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While undernutrition and anaemia have previously been linked to poor development of children, relatively little is known about the role of
B-vitamins and fatty acids on cognition. The present study aims to explore the associations between indicators of body size, fatty acid and micro-
nutrient status on cognitive performance in 598 Indian school children aged 6—10 years. Baseline data of a clinical study were used to assess these
associations by analyses of variance adjusting for age, sex, school, maternal education and cognitive tester. The Kaufman Assessment Battery for
Children IT was used to measure four cognitive domains, including fluid reasoning, short-term memory, retrieval ability and cognitive speediness.
Scores were combined into an overall measure, named mental processing index (MPI). Body size indicators and Hb concentrations were signifi-
cantly positively related to cognitive domains and MPI, such that increases of 1sD in height-for-age and weight-for-age z-scores would each
translate into a 0-09sD increase in MPI, P=0-0006 and 0-002, respectively. A 10g/l increase in Hb concentrations would translate into a
0-08 sp increase in MPI, P=0-0008. Log-transformed vitamin B;, concentrations were significantly inversely associated with short-term
memory, retrieval ability and MPI (8 (95 % CI) = —0-124 (—0-224, —0-023), P=0-02). Other indicators of Fe, iodine, folate and fatty acid
status were not significantly related to cognition. Our findings for body size, fatty acids and micronutrients were in agreement with previous
observational studies. The inverse association of vitamin B, with mental development was unexpected and needed further study.
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and mental development of infants and young children'?~'®.

For healthy children >2 years of age such evidence is
currently limited'®.
Among the micronutrients, Fe and iodine interventions have

Low intakes of energy, protein and other nutrients, together
with high infection rates and poor socio-economic status
may lead to linear growth retardation and impaired child

development(l). Cross-sectional studies have linked stunting
(20,21)

(short stature for age) and low weight-for-age to poor develop-
ment and school achievement in infants and children®. The
detrimental effects of undernutrition early in life (<2 years
of age) on intellectual development seem irreversible and
remain apparent during childhood and adolescence®™®.

The n-3 fatty acid DHA and the n-6 fatty acid arachidonic
acid are important structural components of the human central
nervous system™ and play a role in brain functioning through
their involvement in aspects of neuron function and of neuro-
transmitter synthesis®. These two fatty acids can be syn-
thesised by the human body from the «-linolenic acid
(ALA) and linoleic acid. However, dietary intake of the n-3
fatty acid ALA in children is considered to be low”®,
which possibly limits adequate cognitive functioning. In fact,
high fish intake during pregnancy has been associated with
better cognitive development of infants®~'" and maternal
and infant DHA supplementation may benefit visual, motor

been shown to improve intelligence scores of children
Fe is needed for the formation of Hb for adequate oxygen
transport in the human body. In the brain, Fe is required for
myelination and neurotransmitter synthesis®?. Iodine is an
important component of the thyroid hormones, thyroxin and
tri-iodothyronine, which plays a major role in the growth
and development, function and maintenance of the central
and peripheral nervous system®. For the B-vitamins, how-
ever, little research has been conducted to investigate whether
these vitamins are of influence on mental development in chil-
dren. Vitamin B, (cobalamin) deficiency has been associated
with lower scores on cognitive tests in Guatemalan®® and
Dutch® children. Folate is important for closure of the
neural tube during fetal development®®, but no studies have
investigated the role of folate on cognitive functioning in chil-
dren after birth. In the brain, folate is required for neurotrans-
mitter production and myelination®”*®. Because of the

Abbreviations: ALA, a-linolenic acid; HAZ, height-for-age z-scores; MPI, mental processing index; sTfR, soluble transferrin receptor; WAZ, weight-for-age

Z-scores.
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interactions with folate metabolism, vitamin B, is indirectly
involved in neurotransmitter synthesis. Furthermore, the
vitamin Bj, cofactors adenosylcobalamin and methylco-
balamin are involved in myelination of the spinal cord and
the brain®®.

The primary objective of the present study is to investigate
the associations between indicators of body size, fatty acid
status, and Fe, iodine and B-vitamin status on overall cogni-
tive performance in 598 Indian school-age children. Second-
ary, we will explore the relationships of the nutritional
parameters with specific cognitive domains known to be
sensitive to differences in nutritional status in children. We
hypothesise that the indicators of body size, fatty acid
and micronutrient status (Fe, iodine, folate and vitamin B;,)
will be positively related to overall cognitive performance
and specific cognitive domains.

Experimental methods

The Children’s Health And Mental Performance Influenced
by Optimal Nutrition study was designed to investigate the
efficacy of foods fortified with n-3 fatty acids and micro-
nutrients on improving intellectual performance and growth
in Indian school children®®. The baseline data of the present
study, collected in the period between November 2005 and
February 2006, were used to assess the associations between
height-for-age (HAZ) and weight-for-age z-scores (WAZ),
Hb concentration and indicators of n-3 and n-6 fatty acid,
Fe, iodine, folate and vitamin B, status and cognitive
performance. These nutritional parameters were selected
based on their possible relationship with children’s mental
development.

Subjects

Two primary schools serving children from a poor socio-
economic background in Bangalore city, India were selected
for participation in the study. Almost all children living in
the surrounding communities attended these schools, where
they were taught in the local Kannada language. Before
study start, parents or caretakers of all children aged 6—10
years, attending grades 2—5 of these schools were invited
for a meeting during which the study procedures were
explained to them. Informed, written consent from the parents
and verbal assent from their children was obtained from 645
parent—child pairs. Children were included in the study if
they were: (1) apparently healthy, without any chronic illness
and physical/mental handicaps; (2) not severely anaemic
(Hb < 80¢g/1); (3) not severely undernourished (< —3sD for
WAZ and HAZ-scores of National Health Centre for
Statistics/WHO standards® Dy: (4) not intending to use micro-
nutrients supplements during the study; (5) planning to reside
in the study area during the next 12 months. Children who
were frequently absent from school (>40d during 6 months
before start of the study) and children who took micronutrient
supplements in the period of 3 months before the study start
were excluded. A total of 598 children were enrolled in
the study. Details on the enrolment, including a flow
chart of children recruited in the study have been published

elsewhere®?.

Socio-demographic information

Socio-demographic information on household composition,
parental education, income and use of fortified foods was
collected by a structured questionnaire that was administered
to the mother or primary caretaker of the subjects. The age
of the children was verified by the school records.

Cognitive performance

Cognitive performance was evaluated using age-appropriate,
validated psychometric tests that were administered by
seven masters-level psychologists in Kannada language. The
psychologists were trained extensively during 3 weeks
before the study to ensure standardisation in the test admin-
istration and scoring procedures. The cognitive test battery
was administered to each child on a single day over three
sessions of which two took place in the morning and one
in the afternoon. Care was taken to ensure all the children
had breakfast before testing began in the morning since omit-
ting breakfast is known to impair cognitive performance®?.
The cognitive test battery consisted of eleven subtests,
including six core tests of the Kaufman Assessment Battery
for Children, second edition for children 3—18 years (pattern
reasoning, triangles, rover, number recall, word order,
atlantis)(33), two tests from Wechsler Intelligence Scale for
Children-Revised and Wechsler Intelligence Scale for
Children-4 (picture arrangement, coding) and three additional
tests from Rey Auditory Verbal Learning Test (auditory-
verbal learning test), NEPSY (neuropsychological assessment
tool, verbal fluency) and number cancellation, which was
specifically designed for the study. The eleven subtests cov-
ered four cognitive domains as specified in Carroll’s model
as described in the Kaufman Assessment Battery for Chil-
dren, second edition manual®®, including fluid reasoning,
short-term memory, retrieval ability and cognitive speediness
(Fig. 1). These domains were chosen because they have
shown to be influenced by previous nutritional interven-
tions®*. The test battery underwent an extensive adaptation
process to ensure its suitability in the local cultural con-
text®. For each subtest, a sum score was calculated and
converted into a standardised z-score. The domain score
was composed by taking the average of standardised z-
scores for the tests constituting a domain. The average of
the domain scores named the mental processing index
(MPI) was a composite measure of overall cognitive perform-
ance based on the Kaufman Assessment Battery for Children,
second edition manual®”. Our model of clustering of
individual sum scores to form a composite score in four
separate cognitive domains showed good validity assessed

by structural equation modelling techniques®.

Anthropometry

Anthropometric measurements were conducted in duplicate
according to standard techniques®” by trained research
assistants. Height was recorded to the nearest 0-1cm using
a locally made stadiometer (BioRad, Chennai, India) that
was fixed to a wall. Body weight was recorded to the near-
est 0-1kg using a digital weighing scale (Breuer, Germany).
During the measurements, children wore their school
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Fig. 1. Clustering of cognitive tests in domain scores. Fluid reasoning involves basic processes of reasoning and other mental activities that depend only minimally
on learning and acculturation; short-term memory is an ability that requires apprehending and holding information in immediate awareness briefly and then using
that information within a few seconds; retrieval ability comprises the capacity to store information in long-term memory and to retrieve that information fluently and
efficiently; cognitive speediness measures the ability of rapid cognitive processing of information involving attention.

uniform and no shoes, caps or hats. HAZ and WAZ were
computed by data on height, weight, age and sex using
the National Health Centre for StatisticsyWHO growth refer-
ence data®". Children with HAZ and WAZ <—2sD of
this reference median were classified as stunted and under-
weight, respectively. We did not include weight-for-height
z-scores, because National Health Centre for Statistics/
WHO reference data were lacking for children >10 years
of age, which concerned 57 children aged 10-11 years in
the present study.

Biochemical indicators

A whole blood sample (10 ml) was collected in the morning
from non-fasted children by venepuncture in an EDTA vacu-
tainer. A spot urine sample was also collected in a sterile plas-
tic container, and the samples were transported to the
laboratory on ice. Care was taken to limit the exposure of
the samples to light. Hb concentrations were determined
within 4 h of collection using an AcT Diff2 Counter (Beckman
Coulter Inc., Fullerton, CA, USA). One aliquot of whole
blood for erythrocyte folate estimation was immediately trea-
ted with freshly prepared 1% ascorbic acid. The remaining
blood was immediately centrifuged (3000 rpm, 10 min, 4°C),
and the plasma was stored in 2 ml eppendorf tubes at —80°C
until analysis. One millilitre of erythrocytes was washed
with 5ml saline containing EDTA (1litre normal
saline + 0-00324 g disodium EDTA), flushed under nitrogen
and stored at —80°C until analysis for fatty acid content.
Serum ferritin was measured by an enzyme immunoassay

(Access® 2 Beckman Coulter autoanalyser, Brea, CA,
USA)©? against an external 3-level control material (WHO
Standard 80/578; Ramco Laboratories Inc., Houston, TX,
USA). Serum soluble transferrin receptor (sTfR) was measured
by using an enzyme immunoassay (Ramco Laboratories Inc.)
with two-level control materials provided by the manufacturer.
C-reactive protein was analysed by a turbidimetric method
(Roche Hitachi 902, Indianapolis, IN, USA)(38). Plasma vita-
min By, and red blood cell folate were analysed using a chemi-
luminescence system (ACS:180, Bayer Diagnostics,
Tarrytown, NY, USA)©240), Fatty acid content of erythrocyte
membrane phospholipids was analysed using GC with a flame
ionization detector (Varian 3800, Palo Alto, CA, USA). The
procedure involved the extraction of total lipids, isolation of
phospholipid fraction by TLC and transmethylation of phos-
pholipids™!' ~*». The fatty acid methyl esters were separated
by chain length and degree of saturation by injection onto a
50m X 0-2mm capillary column (Varian, Palo Alto, CA,
USA) with nitrogen as the carrier gas. Urinary iodine was
measured using the Sandell-Kolthoff reaction as modified
by Pino er al. *¥. Satisfactory agreement in urinary iodine
was obtained on urine samples at four different concentrations
measured and the Ensuring the Quality of Urinary lodine
Procedures, Centers for Disease Control and Prevention
(Atlanta, GA, USA). The following criteria were used to define
micronutrient deficiencies: anaemia: Hb <115 g/1(45); Fe defi-
ciency: serum ferritin <15mg/l and/or sTfR >7-6 mg/I““?;
folate deficiency: erythrocyte folate <305 nmol/1*”; vitamin
B, deficiency: plasma vitamin B, < 148 prnol/l(48); iodine
deficiency: urinary iodine <100 wg/1.
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Statistical analyses

Values for serum ferritin concentrations from the subjects with
elevated C-reactive protein (>10mg/l) were excluded from
statistical analyses. Body Fe stores were calculated from
serum ferritin and sTfR concentrations using the formula by
Cook et al. ®®. Differences in mean cognitive outcomes
between boys and girls, schools and different levels of edu-
cation of the mother were assessed by ¢ tests. Distributions
of parameters of fatty acid status, serum ferritin and sTfR,
erythrocyte folate, plasma vitamin B, and urinary iodine
were normalised by natural logarithm (In) transformation
before analysis. Associations between the nutritional par-
ameters and the cognitive scores were analysed using
ANOVA (SAS General Linear Modelling procedure) taking
into account age, sex, school, maternal education level and
assessor of cognitive tests as covariates. All available data
were analysed, missing values were not replaced. All analyses
were performed using Statistical Analysis Software version
9.1 statistical software package (SAS Institute Inc., Cary,
NC, USA).

The present study was conducted according to the guide-
lines laid down in the Declaration of Helsinki, and all pro-
cedures involving human subjects were approved by the
ethics committees at St John’s National Academy of Health
Sciences, Bangalore, India and Wageningen University, The
Netherlands. Written informed consent was obtained from
the parents of all subjects and verbal assent from all the
subjects. Verbal consent was witnessed and formally recorded.

Results

Five hundred and ninety eight children completed the baseline
measurements on cognitive performance, anthropometry
and Hb concentrations. Data on biochemical indicators of

Table 1. Characteristics of the study population

micronutrient and fatty acid status were available for at least
529 and 541 children, respectively. The socio-demographic
characteristics and nutritional status of the subjects are
presented in Table 1. Mean age of the children was 8.7
(sp 1-2)years and 49 % of them were boys. Nearly, half of
the mothers were uneducated and median family income
was 2700 Indian rupees per month, which is close to the
poverty line of US$2 per d. Twenty-two percent of the
children were stunted and 30 % were underweight. The preva-
lence of anaemia was 9 %, while that of Fe, folate, vitamin B,
and iodine deficiencies were 31, 17, 23 and 47 %, respectively.

Associations of covariates with cognitive performance

Age was significantly positively related with all cognitive out-
comes (B =031 (95% CI 027, 0-35), P<0-0001 for MPI).
Mean cognitive scores for boys and girls are presented in
Table 2. Scores on the domains of retrieval ability and cogni-
tive speediness and MPI were significantly lower in boys com-
pared with girls (P<<0-001). These findings did not change
when scores were corrected for age (data not shown). There
was a significant difference in performance on short-term
memory and retrieval ability between the two schools (data
not shown). Children of mothers with <6 years of education
had significantly lower MPI scores compared with children
of mothers with =6 years of education (means were — 0-05
(sD 0-66) v. 0-07 (sp 0-63), P=0-03, respectively).

Associations of nutritional parameters with cognitive
performance

Table 3 provides an overview of the associations between the
nutritional parameters and the indicators of cognitive perform-
ance. Scatter plots of the correlations between the MPI and

(Mean values and standard deviations; median and percentile values)

Percentiles
Characteristic n Mean SD Median 25th 75th
Socio-demographic parameters
Sex (% males) 598 49
Age (years) 598 8.7 1.2
Family income (Indian rupees/month) 598 2700 2000 3800
Uneducated mothers (%) 571 45.5
Anthropometric measures
Height (m) 598 122.9 7-8
Weight (kg) 598 214 38
Erythrocyte phospholipid fatty acid status (% of total fatty acids (wt/wt))
Linoleic acid 541 1412 13-07 15.21
Arachidonic acid 541 14-61 12.75 16-18
a-Linolenic acid 541 0-21 0-17 0-25
EPA 541 0-16 013 0-20
DHA 541 321 2.70 365
Micronutrient status
Blood Hb (g/l) 598 127.8 99
Serum ferritin (.g/l) 535 23-6 149 34.2
Serum soluble transferrin receptors (mg/l) 538 5.7 4.9 6-8
Total body Fe stores (mg/kg) 535 3.22 3-20
Erythrocyte folate (nmol/l) 529 515 371 745
Plasma vitamin B42 (pmol/l) 533 197 151 266
Urinary iodine (n.g/l) 542 108 66 200
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Table 2. Cognitive domain scores for boys and girls*
(Mean values and standard deviations)

Boys (n 293) Girls (n 305)
Mean sD Mean SD
Mental processing index —0-09 0-641 0-09 0-64
Fluid reasoning 0.01 0-81 —0-01 077
Short-term memory —0-06 0.92 0-05 0-88
Retrieval ability -0-12 0-761 0-11 0.75
Cognitive speediness -0-21 0-88t 0-20 0-83

*Domain scores are expressed in z-scores.
1 Scores between boys and girls were significantly different, t test (P<0-001).

HAZ, WAZ, Hb and vitamin B;, concentrations are shown
in Fig. 2. HAZ scores were significantly positively related
to all cognitive domains and MPI. WAZ were significantly
positively associated with all cognitive parameters, except
cognitive speediness. The associations of HAZ and WAZ
would in theory mean that an increase of 1sp in HAZ and
WAZ would correspond with 0-09sD increase in MPI,
P=0-0006 and P=0-002, respectively.

No significant relationships were detected between linoleic
acid, arachidonic acid, EPA and DHA and any of the cognitive
parameters. ALA was significantly inversely related to the
MPI, but no significant associations were observed with
the separate cognitive domains.

Hb concentrations were significantly positively related to
all cognitive domains and MPI. Our findings suggest that an
increase of 10 g/l in Hb concentration would translate into a
0-08 sD increase in MPI, P=0-0008. There was a significant
inverse association between sTfR concentrations and retrieval
ability. Other indicators of Fe status were not significantly
related to cognitive performance. Similarly, there were no
significant associations between urinary iodine concentrations
and cognitive parameters. In contrast, significantly inverse
relationships were found between erythrocyte folate concen-
trations and fluid reasoning (8= —0:10 (95% CI —0-19,
—0-01) and short-term memory (—0-11 (95% CI —0-23,
0-02)). However, when vitamin B, status was added to
the model, these inverse associations were not significant any-
more for fluid reasoning (—0-07 (95% CI —0-17, 0-02)
and for short-term memory (—0-08 (95 % CI —0-21, 0-05)).
Vitamin By, concentrations were significantly inverse
related to short-term memory and retrieval ability and the
MPI. These associations remained significant after further
adjusting for Hb and folate status and HAZ (8 (95 % CI)
were —0-19 (95% CI —036, —0-03) for short-term
memory; —0-20 (95 % CI —0-33, —0-08) for retrieval ability;
—0-12 (95 % CI —0-22, —0-02), P=0-02 for MPI).

Discussion

The present study shows that indicators of body size, HAZ and
WAZ and Hb concentrations were significantly positively
related to various cognitive domain scores and MPI, while
plasma vitamin B, concentrations were significantly inversely
associated with short-term memory and retrieval ability and
MPI. Other indicators of Fe, folate, iodine and fatty acid
status were not significantly related to cognitive performance.

Table 3. Overview of associations of nutritional factors with cognitive performance*

(B coefficients and 95 % confidence intervals)

Cognitive domains

Cognitive speediness

B
0-086

0-049
-0-133
-0-187
-0-112
—0-004
—0-164

Fluid reasoning Short-term memory Retrieval ability

Mental processing index

95% ClI

95% ClI

95% ClI

95% ClI

95% ClI

0.019, 0-152
—0.032, 0-130

0-000, 0-123

0-061

—0-002, 0-160

0-079
0-115
—0-053
—0-039
-0-124

0.-056, 0-172

0-114
0-123
0-200
0-047
—0-079

0.037, 0-133

0-085
0-091

570
570
513
513
513
513
513

Height-for-age z-score

0-003, 0-152
—0-304, 0-337

—0-263, 0-129

0-077
0-017
—0-067
—0-075
—0-087
—0-038

0-018, 0-213
—0-484, 0-378
—0-267, 0-260
—0-286, 0-038

0-054, 0-193
—0-112, 0-511

0.-033, 0-150
—0-251, 0-265

-0-211, 0-105
—0-195, 0-000

-0-122, 0-110

Weight-for-age z-score
Linoleic acidtt

—0-488, 0-222

0-007
—0-053
—0-097
—0-006
—0-061

—0-343, 0-453
—0-245, 0-021

—0-143, 0-237
—0-196, 0-046

—0-099, 0-018

Arachidonic acidtt
a-Linolenic acidtt

EPAtt
DHAtH

—0-196, 0-046
—0-230, 0-057

—0:-164, 0-155

—0-168, 0-219
—0-250, 0-230

0-026
—0-010

0-041
-0.032

—0-360, 0-032

—0-216, 0-140

—0-204, 0-140

—0-204, 0-083

0.002, 0-014
—0.062, 0-118

0-008
0-028
-0-010

0-002, 0-013
—0.047, 0-115

0-008
0-034
—0-295

0-002, 0-016
—0.068, 0-149

0-009
0-040
0-027

0-000, 0-010
—0.-059, 0-099

—0-300, 0-088

0-005

0-003, 0-012
—0.-035, 0-096

0-007
0-031
—0-096

570
507
510
507
501
497
515

Blood Hb

0-020
-0-106

Serum ferritint

-0-232, 0-212

—0-494, —0-097
—0-007, 0-029
—0.038, 0-144

—0-241, 0-295
—0.-021, 0-027

—0-230, 0-015

—0-258, 0-065
—0-009, 0-020

Serum soluble transferrin receptort

Total body Fe stores
Erythrocyte folatet

—0-017, 0-022
—0-099, 0-105

0-003
0-003
—0-058
—0-020

0-011

0-003
—0-108

—0-212
—0-044

—0-011, 0-023

0-006
—0-101

0-006
—0-038
-0-124
—0-007

0-053
—0-195

—0-191, —0-011
—0:-151, 0-094

—0.035, 0-086

—0-112, 0-036

—0:195, 0-079
—0.089, 0-049

—0-319, —0-071
—0.054, 0-072

—0-380, —0-044
—0-127, 0-039

—0-029

—0-224, —0-023
—0.057, 0-043

Plasma vitamin B4st

Urinary iodinet

0-009

0-026

*Using a model adjusted for age, sex, school, maternal education and assessor of cognitive tests. The R2 of the models with the different nutritional indicators ranged from 0-34 to 0-37 for MPI, 0-37 to 0-39 for fluid reasoning, 0-08 to

0-10 for short-term memory, 0-25 to 0-27 for retrieval ability and 0-34 to 0-36 for cognitive speediness.

1 Variables were normalised by natural logarithm transformation.

1 Fatty acids were measured in the erythrocyte membranes in the phospholipid fraction.
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Mental processing index z-score

2 |-

Mental processing index z-score

100 120 140
Blood Hb (g/l)

Log transformed plasma vitamin B4,

Fig. 2. Scatter plots of correlations between the mental processing index and height-for-age z-score (r 0-10, P=0-012), weight-for-age z-score (r 0-11, P=0-007),
Hb concentration (r 0-21, P<0-0001) and log-transformed vitamin B4, (r —0-09, P=0-046).

Strengths of this cross-sectional study were the availability
of biochemical parameters of micronutrient and fatty acid
status in a relatively large sample of >500 children from a
low socio-economic background. The sample is the represen-
tative for school children aged 6—10 years from poor socio-
economic classes in Bangalore city and the surrounding
peri-urban areas, based on a similar prevalence of anaemia
measured and similar average heights and weights in
our studies and other studies conducted in children in
Bangalore(5 D The cognitive test battery was thoroughly
adapted to local language and culture and showed good
internal and external validity, which is essential to detect
any associations between cognitive functioning and nutritional
status®?. In addition, we chose to assess the cognitive abilities
that have been shown to be influenced by nutritional inter-
ventions before®?.

A limitation of a cross-sectional study design is the inability
for causal inference. Furthermore, the high number of com-
parisons made between nutritional and cognitive variables
may have yielded false-positive findings (type I error).

However, we tried to limit the number of comparisons by
the use of composite scores for the cognitive tests. In addition,
we aimed to look for patterns among our findings, such as the
consistent positive association of HAZ with all cognitive
parameters. Another limitation of the study was the finding
that our overall model explained only 10-40% of the
variation in cognitive parameters. Genetic variation and
environmental factors such as socio-emotional stimulation
at home may account for this unexplained variation.
In additional analyses we explored whether the interactions
of age and sex with the nutritional indicators could explain
any variation in cognitive test scores, but the results of
these analyses did not yield further insights.

In agreement with our findings, lower HAZ, reflecting
longer term undernutrition, has previously been associated
with poorer cognitive performance in younger (1-3
years)®*=® and school children® =3, Moreover, inter-
vention studies have demonstrated that protein—energy
supplementation in young children benefits cognitive deve-
lopment on the longer term™®®*®" and therefore an
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adequate intake of energy and protein is required for optimal
development.

Erythrocyte fatty acid status was unrelated to cognitive per-
formance, which is in line with findings from a cohort study in
children aged 7 years®®. Possibly, the range in fatty acid
status among the children was too narrow to determine effects
on cognition. It may also be that erythrocyte or plasma fatty
acid status does not resemble brain fatty acid status at
school age when most brain growth has been completed.
A study in human subjects estimated that DHA requirements
of the brain are rather low and the authors suggested that
the liver may synthesise sufficient amounts of DHA to main-
tain brain DHA concentrations, provided that dietary intake of
the precursor ALA is adequate(63). Moreover, animal studies
indicated that synthesis of DHA in the liver is enhanced and
the turnover of DHA in the brain is reduced when diets
were low in ALA and free of DHA®®. Thus, intake and eryth-
rocyte concentrations of n-3 fatty acids may not be related to
brain function. Besides, there is some evidence that children
with attention-deficit hyperactivity disorders have lower
plasma—erythrocyte DHA and higher linoleic and arachidonic
acid concentrations than control children((’4_67), which could
be attributed to differences in fatty acid metabolism®®. There-
fore, more research is needed to investigate whether specific
subgroups of children may be sensitive to fatty acid inter-
ventions and whether fatty acids may predominantly influence
certain aspects of behaviour, such as attention.

For Hb, we showed a very small but significant positive
relationship with mental performance. However, for the
other parameters of Fe status, no such relationships could be
detected. Possibly, this relationship becomes only apparent
when Fe deficiency has caused anaemia, which was the case
in only 6% of the present study population. This has also
been reported in a review of literature of observational studies
showing that (Fe deficient) anaemic children have poorer cog-
nitive development and school performance than non-anaemic
children, and it was concluded that it is unclear whether Fe
deficiency without anaemia impairs mental performance®”.
In contrast, Fe supplementation has been shown to improve
mental performance in children >2 years of age in (Fe
deficient) anaemic as well as in non-anaemic children®®2P,
indicating that extra Fe may also be beneficial for develop-
ment of non-anaemic children. The higher cognitive scores
with increasing Hb concentrations found in the present
study, suggest that the Hb level for optimal mental perform-
ance may be higher than the current definition of anaemia
(<115g/M).

Against our expectations, both folate and vitamin B, were
inversely associated with some of the cognitive domain scores.
For folate these inverse relationships disappeared after con-
trolling for vitamin B, status, while for vitamin B, the
inverse associations with memory remained significant even
after controlling for folate, Hb and height-for-age. Our find-
ings are in contrast with two earlier observational studies indi-
cating that children with lower plasma vitamin B,
concentrations had poorer cognitive test scores®**> and
could be due to chance. In elderly, however, eight studies
did not show significant associations between plasma vitamin
B, and cognitive test performance'’” and one study showed
an inverse relationship””. Our finding and the observations
in elderly contradict to the overt clinical signs of vitamin

B, deficiency of neurological damage. Therefore, it has
been questioned whether plasma vitamin By, is a suitable
indicator to study effects on cognition”*’®. It is of interest
to investigate whether higher plasma homocysteine concen-
trations are related to poorer mental performance in children,
as has been observed in elderly’®’". In both children and
adults, plasma homocysteine concentrations are increasing
when folate and vitamin B, intake are low'’> and elevated
homocysteine may impair cognitive functioning through
neurotoxic and vasotoxic effects”®. Also other indicators
of vitamin B, status, such as holotranscobalamin and methyl-
malonic acid may be worth evaluating in future research’.

In addition, we could speculate on other confounding
factors that influence the relationship between higher plasma
vitamin B, concentrations and poorer cognitive performance.
Possibly, consumption of animal products infected with patho-
gens or vegetables contaminated with vitamin Bj,-producing
bacteria from manure may improve vitamin B, status”’>’®
and simultaneously increase the risk of disease, resulting
in poor school attendance and impaired cognition. However,
no literature is available to support this hypothesis.

Despite the evidence in literature that iodine deficiency is
detrimental to cognitive development’” and that iodine sup-
plementation improves cognitive functioning in children”®,
we failed to detect any association between urinary iodine
concentrations and cognition, which may be due to day-to-
day within subject variation in iodine excretion in urine™*”.

In conclusion, findings of the present study are in agreement
with other observational studies showing that undernutrition
(lower HAZ and WAZ) and lower Hb concentrations
adversely influence cognitive performance in school-age
children, while serum ferritin and sTfR concentrations,
and indicators of iodine, folate and fatty acid status were
unrelated and an inverse association was found for vitamin
B, and memory. Future research is needed to elucidate the
role of B-vitamins and homocysteine in cognitive deve-
lopment of children and to investigate whether fatty acid
status at school age may be of influence on specific cognitive
functions not measured in the present study, such as attention.
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