�2 − �1), P) = −1, n ∈ N0. (3.18)

As a result, for each n ∈ N0, there exist xn,1 ∈ P ∩ �1 and xn,2 ∈ P ∩ (�2 − �1) such
that xn,1 = Anxn,1 and xn,2 = Anxn,2.

Now we consider {xn,1}n∈N0 and {xn,2}n∈N0 . First we show that {xn,1} is relatively
compact in C1[0, 1]. Clearly the functions belonging to {xn,1(t)} are uniformly bounded
with maxt∈[0,1] |xn,1(t)| ≤ R1, n ∈ N0.
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For each n ∈ N0, one has

x′′
n,1(t) + �(t) f

(
t, xn,1(t) + 1

n
t, |x′

n,1(t)| + 1
n

)
= 0, t ∈ (0, 1), and

xn,1(0) = 0, xn,1(1) = 0,

which means that xn,1(t) > 0 on (0, 1) with xn,1(0) = xn,1(1) = 0 and x′
n,1(t) is decreasing

on (0, 1). Thus, there exists a unique tn ∈ (0, 1) with x′
n,1(tn) = 0, x′

n,1(tn) > 0 on (0, tn)
and x′

n,1(t) < 0 on (tn, 1) and ‖xn,1‖1 = xn,1(tn). Following the argument used to prove
(3.12) and (3.15) yields

−x′′
n,1(t)

g
(|x′

n,1(t)| + 1
n

) + r
(|x′

n,1(t)| + 1
n

) ≤ h
(

xn,1(t) + 1
n

t
)

�(t), ∀t ∈ (0, tn) ∪ (tn, 1).

(3.19)
A similar argument to that used to prove (3.13) and (3.16) yields

x′
n,1(t) < x′

n,1(t) + 1
n

< I−1
(

I(ε) + h(R1 + ε)
∫ 1

0
�(s) ds

)
,∀t ∈ (0, tn], (3.20)

and

−x′
n,1(t) < I−1

(
I(ε) + h(R1 + ε)

∫ 1

0
�(s) ds

)
, t ∈ (tn, 1). (3.21)

Now (3.20) and (3.21) guarantee that

sup
n≥n0

sup
t∈(0,1)

|x′
n,1(t)| ≤ I−1

(
I(ε) + h(R1 + ε)

∫ 1

0
�(s) ds

)
. (3.22)

Consequently, the functions belonging to {x′
n,1(t)} are uniformly bounded on [0, 1],

which implies that the functions belonging to {xn,1(t)} are equicontinuous on [0, 1].
Now (3.19) yields

∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣ ≤
∣∣∣∣
∫ t2

t1

‖�‖1h(R1 + ε) ds
∣∣∣∣

= ‖�‖1h(R1 + ε)|t1 − t2|, (3.23)

if t2 > t1 > tn and

∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣ ≤
∣∣∣∣
∫ t2

t1

‖�‖1h(R1 + ε) ds
∣∣∣∣

= ‖�‖1h(R1 + ε)|t1 − t2|, (3.24)

if t2 < t1 < tn.
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From (3.23) and (3.24), one has

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣I(|x′
n,1(t2)| + 1

n

) − I
(|x′

n,1(t1)| + 1
n

)∣∣
≤ ∣∣I(|x′

n,1(t2)|+ 1
n

)−I
(
x′

n,1(tn)+ 1
n

)∣∣+ ∣∣I(|x′
n,1(t1)|+ 1

n

)−I
(
x′

n,1(tn)+ 1
n

)∣∣
≤ ‖�‖1h(R1 + ε)(|t1 − tn| + |t2 − tn|) = ‖�‖1h(R1 + ε)|t1 − t2|,

if t2 > tn > t1 or∣∣I(|x′
n,1(t2)| + 1

n

) − I
(|x′

n,1(t1)| + 1
n

)∣∣
≤ ∣∣I(|x′

n,1(t2)|+ 1
n

)−I
(
x′

n,1(tn)+ 1
n

)∣∣+ ∣∣I(|x′
n,1(t1)|+ 1

n

)−I
(
x′

n,1(tn)+ 1
n

)∣∣
≤ ‖�‖1h(R1 + ε)(|t1 − tn| + |t2 − tn|) = ‖�‖1h(R1 + ε)|t1 − t2|,

if t2 < tn < t1.

(3.25)

Thus, for any ε′ > 0, there is a δ′ > 0 such that

∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣ < ε′, ∀|t2 − t1| < δ′, t1, t2 ∈ [0, 1],

which means that the functions belonging to {I(|x′
n,1(t)| + 1

n )} are equicontinuous on
[0, 1]. By the continuity of I−1(z), we know that the functions belonging to {|x′

n,1(t)| + 1
n }

are equicontinuous on [0, 1], which implies the functions belonging to {|x′
n,1(t)|}

are equicontinuous on [0, 1]. Then, for any ε′ > 0, there is a δ > 0 such
that ‖x′

n,1(t1)| − |x′
n,1(t2)‖ < ε′,∀|t1 − t2| < δ, t1, t2 ∈ [0, 1], which implies |x′

n,1(t1) −
x′

n,1(t2)| = ‖x′
n,1(t1)| − |x′

n,1(t2)‖ < ε′,∀|t1 − t2| < δ, t1, t2 ≤ tn ∈ [0, 1], |x′
n,1(t1) −

x′
n,1(t2)| = ‖x′

n,1(t1)| − |x′
n,1(t2)‖ < ε′,∀|t1 − t2| < δ, t1, t2 ≥ tn ∈ [0, 1] and (notice

x′
n,1(tn) = 0)

|x′
n,1(t1) − x′

n,1(t2)| ≤ |x′
n,1(t1) − x′

n,1(tn)| + |x′
n,1(tn) − x′

n,1(t2)|
= ‖x′

n,1(t1)| − |x′
n,1(tn)‖ + ‖x′

n,1(tn)| − |x′
n,1(t2)‖

< 2ε′,∀|t1 − t2| < δ, t1 < tn < t2 ∈ [0, 1], or t2 < tn < t1 ∈ [0, 1],

which means that the functions belonging to {x′
n,1(t)} are equicontinuous on [0, 1].

Consequently, the Arzela-Ascoli Theorem guarantees that {xn,1} is relatively
compact in C1[0, 1], which means that there is a convergent subsequence {xnj,1}
of {xn,1} such that limj→+∞ xnj,1 = x0,1 ∈ C1[0, 1] (under the ordinary norm ‖x‖0 =
max{maxt∈[0,1] |x(t)|, maxt∈[0,1] |x′(t)|}). Also recall that x′

nj,1
(tnj ) = 0 and x′

nj,1
(t) �= 0 if

t �= tnj . Without loss of generality, we assume that tnj → t0 ∈ [0, 1]. Clearly x′
0,1(t0) = 0

(keep also in mind that {x′
nj,1

} converges to x′
0,1 uniformly on [0, 1] and x′

0,1 is continuous
on [0, 1]).

We now show that

t0 ∈ (0, 1) and x′
0,1(t) �= 0 if t �= t0. (3.26)

Suppose that t0 = 0. Let R′ = I−1(I(ε) + h(R1 + ε)
∫ 1

0 �(s) ds) + 1. >From (3.4),
there is a �R1+ε,R′ ∈ C[0, 1] with �R1+ε,R′ (t) > 0 for all t ∈ (0, 1) such that f (t, xn,1(t) +
1
n t, |x′

n,1(t)| + 1
n ) ≥ �R1+ε,R′ (t)(xn,1(t) + 1

n t)γ ≥ �R1+ε,R′ (t)(xn,1(t))γ , t ∈ [0, 1]. Thus
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(note xn,1 ∈ P and Lemma 2.5),

xn,1(t) ≥
∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s)(xn,1(s))γ ds

≥
∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s)(s(1 − s))γ ds‖xn,1‖γ

1

≥ t(1 − t) max
t∈[0,1]

∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s)(s(1 − s))γ ds‖xn,1‖γ

1 , ∀t ∈ [0, 1],

which implies that

‖xn,1‖1 ≥
(

max
t∈[0,1]

t(1 − t)
)(

max
t∈[0,1]

∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s)(s(1 − s))γ ds‖xn,1‖γ

1

)

= 1
4

max
t∈[0,1]

∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s)(s(1 − s))γ ds‖xn,1‖γ

1

and so ‖xn,1‖1 ≥ ( 1
4 maxt∈[0,1]

∫ 1
0 G(t, s)�(s)�R1+ε,R′ (s)(s(1 − s))γ ds)

1
1−γ

def.= a0 > 0.
Consequently,

xn,1(t) ≥ t(1 − t)‖xn,1‖1 ≥ t(1 − t)a0, t ∈ [0, 1]. (3.27)

Now (3.27) implies that for each n ∈ N0,

−x′′
n,1(t) ≥ �(t)�R1+ε,R′ (t)(t(1 − t))γ aγ

0 , t ∈ (0, 1), (3.28)

and so x′
nj,1

(tnj ) − x′
nj,1

(t) ≥ ∫ t
tnj

�(s)�R1+ε,R′ (s)(s(1 − s))γ aγ

0 ds, t > tnj . Letting

j → +∞, one has x′
0,1(t0) − x′

nj,1
(t) ≥ ∫ t

t0
�(s)�R1+ε,R′ (s)(s(1 − s))γ aγ

0 ds, t > t0 = 0,

i.e., x′
nj,1

(t) ≤ − ∫ t
0 �(s)�R1+ε,R′ (s)(s(1 − s))γ aγ

0 ds < 0, t > 0, which means x0,1(t) is
decreasing on [0, 1], a contradiction to x0,1(0) = x0,1(1). Thus, t0 > 0. Similarly, we
get t0 < 1. Hence, t0 ∈ (0, 1).

From (3.28), we have

x′
nj,1(tnj ) − x′

nj,1(t) ≥
∫ t

tnj

�(s)�R1+ε,R′ (s)(s(1 − s))γ aγ

0 ds, t > tnj ,

x′
nj,1(t) − x′

nj,1(tnj ) ≥
∫ tnj

t
�(s)�R1+ε,R′ (s)(s(1 − s))γ aγ

0 ds, t < tnj .

Letting j → +∞, one has

−x′
0,1(t) = x′

0,1(t0) − x′
0,1(t) ≥

∫ t

t0

�(s)�R1+ε,R′ (s)(s(1 − s))γ aγ

0 ds, t > t0,

x′
0,1(t) = x′

0,1(t) − x′
0,1(t0) ≥

∫ t0

t
�(s)�R1+ε,R′ (s)(s(1 − s))γ aγ

0 ds, t < t0.

Consequently, one has x′
0,1(t) �= 0, if t �= t0. Therefore, (3.26) is true, which implies

that, for any min{t0,1−t0}
2 > ε′ > 0, there exists an N > 0 such that tnj ∈ [t0 − ε′

2 , t0 + ε′
2 ]
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(notice that x′
nj,1

(tnj ) = 0) for all j ≥ N. Of course

min
{

inf
j≥N

inf
t∈[0,t0−ε′]

|x′
nj

(t)|, inf
j≥N

inf
t∈[t0+ε′,1]

|x′
nj

(t)|
}

= δ0 > 0,

and so,

�(t)
∣∣∣∣ f

(
t, xnj,1(t) + 1

nj
t, |x′

nj,1(t)| + 1
nj

)∣∣∣∣
≤ h(R1 + ε)[g(δ0) + r(R′)]�(t), t ∈ (0, t0 − ε′] ∪ [t0 + ε′, 1).

The Lebesgue Dominated Convergence Theorem guarantees that

x′
0,1(t) − x′

0,1(t0 + ε′) = lim
j→+∞

[x′
nj,1(t) − x′

nj,1(t0 + ε′)]

= lim
j→+∞

∫ t

t0+ε′
�(s) f

(
s, xnj,1(s) + 1

nj
s, |x′

nj,1(s)| + 1
nj

)
ds

=
∫ t

t0+ε′
�(s) f (s, x0,1(s), |x′

0,1(s)|) ds, t ∈ [t0 + ε′, 1)

and similarly

x′
0,1(t) − x′

0,1(t0 − ε′) =
∫ t

t0−ε′
�(s) f (s, x0,1(s), |x′

0,1(s)|) ds, t ∈ (0, t0 − ε′],

which implies that −x′′
0,1(t) = �(t) f (t, x0,1(t), |x′

0,1(t)|), t ∈ (0, t0 − ε′] ∪ [t0 + ε′, 1).
Since ε′ is arbitrary, we have −x′′

0,1(t) = �(t) f (t, x0,1(t), |x′
0,1(t)|), t ∈ (0, t0) ∪ (t0, 1).

In addition x0,1(0) = x0,1(1) = 0, and x0,1 is a solution of (1.1) with x0,1(t) > 0 on (0, 1)
and ‖x0,1‖ < R1.

For the set {xn,2}n∈N0 ⊆ (�2 − �1) ∩ P, a similar proof yields a convergent
subsequence {xni,2} of {xn,2} with limi→+∞ xni,2 = x0,2 ∈ C1[0, 1]. Also x0,2 is a
nonnegative solution of (1.1) with x0,2(t) > 0 on (0, 1) and R1 < ‖x0,2‖ < 4R2

a∗(1−b∗) .
Consequently, (1.1) has at least two different nonnegative solutions x0,1 and x0,2

with ‖x0,1‖ < R1 < ‖x0,2‖. �
EXAMPLE 3.1. Consider the boundary value problems{

x′′ + µ(yb + yd)(1 + |x′|−a) = 0

x(0) = 0, x(1) = 0,
(3.29)

with 0 ≤ a, b > 1, 1 > d ≥ 0 and µ > 0. If

µ <
1

1 + a

(
sup

c∈(0,+∞)

c

[cd + cb]
1

1+a

)1+a

, (3.30)

then (3.29) has at least two nonnegative solutions.
To see that (3.29) has at least two nonnegative solutions, we will apply

Theorem 3.1 with �(t) ≡ 1, f (t, x, |y|) = µ(xb + xd)(1 + |y|−a), h(x) = µ(xd + xb),
g(|y|) = 1 + |y|−a, r(|y|) = 0, g1(x, y) = µ(xb) and �H,H ′(t) = µ. It is easy to see that
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(3.1), (3.2), (3.4) and (3.5) hold. Since I(z) = ∫ z
0

1
1+u−a du ≤ 1

1+a u1+a = I1(z), notice

sup
c∈(0,+∞)

c

I−1
(
h(c)

∫ 1
0 �(s) ds

) ≥ sup
c∈(0,+∞)

c

I−1
1 (µ(cd + cb))

,

so (3.30) guarantees that (3.3) holds.

REMARK 3.1. Notice that (3.1)–(3.4) are only needed to guarantee the existence of
x0,1 in Theorem 3.1.

4. Multiple positive solutions to (1.1) with singularity at x = 0 and x′ = 0. In this
section our nonlinearity f may be singular at x = 0 and x′ = 0. Throughout this section
we will assume that the following conditions hold:

� ∈ C[0, 1] with �(t) > 0 on (0, 1) (4.1)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f : [0, 1] × (0,+∞) × (0,+∞) → (0,+∞) is continuous with
f (t, x, y) > 0 for (t, x, y) ∈ [0, 1] × (0,+∞) × (0,+∞),
f (t, x, y) ≤ [h(x) + w(x)][g(|y|) + r(|y|)] on [0, 1] × (0,+∞) × (0,+∞) with
w > 0, g > 0 continuous and nonincreasing on (0,+∞),∫ 1

0 �(s)r
(
k0

1
s(1−s)

)
ds < +∞,

∫ k0

0 w(s) ds < +∞, for all k0 > 0, and
h ≥ 0, r ≥ 0 continuous and nondecreasing on [0,∞)

(4.2){
supc∈(0,+∞)

c
I−1(ch(c)‖�‖1+‖�‖1

∫ c
0 w(s) ds)

> 1,

where I(z) = ∫ z
0

u
g(u)+r(u) du, z ∈ (0,+∞),

(4.3)

⎧⎨
⎩

for constants H > 0, H ′ > 0 there exists a function ψH,H ′

continuous on [0, 1] and positive on (0, 1) such that
f (t, x, y) ≥ ψH,H ′(t) on [0, 1] × (0, H] × (0, H ′]

(4.4)

and⎧⎨
⎩

there exists a g1 ∈ C((0,+∞) × (0,+∞), (0,+∞)) with
f (t, x, y) ≥ g1(x, y),∀(t, x, y) ∈ [0, 1] × (0,+∞) × (0,+∞) such that
limx→+∞

g1(x,y)
x = +∞ uniformly for y ∈ (0,+∞).

(4.5)

THEOREM 4.1. Suppose that (4.1)–(4.5) hold. Then (1.1) has at least two nonnegative
solutions x0,1, x0,2 ∈ C1[0, 1] ∩ C2(0, 1) with x0,1(t) > 0 and x0,2(t) > 0 on (0, 1).

Proof. From (4.3) and the continuity of I−1 and h, choose an R1 > 0, and a ε > 0
with ε < min{R1

2 , 1} and

R1

I−1((R1 + ε)h(R1 + ε)‖�‖1 + ‖�‖1
∫ R1+ε

0 w(s) ds)
> 1. (4.6)

Let n0 ∈ {1, 2, . . .} be chosen so that 2
n0

< ε, and let N0 = {n0, n0 + 1, . . .}. For each
n ∈ N0, for x ∈ P, define

(Anx)(t) =
∫ 1

0
G(t, s)�(s) f

(
s, x(s) + 1

n
s + 1

n
, |x′(s)| + 1

n

)
ds, t ∈ [0, 1]. (4.7)
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Now (4.2) yields f (t, x + 1
n t + 1

n , |x′| + 1
n ) ≤ [h(x + 2

n ) + w( 1
n )][g( 1

n ) + r(|x′| + 1
n )],

which implies that (2.10) is true. The Lemma 2.6 guarantees that An : P → P is
continuous and completely continuous with AnP ⊆ C1[0, 1] for each n ∈ N0.

Let

�1 = {
x ∈ C1

q [0, 1] : ‖x‖ < R1
}
.

Choose 0 < a∗ < b∗ < 1 and N∗ as in (3.8). From (4.5), there exists an R2 > R1

such that

g1(x, y) ≥ N∗x, ∀x ≥ R2, y ∈ (0,+∞). (4.8)

Let

�2 =
{

x ∈ C1
q [0, 1] : ‖x‖ <

4R2

a∗(1 − b∗)

}
.

Then, for each n ∈ N0, we claim that

µAnx �= x, ∀µ ∈ (0, 1], x ∈ P ∩ ∂�1, (4.9)

and

Anx �≤ x, ∀x ∈ P ∩ ∂�2. (4.10)

First we show that (4.9) is true. Suppose that there exists an x0 ∈ P ∩ ∂�1 and a
µ0 ∈ (0, 1] such that x0 = µ0Anx0. Then

x′′
0(t) + µ0�(t) f

(
t, x0(t) + 1

n
t + 1

n
, |x′

0(t)| + 1
n

)
= 0, t ∈ (0, 1), x0(0) = 0, x0(1) = 0,

which means that x0(t) > 0 on (0, 1) with x0(0) = x0(1) = 0 and x′
0(t) is decreasing on

(0, 1). Thus, there exists a unique t0 ∈ (0, 1) with x′
0(t0) = 0, x′

0(t) > 0 on (0, t0) and
x′

0(t) < 0 on (t0, 1) and ‖x0‖1 = x0(t0). As a result (follow the argument used to prove
(3.12), (3.13), (3.14), (3.15) and (3.16))

−(
x′

0(t) + 1
n

)
x′′

0(t)

g
(
x′

0(t) + 1
n

) + r
(
x′

0(t) + 1
n

)
≤

[
h
(

x0(t) + 1
n

t + 1
n

)
+ w

(
x0(t) + 1

n
t + 1

n

)] (
x′

0(t) + 1
n

)
‖�‖1, ∀t ∈ (0, t0),

(4.11)

x′
0(t) ≤ I−1

(
I(ε) + ‖�‖1h(R1 + ε)(R1 + ε) + ‖�‖1

∫ R1+ε

0
w(s) ds

)
, (4.12)

‖x0‖1 = x0(t0) − x0(0) ≤ I−1
(

I(ε) + ‖�‖1h(R1 + ε)(R1 + ε) + ‖�‖1

∫ R1+ε

0
w(s) ds

)
,

(4.13)

−(−x′
0(t) + 1

n

)
x′′

0(t)

g
(−x′

0(t) + 1
n

) + r
(−x′

0(t) + 1
n

)
≤

[
h(R1 + ε) + w

(
x0(t) − 1

n
t + 1

n

)](
−x0(t) + 1

n
t − 1

n

)′
‖�‖1, ∀t ∈ [t0, 1), (4.14)
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−x′
0(t) < I−1

(
I(ε) + ‖�‖1h(R1 + ε)(R1 + ε) + ‖�‖1

∫ R1+ε

0
w(s) ds

)
,∀t ∈ [t0, 1)

(4.15)
and

sup
t∈(0,1)

t(1 − t)|x′
0(t)| ≤ I−1(I(ε) + ‖�‖1h(R1 + ε)(R1 + ε)

+ ‖�‖1

∫ R1+ε

0
w(s) ds),∀t ∈ (0, 1). (4.16)

Now (4.16) and (4.13) guarantee that

R1 = max{‖x0‖1, ‖x0‖2} ≤ I−1
(

I(ε) + ‖�‖1h(R1 + ε)(R1 + ε) + ‖�‖1

∫ R1+ε

0
w(s) ds

)
,

which means that

R1

I−1
(
I(ε) + ‖�‖1h(R1 + ε)(R1 + ε) + ‖�‖1

∫ R1+ε

0 w(s) ds
) ≤ 1,

a contradiction to (4.6). Then, (4.9) is true.
Next we show that (4.10) is true. Suppose that there is an x0 ∈ P ∩ ∂�2 with

x0 ≥ Anx0. Then by the definition of the cone and Lemma 2.4, one has x0(t) ≥ t(1 −
t)‖x0‖1 ≥ a∗(1 − b∗) 1

4‖x0‖ = a∗(1 − b∗) 1
4

4R2
a∗(1−b∗) = R2, ∀t ∈ [a∗, b∗]. Clearly for t ∈

[a∗, b∗], x0(t) + 1
n t + 1

n ≥ R2, ∀t ∈ [a∗, b∗]. Then, for t ∈ [a∗, b∗], from (4.8), one has

x0(t) ≥ (Anx0)(t) ≥
∫ b∗

a∗
G(t, s)�(s)g1

(
x0(s) + 1

n
s + 1

n
, |x′

0(s)| + 1
n

)
ds

≥
∫ b∗

a∗
G(t, s)�(s)N∗

(
x0(s) + 1

n
s + 1

n

)
ds ≥

∫ b∗

a∗
G(t, s)�(s) dsN∗R2

= a∗(1 − b∗)
1
4

min
t∈[a∗,b∗]

∫ b∗

a∗
G(t, s)�(s) dsN∗ 4R2

a∗(1 − b∗)
>

4R2

a∗(1 − b∗)
,

which implies that ‖x0‖ ≥ ‖x0‖1 > 4R2
a∗(1−b∗) , a contradiction to x0 ∈ P ∩ ∂�2. Then,

(4.10) is true.
Lemma 2.2 and Lemma 2.3 guarantee that

i(An, P ∩ �1, P) = 1, i(An, P ∩ �2, P) = 0. (4.17)

Thus

i(An, P ∩ (�2 − �1), P) = −1, n ∈ N0. (4.18)

As a result, for each n ∈ N0, there exist xn,1 ∈ P ∩ �1 and xn,2 ∈ P ∩ (�2 − �1) such
that xn,1 = Anxn,1 and xn,2 = Anxn,2.

Now we consider {xn,1}n∈N0 and {xn,2}n∈N0 . It is easy to see that the functions
belonging to {xn,1(t)} are uniformly bounded on [0, 1] with maxt∈[0,1] |xn,1(t)| ≤ R1,
n ∈ N0.
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For each n ∈ N0 one has

x′′
n,1(t)+�(t) f

(
t, xn,1(t)+ 1

n
t+ 1

n
, |x′

n,1(t)|+ 1
n

)
= 0, t ∈ (0, 1), xn,1(0) = 0, xn,1(1) = 0,

(4.19)

which means that xn,1(t) > 0 on (0, 1) with xn,1(0) = xn,1(1) = 0 and x′
n,1(t) is decreasing

on (0, 1) and there exists a unique tn ∈ (0, 1) with x′
n,1(tn) = 0, x′

n,1(tn) > 0 on (0, tn)
and x′

n,1(t) < 0 on (tn, 1) and ‖xn,1‖1 = xn,1(tn,1). Following the ideas used to prove
(4.11) and (4.14) yields

−(|x′
n,1(t)| + 1

n

)
x′′

n,1(t)

g
(|x′

n,1(t)| + 1
n

) + r
(|x′

n,1(t)| + 1
n

)
≤

[
h
(

xn,1(t) + 1
n

t + 1
n

)
+ w

(
xn,1(t) + 1

n
t + 1

n

)](
|x′

n,1(t)| + 1
n

)
‖�‖1,

∀t ∈ (0, tn) ∪ (tn, 1). (4.20)

A similar argument to that used to prove (4.12) and (4.15) yields

sup
n≥n0

sup
t∈(0,1)

|x′
n,1(t)| ≤ I−1

(
I(ε) + ‖�‖1h(R1 + ε)(R1 + ε) + ‖�‖1

∫ R1+ε

0
w(s) ds

)
,

i.e., the functions belonging to {x′
n,1(t)} are uniformly bounded on [0, 1], which

guarantees that the functions belonging to {xn,1(t)} are equicontinuous on [0, 1].
Next we show that the functions belonging to {x′

n,1(t)} are equicontinuous on [0, 1].
For any t1, t2 ∈ [0, 1], (4.20) yields∣∣∣∣I

(
|x′

n,1(t2)| + 1
n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤‖�‖1

[
h(R1 + ε)(|xn,1(t1) − xn,1(t2)| + |t1 − t2|) +

∣∣∣∣∣
∫ xn,1(t2)− 1

n t2+ 1
n

xn,1(t1)− 1
n t1+ 1

n

w(s) ds

∣∣∣∣∣
]

,

if t2 > t1 > tn and∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤‖�‖1|

[
h(R1 + ε)(|xn,1(t1) − xn,1(t2)| + |t1 − t2|) +

∣∣∣∣∣
∫ xn,1(t2)+ 1

n t2+ 1
n

xn,1(t1)+ 1
n t1+ 1

n

w(s) ds

∣∣∣∣∣
]

,

if t2 < t1 < tn, which guarantee that∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤

∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(tn)| + 1
n

)∣∣∣∣ +
∣∣∣∣I

(
|x′

n,1(t1)| + 1
n

)
− I

(
|x′

n,1(tn)| + 1
n

)∣∣∣∣
≤ ‖�‖1|

[
h(R1 + ε)(|x′

n,1(t2) − x′
n,1(tn)| + |t2 − tn|) +

∣∣∣∣∣
∫ xn,1(t2)− 1

n t2+ 1
n

xn,1(tn)− 1
n tn+ 1

n

w(s) ds

∣∣∣∣∣
]

+ ‖�‖1|
[

h(R1 + ε)(|x′
n,1(t1) − x′

n,1(tn)| + |t1 − tn|) +
∣∣∣∣∣
∫ xn,1(t1)+ 1

n t1+ 1
n

xn,1(tn)+ 1
n tn+ 1

n

w(s) ds

∣∣∣∣∣
]

,

https://doi.org/10.1017/S0017089506003089 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089506003089


326 B. YAN, D. O’REGAN AND R. P. AGARWAL

if t2 > tn > t1 or∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤ ‖�‖1|

[
h(R1 + ε)(|x′

n,1(t2) − x′
n,1(tn)| + |t2 − tn|) +

∣∣∣∣∣
∫ xn,1(t2)+ 1

n t2+ 1
n

xn,1(tn)+ 1
n tn+ 1

n

w(s) ds

∣∣∣∣∣
]

+ ‖�‖1|
[

h(R1 + ε)(|x′
n,1(t1) − x′

n,1(tn)| + |t1 − tn|) +
∣∣∣∣∣
∫ xn,1(t1)− 1

n t1+ 1
n

xn,1(tn)− 1
n tn+ 1

n

w(s) ds

∣∣∣∣∣
]

,

if t2 < tn < t1.
The uniform continuity of

∫ z
0 w(s) ds on bounded interval implies that for any

ε′ > 0, there is a δ > 0 such that | ∫ z2

z1
w(s) ds| < ε′

4‖�‖1
, |z1 − z2| < δ, z1, z2 ∈ [0, R1 + ε].

Also the equicontinuity of {xn,1(t)} implies that there is a min{ δ
2 , ε′

8‖�‖1h(R1+ε) } > δ′ > 0

such that |xn,1(t1) − xn,1(t2)| < min{ δ
2 , ε′

8‖�‖1h(R1+ε) }, ∀n ∈ N0, |t1 − t2| < δ′, t1, t2 ∈
[0, 1]. Consequently,

∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤ ‖�‖1

[
h(R1 + ε)

(
ε′

8‖�‖1h(R1 + ε)
+ ε′

8‖�‖1h(R1 + ε)

)
+ ε′

4‖�‖1

]
<

ε′

2
,

if t2 > t1 > tn and∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤ ‖�‖1

[
h(R1 + ε)

(
ε′

8‖�‖1h(R1 + ε)
+ ε′

8‖�‖1h(R1 + ε)

)
+ ε′

4‖�‖1

]
<

ε′

2
,

if t2 < t1 < tn, which guarantee that

∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤ ‖�‖1|

[
h(R1 + ε)

(
ε′

8‖�‖1h(R1 + ε)
+ ε′

8‖�‖1h(R1 + ε)

)
+ ε′

4‖�‖1

]

+‖�‖1|
[

h(R1 + ε)
(

ε′

8‖�‖1h(R1 + ε)
+ ε′

8‖�‖1h(R1 + ε)

)
+ ε′

4‖�‖1

]
< ε′,

if t2 > tn > t1 or∣∣∣∣I
(

|x′
n,1(t2)| + 1

n

)
− I

(
|x′

n,1(t1)| + 1
n

)∣∣∣∣
≤‖�‖1|

[
h(R1 + ε)

(
ε′

8‖�‖1h(R1 + ε)
+ ε′

8‖�‖1h(R1 + ε)

)
+ ε′

4‖�‖1

]

+ ‖�‖1|[h(R1 + ε)
(

ε′

8‖�‖1h(R1 + ε)
+ ε′

8‖�‖1h(R1 + ε)

)
+ ε′

4‖�‖1

]
< ε′,
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if t2 < tn < t1, which means that the functions belonging to {I(|x′
n,1(t)| + 1

n )} are equi-
continuous on [0, 1]. By the continuity of I−1(z), we know that the functions
belonging to {|x′

n,1(t)| + 1
n } are equicontinuous on [0, 1], which implies the functions

belonging to {|x′
n,1(t)|} are equicontinuous on [0, 1]. Then, for any ε′ > 0, there is a

δ > 0 such that ‖x′
n,1(t1)| − |x′

n,1(t2)‖ < ε′, ∀|t1 − t2| < δ, t1, t2 ∈ [0, 1], which implies
|x′

n,1(t1)−x′
n,1(t2)|=‖x′

n,1(t1)|−|x′
n,1(t2)‖<ε′, ∀|t1 − t2|<δ, t1, t2 ≤ tn ∈ [0, 1], |x′

n,1(t1)−
x′

n,1(t2)| = ‖x′
n,1(t1)| − |x′

n,1(t2)‖ < ε′, ∀|t1 − t2| < δ, t1, t2 ≥ tn ∈ [0, 1] and

|x′
n,1(t1) − x′

n,1(t2)| ≤ |x′
n,1(t1) − x′

n,1(tn)| + |x′
n,1(tn) − x′

n,1(t2)|
= ‖x′

n,1(t1)| − |x′
n,1(tn)‖ + ‖x′

n,1(tn)| − |x′
n,1(t2)‖

< 2ε′, ∀|t1 − t2| < δ, t1 < tn < t2 ∈ [0, 1], or t2 < tn < t1 ∈ [0, 1],

which means that the functions belonging to {x′
n,1(t)} are equicontinuous on [0, 1].

The Arzela-Ascoli Theorem guarantees that {xn,1} is relatively compact in C1[0, 1],
i.e., that there is a convergence subsequence {xnj,1} of {xn,1} such that limj→+∞ xnj,1 =
x0,1 ∈ C1[0, 1] with x′

nj,1
(tnj ) = 0. Without loss of generality, we assume that tnj → t0 ∈

[0, 1] as j → +∞. Clearly x′
0,1(t0) = 0 (keep also in mind that {x′

nj,1
} converges to x′

0,1

uniformly on [0, 1] and x′
0,1 is continuous on [0, 1]).

Now we show that

t0 ∈ (0, 1), and x′
0,1(t) �= 0 for all t ∈ (0, 1)\{t0}. (4.21)

Suppose t0 =0. Let R′ =I−1(I(ε)+‖�‖1h(R1 +ε)(R1 +ε)+‖�‖1
∫ R1+ε

0 w(s) ds)+1.
From (4.4), there is a �R1+ε,R′ ∈ C[0, 1] with �R1+ε,R′ (t) > 0 for all t ∈ (0, 1) such that

−x′′
nj,1(t) = �(t) f

(
t, xnj,1(t) + 1

nj
t + 1

nj
, |x′

nj,1(t)| + 1
nj

)
≥ �(t)�R1+ε,R′ (t), t ∈ (0, 1). (4.22)

Then x′
nj,1

(tnj ) − x′
nj,1

(t) ≥ ∫ t
tnj

�(s)�R1+ε,R′ (s) ds, t ∈ (tnj , 1). Letting j → +∞, we have

−x′
0,1(t) ≥

∫ t

t0

�(s)�R1+ε,R′ (s) ds =
∫ t

0
�(s)�R1+ε,R′ (s) ds, t ∈ (0, 1),

which means x0,1(t) is decreasing on (0, 1), a contradiction to x0,1(0) = x0,1(1).
Similarly, we get t0 < 1.

Moreover, (4.22) implies that

x′
nj,1(tnj ) − x′

nj,1(t) ≥
∫ t

tnj

�(s)�R1+ε,R′ (s) ds, t ∈ (tnj , 1),

x′
nj,1(t) − x′

nj,1(tnj ) ≥
∫ tnj

t
�(s)�R1+ε,R′ (s) ds, t ∈ (0, tnj ).

Letting j → +∞, one gets

−x′
0,1(t) ≥

∫ t

t0

�(s)�R1+ε,R′ (s) ds, t ∈ (t0, 1), and x′
0,1(t)

≥
∫ t0

t
�(s)�R1+ε,R′ (s) ds, t ∈ (0, t0),

which implies that x′
0,1(t) �= 0 for all t �= t0. Hence, (4.21) is true.
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Consequently, for any min{t0,1−t0}
2 > ε′ > 0, there exists an N > 0 such that tnj ∈

[t0 − ε′
2 , t0 + ε′

2 ] for all j ≥ N, which guarantees that

min
{

inf
j≥N

inf
t∈(0,t0−ε′]

|x′
nj

(t)|, inf
j≥N

inf
t∈[t0+ε′,1)

|x′
nj

(t)|
}

= δ0 > 0.

On the other hand, Lemma 2.5 yields

xnj,1(t) ≥
∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s) ds

≥ t(1 − t) max
t∈[0,1]

∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s) ds

≥ ε′2 max
t∈[0,1]

∫ 1

0
G(t, s)�(s)�R1+ε,R′ (s) ds, t ∈ [ε′, 1 − ε′].

Let δ′
0 = ε′2 maxt∈[0,1]

∫ 1
0 G(t, s)�(s)�R1+ε,R′ (s) ds. Then,

�(t)
∣∣∣∣ f

(
t, xnj,1(t) + 1

nj
t + 1

nj
, |x′

nj,1(t)| + 1
nj

)∣∣∣∣
≤ [h(R1 + 1) + w(δ′

0)][g(δ0) + r(R′)]�(t), t ∈ [ε′, t0 − ε′] ∪ [t0 + ε′, 1 − ε′].

Hence, the Lebesgue Dominated Convergence Theorem guarantees that

x′
0,1(t) − x′

0,1(t0 + ε′) = lim
j→+∞

[
x′

nj,1(t) − x′
nj,1(t0 + ε′)

]
= lim

j→+∞

∫ t

t0+ε′
�(s) f

(
s, xnj,1(s) + 1

nj
s + 1

nj
, |x′

nj,1(s)| + 1
nj

)
ds

=
∫ t

t0+ε′
�(s) f (s, x0,1(s), |x′

0,1(s)|) ds, t ∈ [t0 + ε′, 1 − ε′]

and similarly

x′
0,1(t) − x′

0,1(t0 − ε′) =
∫ t

t0−ε′
�(s) f (s, x0,1(s), |x′

0,1(s)|) ds, t ∈ [ε′, t0 − ε′].

Consequently, −x′′
0,1(t) = �(t) f (t, x0,1(t), |x′

0,1(t)|), t ∈ (ε′, t0 − ε′) ∪ (t0 + ε′, 1 − ε′).
Since ε′ is arbitrary, we have −x′′

0,1(t) = �(t) f (t, x0,1(t), |x′
0,1(t)|), t ∈ (0, t0) ∪ (t0, 1). In

addition x0,1(0) = x0,1(1) = 0, and x0,1 is a solution of (1.1) with x0,1(t) > 0 on (0, 1).
For the set {xn,2}n∈N0 ⊆ (�2 − �1) ∩ P, a similar proof yields a convergent sub-

sequence {xni,2} of {xn,2} with limi→+∞ xni,2 = x0,2 ∈ C1[0, 1]. Also x0,2 is a nonnegative
solution of (1.1) with x0,2(t) > 0 on (0, 1) and R1 < ‖x0,2‖ < 4R2

a∗(1−b∗) .
Consequently, (1.1) has at least two different nonnegative solutions x0,1 and x0,2

with ‖x0,1‖ < R1 < ‖x0,2‖. �

EXAMPLE 4.1. Consider the boundary value problems{
x′′ + µ[1 + |x′|e + |x′|−a][yb + y−d + 1] = 0, t ∈ (0, 1)
x(0) = 0, x(1) = 0,

(4.23)
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with 0 ≤ a, 0 ≤ e < 1, b > 1, 0 < d < 1 and µ > 0. If

µ <
1

2 + a

(
sup

c∈(0,+∞)

c

[c + cb+1 + c1−d/(1 − d)]
1

2+a

)2+a

, (4.24)

then (4.23) has at least two nonnegative solutions.

REMARK 4.1. Notice that (4.1)–(4.4) are only needed to guarantee the existence of
x0,1 in Theorem 4.1.
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