
JFP 23 (2): 185–224, 2013. c© Cambridge University Press 2012

doi:10.1017/S0956796812000421 First published online 22 November 2012

185

EditorArrow: An arrow-based model for
editor-based programming

PETER ACHTEN

Institute for Computing and Information Sciences, Radboud University Nijmegen,

Nijmegen, The Netherlands

(e-mail:)P.Achten@cs.ru.nl)

MARKO VAN EEKELEN

Institute for Computing and Information Sciences, Radboud University Nijmegen,

Nijmegen, The Netherlands

and

School of Computer Science, Open University of The Netherlands, Heerlen, The Netherlands

(e-mail:)M.vanEekelen@cs.ru.nl)

MAARTEN DE MOL

Formal Methods and Tools, University of Twente, Enschede, The Netherlands

(e-mail:)M.J.deMol@utwente.nl)

R INUS PLASMEIJER

Institute for Computing and Information Sciences, Radboud University Nijmegen,

Nijmegen, The Netherlands

(e-mail:)R.Plasmeijer@cs.ru.nl)

Abstract

State-based interactive applications, whether they run on the desktop or as a web application,

can be considered as collections of interconnected editors of structured values that allow

users to manipulate data. This is the view that is advocated by the GEC and iData toolkits,

which offer a high level of abstraction to programming desktop and web GUI applications

respectively. Special features of these toolkits are that editors have shared, persistent state,

and that they handle events individually. In this paper we cast these toolkits within the

Arrow framework and present EditorArrow: a single, unified semantic model that defines

shared state and event handling. We study the properties of EditorArrow, and of editors in

particular. Furthermore, we present the definedness properties of the combinators. A reference

implementation of the EditorArrow model is given with some small program examples. We

discuss formal reasoning about the model using the proof assistant Sparkle. The availability

of this tool has proved to be indispensable in this endeavor.

1 Introduction

Programming Graphical User Interfaces (GUI) is a labor-intensive endeavor, whether

they are being programmed based on a desktop widget set, or based on the web.

Consider the effort of creating a frequently occurring application-user dialog, in

which the user is required to enter a number of data items in order to advance the

program. When programming for the desktop, the programmer needs to declare,

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

186 P. Achten et al.

create, manage, and eventually destroy widgets (at least one for each input element,

and typically several to contain them and provide proper layout); for each widget

several callback routines need to be programmed that implement both the behavior

of the widget, and its effect to other widgets. Callback functions must terminate

promptly so that the application is sufficiently responsive (the 1
2
s rule, see also

Shneiderman, 1992). When programming for the web, the programmer needs to

create the proper HTML pages containing the forms that hold the input elements;

the state of these elements needs to be managed by the programmer because of

the stateless nature of the web; the communication, which is typically string based,

between client browser and server application has to be programmed, and is untyped,

which is a known source of errors (see also Thiemann, 2002; Hanus, 2002). The

code that computes the page needs to terminate promptly, otherwise the browser

will give up. In both situations, the resulting code can easily be hundreds of lines

long, with intricate interdependencies.

How can you convince yourself, or other stakeholders, that the program is correct

with respect to its requirements? Ideally, one would like to formally prove properties

for this purpose (Dowse et al., 2004). Unfortunately, neither the desktop nor the web

has a formally specified reasoning model. In this paper, we create a common underly-

ing formal model, called EditorArrow, that allows formal reasoning to take place for

a class of interactive programs that are event driven and in which graphical units be-

have as model-view components, i.e. they are identified units that have a state (model)

that is rendered (view) to allow users to view and alter the state. Note that both

widget-based and web-based applications are examples of such interactive programs.

The motivation for this work is our experience in building this class of interactive

applications both for widget-based systems and web-based systems. The first resulted

in the Graphical Editor Components (GEC) toolkit (Achten et al., 2003, 2004a, 2004b,

2004c) and the second in the iData toolkit (Plasmeijer & Achten, 2005, 2006c). One

distinctive feature of both approaches is that they allow the developer to abstract

from rendering issues and event handling issues by using generic programming

techniques to derive a GUI and its event handling from a type. Such units are

called editors, because at a conceptual level, the developer can think of interactive

elements as components that render a state that can be edited by the application

user. The model values of these editors operate as editable data that are altered

in an event-driven way. Despite the different back-ends of both toolkits, their api

can be captured in the Arrow (Hughes, 2000) framework. For this reason, we base

EditorArrow on Arrows. We show that for the class of state-based, event-driven

interactive programs the Arrow framework satisfies the usual Arrow laws and other

properties that are required for formal reasoning. We think that the resulting model is

sufficiently general to capture an interesting range of systems. In Section 6 we argue

informally that the well-known Fudgets system can be modeled within EditorArrow.

In order to verify the correctness of EditorArrow, we create a reference imple-

mentation of EditorArrow, called EditorArrowCore, in the pure and lazy, graph

rewriting, functional programming language Clean (Eekelen et al., 1997; Plasmeijer

& Eekelen, 1999, 2002) (for readers who are more familiar with the functional

language Haskell (Hudak et al., 2007), we refer to Groningen et al., 2010, for a

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 187

detailed overview of the differences between Clean and Haskell and how to merge

the two languages). We use Clean because it comes with the interactive proof

assistant Sparkle (Mol et al., 2002, 2008; Kesteren et al., 2004; Mol, 2009). We use

Sparkle and its special support for reasoning about strictness (Eekelen & Mol, 2005)

to determine and analyze the definedness properties of the EditorArrow framework.

The layout and contributions of this paper are as follows:

• We develop EditorArrow: a formal Arrow model for event-driven state-based

interactive applications and give a denotational and operational semantics

(Section 2).

• We show that the Arrow laws hold within EditorArrow, and identify a useful set

of additional laws that are concerned with interconnecting editors, the editor

laws. The Arrow model is constructed to support partially defined values in a

maximal way, resulting in definedness laws (Section 3).

• We develop a reference implementation of the semantic model in Clean and

use it to formally prove the Arrow, editor, and definedness laws with the Sparkle

tool (Section 4).

• We demonstrate how to use the results of the framework to formally prove

correctness properties of concrete examples (Section 5).

Related work is presented in Section 6 and we end with discussion and conclusions

in Section 7.

2 EditorArrow

In EditorArrow, an editor is regarded as a uniquely named, typed storage for a

single value that presents a GUI to allow the application user to alter (edit) this

data value. This edit action is an event. When connected to another editor, the editor

communicates its stored value both when its value is changed by the user and when

a change of the value held by another editor is received. An interactive application

is a collection of such connected editors. The EditorArrow model uses the Arrow

combinators to connect editors. The Arrow instance is defined in the domain of

editable data and event transformer functions.

In this section, we introduce the generalized framework and motivate its com-

ponents in Section 2.1, together with a small example. In Section 2.2, we give the

formal denotational semantics of EditorArrow, and in Section 2.3 the operational

semantics.

2.1 Design considerations

With EditorArrow, we wish to reason about the behavior of interactive applications,

regardless of whether these are constructed for the desktop or the web. In this

section, we motivate the design considerations for the EditorArrow model.

To start with, we introduce a number of abstractions. First of all, we abstract from

representation (widget or form) and layout. In EditorArrow we are only concerned

with editors that respond to value changes. We know that we can derive a rendering

for each and every type and do not wish to reason about them. Second, we abstract

from residence of state and assume that every editor has access to its state value

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

188 P. Achten et al.

and that this state value is persistent. Hence, in EditorArrow every modeled program

leaves its trace during and after execution in terms of the persistent editor states.

Third, we abstract from the communication method (events versus post/get). Instead,

we consider user actions to be just editing actions which can be modeled conveniently

as a new value of the same type of value that is maintained by the editor.

As a result of these abstractions, the basic building blocks in EditorArrow are

editors of values of any type. Editors are identified by means of a unique label

and an initial value. Within the arrow relation, the same editor can appear multiple

times, by using the same identifier. In this way, intricate relationships can be defined

via sequential composition rather than a cyclic combination of editors.

The current value of an editor can be read and set, for which purpose we introduce

two combinator functions, viz. editread and editset. Both functions receive an editor

identifier value via the arrow state, and editset is also provided with the new value

of the editor. When manipulated by the user, an editor receives a new value and

emits that value via the arrow state. The difference between the two operations shows

when an editor that appears earlier within the arrow relation has been manipulated

by the user: the editread editor simply echoes its current value via the arrow state,

whereas the editset editor copies the value that is received via the arrow state as its

new value, and emits that new value via the arrow state.

In order to capture repetition, we need some kind of recursion. All interactive

applications have some kind of event loop that deals with consecutive events. An

editor arrow expression must build a finite, fully evaluated interface for the user.

This interface may be dynamic in the sense that the user can influence its values

and its size but it must always be finite and fully evaluated. For modeling recursion

on the level of such editor arrow expressions, we need nothing more than primitive

recursion. The corresponding combinator, iterateN, receives a number argument

that tells how many times a certain EditorArrow needs to be repeated.

Finally, as stated in Section 1, we use the standard Arrow combinators: arr,>>>,

and first to interconnect editors.

As an example of EditorArrow, Figure 1 displays the definition of an interactive

program that dynamically creates and removes number input elements depending

on the current user input. The example is called varsumlist. In Section 5 we formally

prove in EditorArrow that this program is equivalent to another version. The initial

situation of the program is depicted in the upper screenshot: the program only

consists of the number input field and a display that shows the sum of the values of

the dynamically created number input elements. The number input field, with initial

value zero, is identified by nrId (line 11) and the sum display, also with initial value

zero, is identified by sumId (line 12). The number input field is created at line 3 and

the sum display at line 9. The read value of the number input field determines the

total number of other integer input elements. The nth editor is identified by argId n,

and also has initial value zero (lines 5 and 13). These input elements can be edited

by the user. After each such edit action, their sum is computed and displayed in

the sum display. This can be repeated as many times as the user likes. In the lower

screenshot the user has entered 3 in the first editor, resulting in three more editors

that have been altered by the user.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 189

varsumlist 1.

= arr (λx→ nrId) 2.

>>> editread 3.

>>> arr (λn→ (n,0)) 4.

>>> iterateN (first (arr argId>>> editread) 5.

>>> arr (uncurry (+)) 6.

) 7.

>>> arr (λt→ (sumId ,t)) 8.

>>> editset 9.

10.

nrId = ("nr" , 0) 11.

sumId = ("sum" , 0) 12.

argId n = ("arg " <++ n , 0) 13.

Fig. 1. (Colour online) The varsumlist program in Arrow style and its iData rendering.

2.2 Denotational semantics for EditorArrow

In the classic approaches to functional reactive programming (Elliott & Hudak,

1997; Courtney et al., 2003; Hudak et al., 2003) the basic building block is formed

by signals, defined as time-varying values:

Signal a = Time → a

Signals are therefore well suited to define values that vary smoothly over time. They

can also be used to accommodate the discrete nature of events as they occur in

GUIs (Courtney & Elliott, 2001): at time t either an event e is available (Just e) or

it is not (Nothing). Hence, by defining

Event a = Maybe a

event streams can be included as Signal (Event a) functions.

From the account in Section 2.1, it follows that in the case of editors we are only

concerned with events and event streams. In our framework, a Signal (Event a)

simplifies to a list-based event stream.

So, in the EditorArrow framework an interactive program processes a stream of

events, EditEvents , which is modeled conveniently as a list of events.

EditEvents = [EditEvent]

Interactive programs consist of arbitrarily many editors, each having a value of

possibly different type. If we model this in a strongly-typed programming language

(as we will in Section 4), we need existential or dependent types. Here, we just

assume a Value domain, and use lists of values abstracting from the way this is

specified in a programming language.

When the user manipulates an editor that is identified via eid : ID , she eventually

generates a new value v : Value. This event is modeled as a pair of the eid : ID

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

190 P. Achten et al.

value of the editor, and the new value v : Value that the user has generated. The ID

consists of the name of the editor and its initial value which it will have as long as

no event for it has occurred.

EditEvent = ID × Value

ID = Name × Value

As stated above, an interactive program consists of arbitrarily many editors that

have a data value that can be manipulated by the user. We collect these editable

data in a set of pairs:

EditableData = ℘(ID × Value)

We want all values in the EditableData domain to be fully defined since these are

the values that are to be displayed. We can “read” and “write” pair values from

this set using two primitives, read and write. We assume an access function initvalue

to take from an event identifier of type ID the value part which holds its initial

value. Note that these primitives require their arguments to be fully defined since

the resulting EditableData domain is fully defined.

read : ID → EditableData → Value

read eid s =

{
d if (eid , d) ∈ s

initvalue eid if (eid , d) �∈ s

write : ID → Value → EditableData → EditableData

write eid v s=

{
(eid, v) ∪ s\(eid, d) if (eid , d) ∈ s

(eid, v) ∪ s if (eid , d) �∈ s

The ID values serve as unique keys in s : EditableData:

∀eid : ID , s : EditableData .(eid , d) ∈ s ∧ (eid , d′) ∈ s ⇒ d = d′.

Programs are constructed by means of the Arrow combinators. An Arrow program

fragment processes an event. This is modeled by:

EventStatus = {Pending ,Processed}
pending : EventStatus → Bool

processed : EventStatus → Bool

The predicates pending and processed hold only if their EventStatus argument has

the corresponding value.

Processing an event possibly updates the existing editable data. In addition, it

expects an incoming value of type a, and emits an outgoing value of type b. The

editable data together with an incoming or outgoing value and the status of event

processing are put in one triplet: the EState. A program fragment is an Editable

Data and Event T ransformer function, abbreviated as EDET . Why this is a partial

function will be explained later in Section 3.4.

EState a = EditableData × a × EventStatus

EDET a b= EditEvent → EState a ↪→ EState b

In contrast to classic reactive programming with Signals, where state is always

local (introduced by the use of loop), we are modeling a situation where essentially

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 191

global data are edited. Hence, we take as the basis of our Arrow modeling the type

EDET a b.

The grammar of arrow expressions is:

EdArrow ::= arr Fun (lift pure function to Arrow domain)

| EdArrow >>> EdArrow (sequential composition)

| first EdArrow (bypass information)

| left EdArrow (handle left alternatives only)

| iterateN EdArrow (primitive recursion)

| editread (read editor state)

| editset (write editor state)

where Fun represents functions as expressed in a functional language.

Denotationally, we define a function �−� from these arrow expressions to the

functions on the EDET domain.

�−� : EdArrow → EDET a b

Below we specify the meaning for each of the combinators denotationally. We use

tuples and lists for lambda arguments and standard case, if and non-recursive let

constructs to keep the definitions concise and readable.

The basic classic combinators (arr,>>>, and first) are easily defined. For the

meaning of f in the arr rule, we rely on standard lazy functional language semantics

�−�λ⊥ (Cartwright & Donahue, 1982), using domains that are lifted by adding ⊥
to them as domain value. It is important to note that the specific domains for this

model (EditEvent , EditableData and their components) are not lifted.

�arr f � = λe.λ(s, a, p).(s, �f �λ⊥ a, p)

�f >>> g � = λe.(�g� e) ◦ (�f � e)

�first f � = λe.λ(s, bd, p).

let (b, d) = bd

let (s′, c, p′) = �f � e (s, b, p)

in (s′, (c, d), p′)

The definition of first has an interesting aspect. If the pattern (b, d) is undefined

then the result of the meaning function may still be a triplet with a defined or

undefined second triplet element, all depending on the meaning of f .

For our purposes, we also need some choice combinator. The standard way to do

this is to use a left combinator. Based on left , different kinds of choice combinators

can be created using the lifted standard Either type. Since this domain is lifted, the

result of the case definition can be a partially defined function.

�left f � = λe.λ(s, eitherlr , p).

case eitherlr of

Left a = let (s′, b, p′) = �f� e (s, a, p) in (s′,Left b, p′)

Right c = (s,Right c, p)

The meaning of the two combinators for the basic editor variants, editread and

editset , is defined straightforwardly using the functions read , write and pending . We

follow the intuitive meaning described in Section 2.1 quite closely. Since the eid and

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

192 P. Achten et al.

eida event identifiers are lifted and they are passed to the read and write primitives

which require non-lifted values, this is a partial definition.

�editread� = λ(eid′, v).λ(s, eid, p).{
(write eid v s , v ,Processed) if pending(p) ∧ eid = eid ′

(s , read eid s , p) if ¬pending(p) ∨ eid �= eid ′

�editset� = λ(eid′, v).λ(s, eida, p).

let (eid, a) = eida

in{
(write eid v s , v ,Processed) if pending(p) ∧ eid = eid ′

(write eid a s , a , p) if ¬pending(p) ∨ eid �= eid ′

The primitive recursion iterateN combinator iterates its argument arrow a finite

number of times using a lifted natural number n. Analogous to the choice combinator

left the result may be partially defined since the (n, a) value is in a lifted domain.

�iterateN f � = λe.λ(s, (n, a), p).⎧⎨
⎩

(s, a, p) if n = 0

let (s′, a′, p′) = �f � e (s, (n, a), p) if n > 0

in �iterateN f � e (s′, (n − 1, a′), p′)

The above denotational semantics states what the meaning is of an arrow

expression on a single event. To define what happens with an event stream, consisting

of a list of EditEvents we need to model the toolkit wrappers’ event loop.

�f �eventstream = �eventloop f �

The toolkit wrappers are modeled by a loop combinator as is introduced by

Paterson (2001). The loop combinator is defined using the standard least fixed point

combinator Y. In our case however, this loop combinator will occur exactly once

(note that it is not part of the definition of EdArrow), on the outside of an editor

arrow expression. To avoid confusion, we have not called this a loop combinator

but an eventloop combinator.

�eventloop f � = Y

⎛
⎜⎜⎝
λevloopf .λ(s, a).λes.⎧⎨
⎩
s if es = []

let (s′, b, p) = �f � (hd es) (s, a,Pending) if es �= []

in evloopf (s′, a) (tl es)

⎞
⎟⎟⎠

Using iterateN within arrow expressions allows us to use primitive recursion over

the Arrow structure, whereas eventloop takes care that we can have an interactive

system with persistent state.

2.3 Operational semantics for EditorArrow

For implementing the EditorArrow model, we also need operational semantics. They

are derived straightforwardly from the denotational semantics. We take again the

same domains. The operational semantics are defined in the standard way using

“big-step” semantics. The relation −→ is suffixed with the handled event e : (id, v)

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 193

which is assumed to be always defined. It relates the argument triplet (s, a, p) of

store, value and boolean to a result triplet. The rules define what the semantics is

for defined triplets. For other cases, the semantics is undefined.

The rules for the basic combinators are given below. With →λ⊥ we denote the

standard reduction from functional languages.

f a→λ⊥a
′

arr f (s, a, p) →e:(id,v)(s, a
′, p)

(arr)

f (s, a, p) →e:(id,v)(s
′, a′, p′) g (s′, a′, p′) →e:(id,v) (s′′, a′′, p′′)

f >>> g (s, a, p) →e:(id,v)(s
′′, a′′, p′′)

(seq)

The first rule requires two alternatives since the value domain is lifted and we

want a lazy variant of first consistent with the denotational definition.

f (s, a, p) →e:(id,v)(s
′, a′, p′)

first f (s, (a, c), p) →e:(id,v)(s
′, (a′, c), p′)

(first)

f (s,⊥, p) →e:(id,v)(s
′, a′, p′)

first f (s,⊥, p) →e:(id,v)(s
′, (a′,⊥), p′)

(first⊥)

Operationally, we need for the left combinator the following choice rules (we do

not have an extra undefined rule here, we use a partial definition instead):

f (s, a, p) →e:(id,v)(s
′, a′, p′)

left f (s,Left a , p) →e:(id,v)(s
′,Left a ′, p′)

(choice left)

left f (s,Right a , p) →e:(id,v) (s,Right a , p)

(choice right)

Both the editor combinators treat specially the case of a “pending” event that

must be processed by an editor with matching id. The operational semantics employs

the same primitives (pending , read and write) as the denotational semantics.

s′ = write id v s pending(p)

editread (s, id , p) →e:(id,v)(s
′, v,Processed)

(editread pending)

a = read id s id �= id ′ ∨ ¬pending(p)

editread (s, id , p) →e:(id′ ,v)(s, a, p)

(editread other)

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

194 P. Achten et al.

s′ = write id v s pending(p)

editset (s, (id , a), p) →e:(id ,v)(s
′, v,Processed)

(editset pending)

s′ = write id a s id �= id ′ ∨ ¬pending(p)

editset (s, (id , a), p) →e:(id ′ ,v)(s
′, a, p)

(editset other)

Iteration is defined through two rules. We have one rule for the base case and

another for the iterating case using natural numbers to count the number of

iterations.

iterateN f (s, (0, a), p) →e(s, a, p)

(iter base)

f (s, (n + 1, a), p) → e(s
′, a′, p′) iterateN f (s′, (n, a′), p′) → e(s

′′, a′′, p′′)

iterateN f (s, (n + 1, a), p)→e(s
′′, a′′, p′′)

(iter next)

Finally, the event loop is defined straightforwardly dealing with events one by one

and passing the resulting store to the next event. We only yield the store as result

since, at each new event, the store is augmented to a triplet with the same initial

value and the same boolean indicating that the event has not been processed yet.

f (s, a,Pending) →[]s
(events end)

f (s, a,Pending) →e:(id,v) (s′, a′, p′) f (s′, a,Pending) →ess
′′

f (s, a,Pending) →[e:es]s
′′

(events next)

It is easy to prove that the operational semantics is sound with respect to the

denotational semantics. The operational semantics will be used as the basis for a

reference implementation of the framework in the programming language Clean in

Section 4.

3 Properties of EditorArrow

In this section we state the basic properties of the semantic model that has been

presented in the previous section. The “classic” Arrow laws, as described by Hughes

(2000) and Paterson (2001), are valid for this model. These laws are given as

Definition 1.

In Section 3.1 we introduce “iterate” laws and in Section 3.2 we give properties of

the “eventloop.” We introduce basic “editor” laws in Section 3.3. Finally, we provide

“definedness” laws in Section 3.4.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 195

Definition 1 (Classic Arrow Laws)

arr id >>> f
(Left unit)

= f
(Right unit)

= f >>> arr id

f >>> (g >>> h)
(associativity of >>>)

= (f >>> g) >>> h

arr (g ◦ f)
(o preserves >>>)

= arr f >>> arr g

first (arr f)
(first extension)

= arr (f × id)

first (f >>> g)
(first preserves >>>)

= first f >>> first g

first f >>> arr (id × g)
(first swap)

= arr (id × g) >>> first f

first f >>> arr fst
(fst eliminates first)

= arr fst >>> f

first (first f) >>> arr assoc
(assoc eliminates first)

= arr assoc >>> first f

left (arr f)
(left extension)

= arr (f ⊕ id)

left (f >>> g)
(left functor)

= left f >>> left g

left f >>> arr (id ⊕ g)
(left exchange)

= arr (id ⊕ g) >>> left f

arr Left >>> left f
(left unit)

= f >>> arr Left

left (left f) >>> arr assocsum
(left association)

= arr assocsum >>> left f

where

fst (a, b) = a

f × g (a, b) = (f a, g b)

f ⊕ g (Left a) = Left (f a)

f ⊕ g (Right b) = Right (g b)

assoc ((a, b), c) = (a , (b, c))

assocsum (Left (Left a)) = Left a

assocsum (Left (Right b)) = Right (Left b)

assocsum (Right c) = Right (Right c)

3.1 Iterate laws

Definition 2 states the two iterate laws. There is a rule for the base case and a

rule for the iteration. They are described nicely using an auxiliary function �. This

auxiliary function puts an argument number a in a pair with the arrow result value,

that is being passed, such that iterateN can use this number to count the iterations.

The iterateN − base law expresses the fact that the argument is applied zero times.

The iterateN − next law expresses the fact that the argument is applied m+ 1 times

consecutively with decreasing values starting with m + 1.

Definition 2 (Iterate Laws)

iterateN f � 0
(iterateN −base)

= arr snd � 0

iterateN f � (m + 1)
(iterateN −next)

= f � (m + 1) >>> iterateN f � m

where

f � a = arr (λx → (a, x)) >>> f

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

196 P. Achten et al.

Definition 3 (Eventloop Properties)

eventloop f (s, a) []
(eventloop−end)

= s

eventloop f (s, a) [e :es]
(eventloop−next)

= eventloop f

(drop ((arr dupl >>> first f >>> arr snd)

e (s, a,Pending)

)

) es

where

dupl = λx → (x, x)

drop = λ(s, a, p) → (s, a)

3.2 Eventloop properties

The properties of the eventloop are given in Definition 3. The property

eventloop − end expresses that in the absence of events, the store is the result

of the program. The eventloop − next property expresses that the events are dealt

with one after the other passing the state and using the same initial value and event

status over and over again. This last property requires some auxiliary “plumbing”

functions.

3.3 Editor laws

The proofs of the classic arrow laws, the iterate laws and the eventloop properties

do not rely essentially on the definitions of edit combinators; hence, they are also

valid for the editread and editset combinators. This means that we get already a

large number of equivalences “for free” when the edit combinators are involved.

In addition, we introduce 10 laws that are specific to uses of editread and editset .

They are given as Definition 4. We express that editset and editread expect a proper

identification value id with the auxiliary function � to put the id at the right place

for editset and another auxiliary function � to put the id at the right place for

editread .

• We distinguish four edit elimination laws (one for each combination of the

two edit arrow combinators) expressing that editors behave as pure stores: it

is harmless (and pointless) to store the very same data in the same location in

sequence in two occurrences of the same editor (i.e. with the same id).

• The four edit swap laws express the property of independence of the order

of two editors of values in the first and the second part of a tuple. In each

of these laws it is assumed that i and j are different. The edit swap laws are

expressed nicely in a symmetric way using the standard combinator ∗ ∗ ∗ and

its “mirrored” variant � � �.

Finally, we have two laws for often used standard application patterns of the edit

arrow combinators: self and feedback .

• The self pattern is used to apply a function to the value that is edited by a user

and store its result for this editor. In this way, editors can control the values

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 197

Definition 4 (Editor Laws)

editread � i >>> editread � i
(read−read elimination)

= editread � i

editread � i >>> editset � i
(read−set elimination)

= editread � i

editset � i >>> editread � i
(set−read elimination)

= editset � i

editset � i >>> editset � i
(set−set elimination)

= editset � i

editread � i ∗ ∗ ∗ editread � j
(read−read swap)

= editread � j � � � editread � i

editread � i ∗ ∗ ∗ editset � j
(read−set swap)

= editset � j � � � editread � i

editset � i ∗ ∗ ∗ editread � j
(set−read swap)

= editread � j � � � editset � i

editset � i ∗ ∗ ∗ editset � j
(set−set swap)

= editset � j � � � editset � i

self f i >>> self g i
(self composition)

= self (g ◦ f) i

feedback i j
(feedback swap)

= feedback j i1

where

f � a = arr (λx → a) >>> f

f � a = arr (λx → (a, x)) >>> f

f ∗ ∗ ∗ g = first f >>> second g

f � � � g = second f >>> first g

self f i = editread � i >>> arr f >>> editset � i

feedback i j = editread � i >>> editset � j >>> editset � i

that they contain. The self composition law states that function composition

distributes over this self pattern.

• The feedback pattern is used for two editors to feed their results directly back

to each other. In general, you cannot swap the order of different subsequent

editors because they will respond differently to the same event sequence. The

feedback swap law states that in the case of mutual feedback the order of

the editors is irrelevant. In the case that i equals j this is of course a trivial

consequence of applying the edit elimination laws.

3.4 Definedness laws

In the EditorArrow model we have assumed that editors are only able to operate on

values that are fully defined, which was modeled by restricting the access functions

read and write to values from the Value domain. This has consequences for the entire

model, which were left implicit in Section 2. In this section, these consequences are

made explicit by means of formulating definedness laws.

1 The “feedback swap” law is only valid if the editors i and j hold the same value initially, which is the
case when read i s = read j s for the input editable data s.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

198 P. Achten et al.

Modeling the definedness behavior of editors has consequences for both the used

domains and the meaning function. On the domain level, the value part of an EState

must be lifted by explicitly incorporating ⊥ in it. When values are constructed with

tuples or eithers, multiple lifts may even be necessary. The input-output signatures

of editor arrows are as follows:

Definition 5 (Value Transformation of Editor Arrows)

editor arrow allows input and produces assuming

arr f A B f ∈ A → B

f >>> g A C f transforms A to B,

g transforms B to C

first f (A × C)⊥ (B × C)⊥ f transforms A to B

left f (Either A C)⊥ (Either B C)⊥ f transforms A to B

iterateN f (�⊥ × A)⊥ A f transforms (�⊥ × A) to A

editread ID⊥ Value −
editset (ID⊥ × A)⊥ Value −

Here, A⊥ denotes A ∪ {⊥}, and a “f transforms A to B” on the right is a recursive

input/output condition on the editor arrow f. For instance, if f transforms A to A

and a ∈ A, then (0, a), ⊥ and (⊥, a) are all valid input for iterateN f. Note that

editread and editset both produce an element of Value, which is assumed to be the

unification set of the defined values of all allowed types. The “A” input of editset ,

on the other hand, does not necessarily have to be defined.

The behavior of the editor arrows on all their allowed inputs was described in

Sections 2.2 and 2.3, and is the same for the denotational and operational semantics.

In the case of ⊥ values, this behavior can be summarized as follows:

Case 1: It does not matter that (part of) the input is ⊥, because no structural

information is required at that point. This case covers the following situations:

arr f on ⊥; f >>> g on ⊥; first f on (⊥, x) and (x,⊥);

left f on Left ⊥ and Right ⊥; and iterateN f on (n,⊥).

Case 2: A ⊥ occurs where structural information is required, but it is possible to

continue anyway. This case occurs only when first f is applied on ⊥, which is

considered to be equal to applying first f on (⊥,⊥).

Case 3: A ⊥ occurs where structural information is required, and it is not possible

to continue. This case covers the following situations:

left f on ⊥ (cannot decide whether to apply f or not);

iterateN f on ⊥ and (⊥, x) (cannot decide how many times to apply f);

editset on ⊥ (cannot obtain id and value).

In these situations, we have chosen not to produce any result at all.

Case 4: A ⊥ occurs when either a defined ID or a defined Value is required to

access the editable data. This case covers the following situations:

editread on ⊥; editset on (⊥, a); and

editset on (id,⊥) (when no event is pending for id).

Again, in these situations we have chosen not to produce any result at all.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 199

Due to cases 3 and 4, the semantics of editor arrows becomes a partial function that

does not always produce an EState triplet. In order to determine in which situations

a result is produced, the following definedness laws can be used:

Definition 6 (Definedness Relation for Editor Arrows)

Def (f, A, B) ⇔ ∀a∈A∀ev ,s,p∃b∈B∃s′ ,p′ .[f ev (s, a, p) = (s′, b, p′)]

Definition 7 (Definedness Laws for Editor Arrows)

f ∈ A → B
(arr def)⇒ Def (arr f, A, B)

Def (f, A, B),Def (g, B, C)
(>>> def)⇒ Def (f >>> g, A, C)

Def (f, A, B)
(first def 1)⇒ Def (first f, A × C, B × C)

Def (f, {⊥}, B)
(first def 2)⇒ Def (first f, {⊥}, B × {⊥})

Def (f, A, B)
(left def)⇒ Def (left f, Either A C, Either B C)

Def (f,� × A,A)
(iterate def)⇒ Def (iterateN f, � × A, A)

(editread def) Def (editread , ID , Value)
(editset def) Def (editset , ID × Value, Value)

Def (f, A, B),Def (f, C, D)
(combine def)⇒ Def (f, A ∪ C, B ∪ D)

(editset-def has been simplified: we must also check whether an event is pending or not)

For any given editor arrow f, these laws can be used to come up with sets A and B

such that Def (f, A, B) can be inferred. This then shows that f produces a result as

long as its input value is an element of A.

4 Programming with editor arrows

In this section, we build a direct implementation of the semantic EditorArrow model

that was described in Section 2. The implementation is realized by means of a library

in Clean and is named “EditorArrowCore ”. The library serves two purposes. First, it

is a reference implementation: execution in EditorArrowCore results in the abstract

desired behavior of an editor arrow, and execution in GEC and iData must result

in graphical representations of this same abstract behavior. Second, it is a basis for

formal reasoning, because it allows the laws of Section 3 to be verified with Clean’s

proof assistant Sparkle.

This section is structured as follows. First, we describe the realization of the base

editor arrows in Section 4.1. Then, we define composed arrow operations in Section

4.2, which are used to make programming with arrows easier. In Section 4.3, we give

a number of example programs. Finally, in Section 4.4 we discuss the formalization

in Sparkle of the earlier provided arrow laws, and we compare the definedness of

EditorArrowCore with respect to the EditorArrow model.

4.1 Base editor arrows in the EditorArrowCore library

The EditorArrowCore library is a direct implementation of the EditorArrow model

of Section 2. On the top level, it defines the concept of Editable Data and Event

Transformers, by means of the following types:

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

200 P. Achten et al.

:: EDET a b :== Event → (EState a) → (EState b) 1.

:: EState a :== (EditableData , a , EventStatus) 2.

:: EditableData :== [(EditorId , SerializedValue)] 3.

:: EventStatus = Processed | Pending 4.

:: EditorId :== (EditorName , InitialValue) 5.

:: EditorName :== String 6.

:: Event :== (EditorId , SerializedValue) 7.

:: InitialValue :== SerializedValue 8.

:: SerializedValue :== String 9.

With respect to the EditorArrow model, there are only two differences. First, an

association list is used to represent EditableData (line 3), instead of an association

set. This is of no consequence, because EditableData will only be operated on by

functions that are guaranteed never to create duplicates. Second, values are serialized

to Strings (line 9) before they are stored in the EditableData (line 3). Basically, this

is a poor man’s solution to the problem of implementing stores in which the values

can be of arbitrary different types. The serialize and deserialize functions must be

provided by the user explicitly, by means of the following class:

class editable a 1.

where 2.

serialize :: a → String 3.

deserialize :: String → a 4.

In EditorArrowCore, each editor must be overloaded with an instance of the editable

class. Furthermore, in order for serialized values to work correctly, the instance must

also satisfy the following properties:

• ∀a.[a = ⊥ ⇔ serialize a = ⊥]; and

• ∀s.[s = ⊥ ⇔ deserialize s = ⊥]; and

• ∀a.[deserialize (serialize a) = a]

The first two properties state that the definedness of serialized values is identical

to the definedness of deserialized values, which is necessary to ensure that the

definedness properties of the EditorArrow model carry over to EditorArrowCore. The

third property is necessary to make sure that editors do not change values on their

own. Unfortunately, it is not possible in Clean to enforce properties explicitly for all

instances of a class. It is therefore the responsibility of the user to provide instances

of the editable class that satisfy the required conditions.

In Section 2.2, the grammar EdArrow was introduced for editor arrows and a

meaning function was defined on top of it. For type technical reasons, this approach

cannot be translated to Clean directly. The problem is that explicit instantiation of

EdArrow is necessary for the meaning function (i.e. �� :: (EdArrow a b) → EDET a b),

but can never be realized because the types of the arrow operations are not unifiable.2

In EditorArrowCore, each arrow operation is therefore defined directly by means

of a function of the appropriate EDET type. This approach is typeable, but has the

2 For instance, first f can only be a member of EdArrow if tuples are always produced, which is
undesirable for the other arrow operations

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 201

disadvantage that argument editor arrows can only be typed by means of EDET as

well, and are therefore no longer restricted to well-formed arrows (∈ EdArrow). This

is corrected by making the EDET type abstract. Finally, note that in EditorArrowCore

arrows are not defined by means of classes, because in the context of editors we are

only interested in the EState instance.

The effect of the arrow operations is simply a transformation of the EState based

on an incoming Event. First, the standard operations>>>, arr and first are defined:3

(>>>) :: (EDET a b) (EDET b c) → EDET a c 1.

(>>>) f g event state=:(_ ,_ ,_) 2.

= g event (f event state) 3.

arr :: (a → b) → EDET a b 4.

arr f event (data , a , status) 5.

= (data , f a , status) 6.

first :: (EDET a b) → EDET (a ,c) (b ,c) 7.

first f event (data , ac , status) 8.

(data , b , status) = f event (data , fst ac , status) 9.

= (data , (b , snd ac) , status) 10.

These functions behave identically to their counterparts in Section 2. In line with

the operational semantics,>>> performs a pattern match on the EState triple (line 2),

and first does not perform a pattern match on the input value ac (line 8). This has

to do with desired definedness properties, and is explained further in Section 4.4.

Next, the operations left and iterateN are defined.

:: Either a b = Left a | Right b 1.

left :: (EDET a b) → EDET (Either a c) (Either b c) 2.

left f event (data , Left a , status) 3.

(data , b , status) = f event (data , a , status) 4.

= (data , Left b , status) 5.

left f event (data , Right c , status) 6.

= (data , Right c , status) 7.

iterateN :: (EDET (Int ,a) a) → EDET (Int ,a) a 8.

iterateN f event (data , (n , a) , status) 9.

| n � 0 = (data , a , status) 10.

(data , a , status) = f event (data , (n , a) , status) 11.

= iterateN f event (data , (n-1 , a) , status) 12.

The definition of left is identical to the operational semantics. The definition of

iterateN is slightly different, because Clean does not provide a type for natural

numbers, but only one for whole numbers (Int). The base case therefore has to

check for n � 0 (line 10) instead of n = 0, and the recursive case goes from n to

n− 1 (line 12) instead of from n+ 1 to n. Note that the recursion in iterateN always

3 For reasons of clarity, we simplify the types. In Clean the number of type arguments is the number of
function arguments, resulting in for instance: >>> :: (EDET a b) (EDET b c) Event (EState a)
-> EState c

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

202 P. Achten et al.

terminates, because the loop variable cannot be changed by the recursive arrow (see

line 11: n is input of f, but not output).

Next, the accessor functions read and write are defined, which are used later to

describe the operations editread and editset . In the EditorArrow model, the purpose

of read and write is twofold: they are not only used to update the editable data,

but they are also used to implicitly enforce definedness properties. The required

definedness properties of read and write are as follows:

• In the EditorArrow model, read can be regarded as a partial function in the

lifted domain that only produces a result for identifiers that are defined.

In Clean, partial functions can be modeled by producing ⊥ for the input values

that are not in its domain. In EditorArrowCore, read is defined in such a way

that it produces ⊥ if id = ⊥, and performs the required read operation on the

editable data otherwise.

• In the EditorArrow model, write can be regarded as a partial function in the

lifted domain that only produces a result for defined identifiers and values.

In EditorArrowCore, write is defined in such a way that it produces ⊥ if either

id = ⊥ or v = ⊥, and performs the required write operation on the editable

data otherwise.

This leads to the following definitions of read and write:

evalString :: !String → Bool 1.

evalString s 2.

= True 3.

evalEditorId :: EditorId → Bool 4.

evalEditorId (name , value) 5.

= evalString name && evalString value 6.

read :: EditorId EditableData → SerializedValue 7.

read id data 8.

| not (evalEditorId id) = ⊥ 9.

= read ‘ id data 10.

where 11.

read ‘ id [record:data] 12.

| fst record == id = snd record 13.

| otherwise = read ‘ id data 14.

read ‘ id [] 15.

= snd id 16.

write :: EditorId SerializedValue EditableData → EditableData 17.

write id value data 18.

| not (evalEditorId id) = ⊥ 19.

| not (evalString value) = ⊥ 20.

= write ‘ id value data 21.

where 22.

write ‘ id value [record: data] 23.

| fst record == id = [(id ,value):data] 24.

| otherwise = [record: write ‘ id value data] 25.

write ‘ id value [] 26.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 203

= [(id ,value)] 27.

The definedness conditions are checked by read and write on lines 9, 19 and 20.

For checking the definedness of a SerializedValue (which is actually a String), the

function evalString (lines 1–3) is used. By means of its strictness annotation, it

produces True for defined values and ⊥ for undefined ones. The definedness of

an EditorId is checked with evalEditorId (lines 4–6), which makes use of pattern

matching and translates to two calls of evalString. Because of the explicit pattern

match, it does not need a strictness annotation in front of its EditorId argument.

Using read and write, the operations editread and editset can now be defined in

EditorArrowCore as follows:

editread :: EDET EditorId a | editable a 1.

editread (ev_id , v) (data , id , status) 2.

| status == Pending && ev_id == id 3.

#! data = write id v data 4.

= (data , deserialize v , Processed) 5.

| otherwise 6.

#! read_v = read id data 7.

= (data , deserialize read_v , status) 8.

editset :: EDET (EditorId , a) a | editable a 9.

editset (ev_id , v) (data , (id , a) , status) 10.

| status == Pending && ev_id == id 11.

#! data = write id v data 12.

= (data , deserialize v , Processed) 13.

| otherwise 14.

#! data = write id (serialize a) data 15.

= (data , a , status) 16.

These functions model the operational semantics directly. The strict lets (denoted

by #!) on lines 4, 7, 12 and 15 model the definedness conditions imposed by read

and write. These strict lets compute a value, and if this value is ⊥ cause editread

and editset to produce ⊥ as a whole. Recall that explicit conversion to and from

SerializedValue is necessary in EditorArrowCore for storing values of different types

in a single editable data.

Finally, the execution of an arrow on a scenario is realized by applying events

one by one on the arrow. This eventloop is defined in a general way for all editor

arrows of type EDET a b. It requires an initial value of type a, which is needed at

every event to get started, and it throws away the result value of type b, assuming

instead that the editable data are used for transferring information from one event

to the next. It also requires an initial editable data.

:: Scenario :== [Event] 1.

eventloop :: (EDET a b) (EditableData , a) Scenario → EditableData 2.

eventloop f (data , a) [event:events] 3.

(data , _ , _) = f event (data , a , Pending) 4.

= eventloop f (data , a) events 5.

eventloop f (data , a) [] 6.

= data 7.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

204 P. Achten et al.

To execute an arrow in EditorArrowCore, it must be wrapped in an application

of eventloop. For the initial editable data, [] can be filled in to indicate that all

editors should start at their specified initial values. The scenario input corresponds

to user actions which must be processed by the arrow and can be chosen freely. The

varsumlist arrow of Figure 1 can be wrapped in EditorArrowCore as follows:

module varsumlist_EAC 1.

import StdEnv , EditorArrowCore 2.

Start = eventloop varsumlist ([] , ⊥) 3.

[(nrId , "2") , (argId 1 , "30") , (argId 2 , "12") , 4.

(nrId , "1") , (nrId , "3") , (argId 3 , "58")] 5.

Note that varsumlist does not use its initial value, therefore ⊥ can be used for it

safely (line 3). In lines 4 and 5 we model a scenario of six events. In event 1, the

user enters the number 2 to create two more input fields. In events 2 and 3, she

enters the values 30 and 12 in the first and second created input field. In event 4,

she reduces the number of input fields to 1, thus removing the second input field

from appearing (but not its state!). In event 5, she adds two more input fields. Note

that this re-creates the second input field with value 12. Entering value 58 in the

third input field, event 6, results in displaying the sum 100 (which was shown in the

lower screenshot of Figure 1).

4.2 Derived editor arrows in the EditorArrowCore library

The base arrow operations of EditorArrowCore are sufficiently powerful to express

many example programs, but are still rather unfriendly for programming purposes.

In this section, we define a layer of derived arrow operations on top of the base

layer. The derived operations are applications of existing arrows only, and can be

used in EditorArrowCore, GEC and iData. In Section 4.3, we use them to construct

example programs more easily.

We define derived operations for branching, choice, and mapping. First, however,

a number of useful abbreviations are introduced:

dupl :== λx → (x ,x) 1.

set a :== λx → a 2.

add1 a :== λb → (a ,b) 3.

add2 b :== λa → (a ,b) 4.

arr2 f :== arr (λ(a ,b) → f a b) 5.

(@) f g :== arr g>>>f 6.

skip :== arr id 7.

The function dupl (line 1) duplicates an arrow state, set, add1 and add2 (lines 2–

4) introduce a constant into the arrow state, and arr2, @, and skip are special

applications of arr. The infix operation @ is useful for providing ids to editread and

editset by means of (editread @ set id) and (editset @ add1 id), which in Section

3.3 were even abbreviated further to editread � id and editset � id .

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 205

Arrows often require separate computations to be carried out independently, after

which the results are combined again. Using the standard first and its dual second,

this desired behavior can be achieved as follows:

second :: (EDET a b) → EDET (c ,a) (c ,b) 1.

second f = arr swap>>>first f>>>arr swap 2.

where swap (x ,y) = (y ,x) 3.

branch :: (EDET a b) (EDET a c) → EDET a (b , c) 4.

branch f g = arr dupl>>>first f>>>second g 5.

The function branch (lines 4 and 5) duplicates its input value, which in fact creates

two separate branches, and then executes its first argument on the first branch and

its second argument on the second branch. Combining the values afterward must

be performed separately.

For programming purposes, it is also important that an arrow operation is

available that chooses between computations based on the contents of the arrow

state. This standard arrow extension can be defined in terms of left and its dual

right:

right :: (EDET b c) → EDET (Either a b) (Either a c) 1.

right f = arr swap>>>left f>>>arr swap 2.

where swap (Left a) = Right a 3.

swap (Right b) = Left b 4.

choice :: (EDET l b) (EDET r b) → EDET (Either l r) b 5.

choice f g = left f>>>right g>>>arr remove_either 6.

where remove_either (Left x) = x 7.

remove_either (Right x) = x 8.

ifthenelse :: (a → Bool) (EDET a b) (EDET a b) → EDET a b 9.

ifthenelse p f g = arr (λa → i f (p a) (Left a) (Right a)) 10.

>>>choice f g 11.

The operation right (lines 1–4) is the dual of left. The standard operation choice

(lines 5–8) chooses between its arguments on the basis of the arrow state: a Left

triggers execution of the first argument and a Right execution of the second. The

operation ifthenelse (lines 9–11) lifts choice to predicates by internally converting

to an Either based on the outcome of the predicate.

In a truly functional manner, it is possible to lift basic arrow operations to lists

as well. We will demonstrate this by realizing a map in terms of iterateN. The idea

is to repeatedly pop the first element of the list, apply the arrow to it and put the

transformed element back at the end of the list. This must be iterated exactly as

many times as the list is long. The standard Either type handles the domain and

range values.

mapAB :: (EDET a b) → EDET [a] [b] 1.

mapAB f = arr (λas → (length as , map Left as)) 2.

>>>iterateN (arr (λ(_ , [Left a:las]) → (a , las)) 3.

>>>first f 4.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

206 P. Achten et al.

>>>arr (λ(b ,las) → las ++ [Right b]) 5.

) 6.

>>>arr (map (λ(Right b) → b)) 7.

Using the Arrow laws, one can prove the following properties of mapAB:

arr (λx → []) >>> mapAB f
(mapAB [])

= arr (λx → [])

arr (λx → [c : cs]) >>> mapAB f
(mapAB [:])

= f@ (λx → c)

>>> first (mapAB f)@ (λb → (cs, b))

>>> arr (λ(bs, b) → [b : bs])

Many other derived applications can of course be defined as well, and the actual

EditorArrowCore library contains more operations than are defined in this section.

It is not the purpose of this paper to list all these operations, however.

4.3 Some small editor arrows programs

The example of Figure 1 created an editor arrow that repeatedly computes the sum

of the values of a varying number of editable integer values. Using the derived

operations of EditorArrowCore, this editor arrow can now be expressed as follows:

variable_sum_arrow :: EDET Int Int 1.

variable_sum_arrow 2.

= editread @ (set nrId) 3.

>>>iterateN (first (editread @ argId) >>>arr2 (+)) @ (add2 0) 4.

>>>editset @ (add1 sumId) 5.

The main difference is that all applications of arr which were used to add a constant

value to the arrow value have been replaced with applications of @. This is not only

more compact, but also describes the intention of these constant values (they are

used as fixed input for the next arrow) more clearly.

This editor arrow can be executed in EditorArrowCore. We use the scenario that

was presented at the very end of Section 4.1, modeling the user actions with a list

of Events. By printing the events and the intermediate states, this results in the

following output in EditorArrowCore:

[] 1.

→ Event(nr , 2) 2.

[nr = 2; sum = 0] 3.

→ Event(arg 1 , 30) 4.

[nr = 2; arg 1 = 30; sum = 30] 5.

→ Event(arg 2 , 12) 6.

[nr = 2; arg 1 = 30; arg 2 = 12; sum = 42] 7.

→ Event(nr , 1) 8.

[nr = 1; arg 1 = 30; arg 2 = 12; sum = 30] 9.

→ Event(nr , 3) 10.

[nr = 3; arg 1 = 30; arg 2 = 12; sum = 42] 11.

→ Event(arg 3 , 58) 12.

[nr = 3; arg 1 = 30; arg 2 = 12; arg 3 = 58; sum = 100] 13.

The incoming events are shown on the even-numbered lines. The editable data,

which contain the current values of the editors, are shown on the odd-numbered

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 207

lines. Note that editors that do not have an entry in the editable data are still at

their initial value (which is 0 for all editors in this example). The states at line 1 and

13 correspond with the screenshots in Figure 1.

Another interesting example is a convertor between euros and dollars. It consists

of a euro editor and a dollar editor which are connected in such a way that a

change in one editor causes the other editor to be updated. In arrow style, this can

be realized by a shared feedback of the form euro >>> dollar >>> euro, as follows:

convert_arrow :: EDET a Real 1.

convert_arrow 2.

= editread @ (set euroId) 3.

>>>arr toDollar 4.

>>>editset @ (add1 dollarId) 5.

>>>arr toEuro 6.

>>>editset @ (add1 euroId) 7.

where 8.

toDollar euro = euro * 1.592 9.

toEuro dollar = dollar / 1.592 10.

The following editor arrow changes indicated values in a list. It consists of two

editors, one to input the index of the element and another to change its value. The

list itself is stored in the arrow state, and is never sent to an editor. Therefore, this

example works both for finite and for infinite lists.

list_editor :: EDET [a] [a] | editable a 1.

list_editor 2.

= branch (editread @ set indexId) skip 3.

>>>arr (λ(i ,list) → (list!!i , (i ,list))) 4.

>>>first (editset @ (add1 fieldId)) 5.

>>>arr (λ(n , (i ,list)) → updateAt i n list) 6.

The final example is inspired by the “bounded counter” case study that has been

described by Courtney (2004) in which a GUI contains a counter element that

counts the number of occurrences of some external event. At some given maximum

value, counting should no longer increment the counter value. We adapt the example

to count button presses. In order to do that, we first model a button GUI element

as an editor of Boolean values: pressing the button is the same as “editing” its value

to True, and when it is not pressed, its value is False. After pressing the button, its

state should be reset to False. We obtain the following implementation:

button :: EditorId → Arrow a Bool 1.

button buttonId 2.

= editread @ (set buttonId) 3.

>>>first editset @ (add1 (buttonId ,False)) 4.

>>>arr snd 5.

First, the editing state of the button is retrieved (line 3), thus handling a button

press event if present. Hence, if the button is pressed, the value True is returned, and

False otherwise. In any case, the button state is reset to False (line 4) to enable next

button presses. Finally, the retrieved button value is returned (line 5).

With this element, we create the bounded counter that keeps track of the number of

button presses of a button identified by buttonId in a storage identified by counterId

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

208 P. Achten et al.

(this only makes sense if buttonId identifies a different storage than counterId) up to

a given limit n.

bounded_counter :: EditorId EditorId Int → Arrow a Int 1.

bounded_counter buttonId counterId n 2.

= button buttonId 3.

>>>ifthenelse id 4.

(self ((min n) o ((+) 1)) counterId) 5.

(editread @ (set counterId)) 6.

The bounded counter first checks whether the button has been pressed. In that case,

the value of the counter store is incremented, but up to the given maximum value

(line 5). This is an example of a self-correcting editor, and is therefore expressed

with the self combinator. If the button was not pressed, then the current value of

the counter is returned (line 6).

To illustrate this example, suppose we have a GUI that contains (bounded_counter

button counter 3). Then the following scenario illustrates that the counter is incre-

mented after the first three button presses (at lines 2–3, 8–9, and 12–13) but after

that remains bounded by the value 3 (lines 14–15). (Note that other refers to some

other editor identification that is unequal to either button or counter.)

[] 1.

→ Event(button , True) 2.

[button = False; counter = 1] 3.

→ Event(other , 30) 4.

[button = False; counter = 1] 5.

→ Event(other , 12) 6.

[button = False; counter = 1] 7.

→ Event(button , True) 8.

[button = False; counter = 2] 9.

→ Event(other , 42) 10.

[button = False; counter = 2] 11.

→ Event(button , True) 12.

[button = False; counter = 3] 13.

→ Event(button , True) 14.

[button = False; counter = 3] 15.

4.4 Arrow laws for Sparkle

Implementing the EditorArrow model in Clean as EditorArrowCore allows us to

use the integrated proof assistant Sparkle (Mol et al., 2002, 2008; Kesteren et al.,

2004) and its proof tool support for strictness (Eekelen & Mol, 2005) to verify the

correctness of the laws of Section 3 when translated to EditorArrowCore.

The realization of editor arrows in Clean follows the operational semantics as

closely as possible. As a result, there is only one difference between the behavior

of EditorArrowCore and EditorArrow. This difference is due to the lazy semantics

of Clean, which makes it possible for an editor arrow to get an undefined event,

editable data or event status as input. The behavior in these cases has not been

defined by the semantics, and may falsify the laws of Section 3.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 209

If the incoming event, editable data and event status are all defined, then editor

arrows in EditorArrowCore behave exactly the same as in the EditorArrow model.

By explicitly enforcing these definedness conditions, the laws can be transferred to

Sparkle directly. For this purpose, we implement the following eval functions:

evalEvent :: Event → Bool 1.

evalEvent (id , v) 2.

= evalEditorId && evalValue v 3.

evalEState :: (a → Bool) (EState a) → Bool 4.

evalEState eval_a (data , a , status) 5.

= evalEditableData data && eval_a a && evalEventStatus status 6.

evalEditableData :: EditableData → Bool 7.

evalEditableData [(id , v): data] 8.

= evalEditorId id && evalValue v && evalEditableData data 9.

evalEditableData [] 10.

= True 11.

evalEventStatus :: EventStatus → Bool 12.

evalEventStatus Pending = True 13.

evalEventStatus Processed = True 14.

Note that evalEditorId and evalValue were already defined in Section 4.1. The other

eval functions are defined here in the same manner. The function evalEState (lines

4–6) has been augmented with a custom eval predicate for values because this

additional predicate is needed for translating the definedness laws of Section 3.4.

The laws of Section 3 can now be transferred to Sparkle directly. We demonstrate

this for the following three laws:

Law ‘>>> def’: Def (f, A, B) ⇒ Def (g, B, C) ⇒ Def (f >>> g,A, C)

Sparkle: evalEvent ev

-> evalEState A state

-> ([e][s] evalEvent e -> evalEState A s -> evalEState B (f e s))

-> ([e][s] evalEvent e -> evalEState B s -> evalEState C (g e s))

-> evalEState C ((f >>> g) ev state)

Notes: With additional definedness conditions, the translation of Def (f, A, B) is

[e][s] evalEvent e -> evalEState A s -> evalEState B (f e s). The Sparkle law

can be obtained by applying this translation three times, and eliminating the outer

universal quantors (which are optional in Sparkle).

Law ‘assoc eliminates first’: first (first f) >>> assoc = arr assoc >>> first f

Sparkle: evalEvent ev

-> evalEState (A o fst o fst) state

-> ([e][s] evalEvent e -> evalEState A s -> evalEState B (f e s))

-> (first (first f) >>> arr assoc) ev state

= (arr assoc >>> first f) ev state

Notes: The original law can be found in the last line of the translation. The first two

lines ensure that the incoming event and state are defined, and that A holds for the

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

210 P. Achten et al.

fst of the fst of the state. The third line corresponds to Def (f, A, B), and ensures

that applying f on the fst of the fst of the state yields a defined result.

Law ‘read-read elimination’: editread � i >>> editread � i = editread � i

Sparkle: evalEditorId id

-> evalEState A state

-> (editread @ (set id) >>> editread @ (set id)) ev state

= (editread @ (set id)) ev state

Notes: The original law can be found in the last line of the translation, realizing � i

with @ (set id). The additional definedness conditions ensure that the editor id and

the incoming state are both defined.

All the laws in this paper (see Definitions 1–4 and 7) have been transferred to Sparkle

and have been proved correct with it. The proofs were relatively straightforward to

construct, but the amount of work was considerable due to the many different cases

that had to be examined explicitly. In the end, it took an experienced Sparkle user

about 30 hours to build the proofs. The proofs have a size on disk of about 156KB

and consist of approximately 3500 lines of proof code.

By successfully building proofs for all laws, we have shown that our framework

is indeed correct: the classic arrow laws still hold in our extended setting, and

the additional operators (in particular editread and editset) behave as intended.

Note that as expected, many conditions had to be added to the formalized laws

in Sparkle because of the different domains (for instance, Int is used to represent

�, leading to n �=⊥ and n � 0) and the propagation of definedness (for instance,

f >>> (g >>> h) = (f >>> g) >>> h requires h to maintain definedness).

The use of Sparkle did bring the following two inaccuracies to light:

• In EditorArrowCore, lists are used to represent editable data, which are really

sets. Permutations of such a list represent the same set, and will therefore

result in the same behavior of editor arrows. Consequently, if editor arrows

produce editable data that are permutations of each other (and an identical

value and event status), then they should be considered equal as well.

This extended view of equality is required to prove the validity of the editor

swapping laws (see Definition 4). In case no entry exists in the initial editable

data for the used editors, namely, permutations of the same editable data

will be produced. If this situation is disallowed, the normal equality is proved

easily. Alternatively, the laws can be proved as well by formally incorporating

the extended view of equality.

Note that this issue does not occur on the level of EditorArrow, because it uses

real sets to represent editable data.

• Initially, the feedback law (see Definition 4) did not have the condition that

i and j should hold the same value initially. The need for this additional

condition was discovered in the process of building the proof with Sparkle.

Note that the underlying idea of the feedback law is to maintain equality of

editors during the process of handling an event; therefore, the condition does

not invalidate the use of the law.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 211

5 Reasoning with editor arrows

In this section, we give three examples of reasoning with the resulting EditorAr-

rowCore framework. In Section 5.1, we generalize the read-read elimination law, by

phrasing it as an iterated version. In Section 5.2, we use the Arrow and EditorArrow

laws to prove the equivalence of the example variable sum list with a variant that

uses the mapAB combinator. In Section 5.3, we use the operational semantics to show

that the EditorArrow version of the bounded counter-example never exceeds the

given upper bound.

5.1 Generalizing read-read elimination

The read-read elimination law states that it is pointless to read the same editor twice.

We use the iterateN combinator to generalize this to arbitrary many times for an

editor that is identified by some defined value i:

∀m > 0 : iterateN (editread @ (set i)) @ (add1 m) = editread @ (set i)

The proof proceeds by induction on m. We start with the base case, m = 1, and

apply the iterateN-next law:

iterateN (editread @ (set i)) @ (add1 m)

= iterateN (editread @ (set i)) @ (add1 1)

= (editread @ (set i)) @ (add1 1) >>>iterateN (editread @ (set i)) @ (add1 0)

We simplify the first part of the expression by unfolding @, (add1 1), and (seti).

= arr (λx → (1 ,x)) >>>arr (λx → i) >>>editread

>>>iterateN (editread @ (set i)) @ (add1 0)

which can be folded back again to the editread combinator after combining the two

function arguments of the first two occurrences of arr :

= editread @ (set i) >>>iterateN (editread @ (set i)) @ (add1 0)

The second half of this expression can be simplified using the iterateN-base law:

= editread @ (set i) >>>arr snd @ (add1 0)

which, after unfolding @ and (add1 0) amounts to arr id, which is the Right unit of

any arrow expression.

= editread @ (set i)

This completes the proof of the base case. The induction step also starts with the

iterateN-next law:

iterateN (editread @ (set i)) @ (add1 (m+1))

= (editread (set i)) @ (add1 (m+1)) >>>iterateN (editread @ (set i)) @ (add1 m)

The induction hypothesis can be applied immediately:

= (editread @ (set i)) @ (add1 (m+1)) >>>editread @ (set i)

We bring (add1 (m+1)) to the front of the expression by unfolding @:

= add1 (m+1) >>>editread @ (set i) >>>editread @ (set i)

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

212 P. Achten et al.

and see that we can apply the read-read elimination law:

= add1 (m+1) >>>editread @ (set i)

The last part is to unfold add1 (m+1), @, and (set (i)) :

= arr (λx → (m+1 ,x)) >>>arr (λx → i) >>>editread

which is recombined to the correct end-result:

= editread @ (set i)

This completes the proof.

Similarly, the set-set elimination law can be generalized for any editor identified

by i:

∀m > 0 : iterateN (editset @ (set1 i)) @ (add1 m) = editset @ (add1 i)

where

set1 a :== λ(b ,x) → (a ,x)

Although this property is formulated in a slightly asymmetric way due to the use of

(set1 i), the proof can be carried out in the same way as the proof above.

5.2 Variable sum list

In Section 4.3 we have shown how to define the variable sum list example with the

derived combinators. Alternatively, the same program can also be expressed with

the mapAB combinator that was introduced in Section 4.2:

variable_sum_arrow2 :: EDET Int Int

variable_sum_arrow2

= editread @ (set nrId)

>>>arr (λn → map argId (reverse [1..n]))

>>>mapAB editread

>>>arr sum

>>>editset @ (add1 sumId)

The key difference is that this version first reads all values of the integer editors and

collects them in a list, and afterward applies the standard sum function on this list.

In order to prove the equivalence of the two programs, it suffices to prove:

∀m � 0 :

arr (λx → m)

>>>iterateN (first (editread @ argId) >>>arr2 (+)) @ (add2 0)

=

arr (λx → m)

>>>arr (λn → map argId (reverse [1..n]))

>>>mapAB editread

>>>arr sum

Hence, we abstract from the very first input editor and the very last output editor.

We proceed by induction on m. The base case (m = 0) starts by rewriting the

left-hand side:

arr (λx → 0)

>>>iterateN (first (editread @ argId) >>>arr2 (+)) @ (add2 0)

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 213

to (using arr (λx → 0) >>>arr (add2 0) = arr (λx → (0 ,0)) = arr (λx → 0) >>>arr

(λx → (0 ,x)) :

= arr (λx → 0)

>>>arr (λx → (0 ,x))

>>>iterateN (first (editread @ argId) >>>arr2 (+))

which allows us to apply the iterateN-base law:

= arr (λx → 0)

>>>arr (λx → (0 ,x))

>>>arr snd

which simplifies to:

= arr (λx → 0)

This expression can be transformed to sum the elements of an empty list:

= arr (λx → [])

>>>arr sum

which, by the mapAB[] law, is equivalent to:

= arr (λx → [])

>>>mapAB editread

>>>arr sum

and, by splitting the first function, also to:

= arr (λx → 0)

>>>arr (λn → map argId (reverse [1..n]))

>>>mapAB editread

>>>arr sum

which is the right-hand side of the expression in case of m = 0.

The induction step starts in a similar way, but now prepares the left-hand side in

order to apply the iterateN-next law:

arr (λx → 0)

>>>arr (λx → (1+m ,x))

>>>iterateN (first (editread @ argId) >>>arr2 (+))

which is rewritten as:

= arr (λx → 0)

>>>arr (λx → (1+m ,x))

>>>first (editread @ argId)

>>>arr2 (+)

>>>arr (λx → (m ,x))

>>>iterateN (first (editread @ argId) >>>arr2 (+))

We make sure that editread @ argId is applied to 1+m and swap it with the insertion

of the zero constant:

= editread @ (set (argId (1+m)))

>>>arr (λx → (x , 0))

>>>arr2 (+)

>>>arr (λx → (m ,x))

>>>iterateN (first (editread @ argId) >>>arr2 (+))

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

214 P. Achten et al.

This simplifies to:

= editread @ (set (argId (1+m)))

>>>arr (λx → (m ,x))

>>>iterateN (first (editread @ argId) >>>arr2 (+))

Because of their occurrence within first, the editread actions only depend on the

counter value of the iterateN combinator. This implies that it makes no difference

whether they read and add editor values starting with the result of reading editor

argId (1+m), or whether they read and add the same order of editor values starting

with zero, and add the result of reading editor argId (1+m) afterward. This is

expressed by the Sum-iterate-distribution lemma:

∀m � 0 :

arr (λx → (m ,x))

>>>iterateN (first f>>>arr2 (+))

=

arr (λx → ((m ,0) ,x))

>>>first (iterateN (first f>>>arr2 (+)))

>>>arr2 (+)

If we apply this lemma to the above expression, we obtain:

= editread @ (set (argId (1+m)))

>>>arr (λx → ((m , 0) ,x))

>>>first (iterateN (first (editread @ argId) >>>arr2 (+)))

>>>arr2 (+)

In order to prepare the argument of first for the induction hypothesis, we need to

push in the λx → (m , 0) component of the arr function:

= editread @ (set (argId (1+m)))

>>>arr (λx → (x ,x))

>>>first (arr (λx → m)

>>>arr (add2 0)

>>>iterateN (first (editread @ argId) >>>arr2 (+))

)

>>>arr2 (+)

After moving arr (add2 0) to the right, using the definition of @, we can apply the

induction hypothesis which yields:

= editread @ (set (argId (1+m)))

>>>arr (λx → (x ,x))

>>>first (arr (λx → m)

>>>arr (λn → map argId (reverse [1..n]))

>>>mapAB editread

>>>arr sum

)

>>>arr2 (+)

The next step is to move the program fragments before and after mapAB editread out

of the first combinator. For this purpose we “break” it into three parts:

= editread @ (set (argId (1+m)))

>>>arr (λx → (x ,x))

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 215

>>>first (arr (λx → m) >>>arr (λn → map argId (reverse [1..n])))

>>>first (mapAB editread)

>>>first (arr sum)

>>>arr2 (+)

We merge the three functions before first (mapAB editread) and recombine the

arr sum component with arr2 (+):

= editread @ (set (argId (1+m)))

>>>arr (λx → (map argId (reverse [1..m]) ,x))

>>>first (mapAB editread)

>>>arr (λ(bs ,b) → [b:bs])

>>>arr sum

This allows us to apply the mapAB[:] law (after moving the first arr component

behind first using the definition of @):

= arr (λx → [argId (1+m) : map argId (reverse [1..m])])

>>>mapAB editread

>>>arr sum

Finally, we move the first element of this list to the back of the reversed list, and

split the function in order to obtain the right-hand side of the expression:

arr (λx → 1+m)

>>>arr (λn → map argId (reverse [1..n]))

>>>mapAB editread

>>>arr sum

This concludes the proof of equivalence between the two programs.

5.3 Bounded counter

In this section, we show that bounded_counter (Section 4.3) indeed has the property

that it never increases the value of its counter store beyond a given bound value

N. In order to prove that this example implements a bounded counter, we show

that it maintains the invariant that bounded_counter BID CID N (for any BID �= CID)

keeps the value of the counter store below a given bound N. This should hold for

any event that does not touch the counter store (because it is supposed to be local

to the bounded counter). In addition, it should hold for any event status (Pending

or Processed) in order to abstract from the position of bounded_counter BID CID N

(including multiple occurrences of itself) within an arrow program. This amounts to

proving the following property:

∀ BID, CID, N, (eid , e), (s0, a0, p0) :

s0 ⊇ {(BID, serialize False), (CID, c0)} ∧
eid �= CID ∧
N � deserialize c0

⇒ (s1, a1, p1) = bounded counter BID CID N (eid , e) (s0, a0, p0) ∧
s1 ⊇ {(BID, serialize False), (CID, c1)} ∧
a1 = deserialize c1 ∧
N � deserialize c1

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

216 P. Achten et al.

The proof proceeds by rewriting using the Arrow laws and combinator definitions.

Below we give a comprised overview of the proof. The initial expression:

bounded_counter BID CID N (eid ,e) (s0 ,a0 ,p0)

is rewritten as:

ifthenelse id (self ((min N) o ((+) 1)) CID)

(arr (set CID) >>>editread)

(eid ,e)

(arr snd (eid ,e)

(first editset (eid ,e)

(arr (add1 (BID ,False)) (eid ,e)

(editread (eid ,e)

(s0 ,BID ,p0)

))))

We distinguish two cases for p0.

• p0 = Processed: the assumption s0 ⊇ {(BID, serialize False), . . .} causes

rewriting of editread to result in:

ifthenelse id (self ((min N) o ((+) 1)) CID)

(arr (set CID) >>>editread)

(eid ,e)

(arr snd (eid ,e)

(first editset (eid ,e)

(arr (add1 (BID ,False)) (eid ,e)

(s0 ,False ,Processed)

))))

The application of editset stores the value False in the BID store. Subsequently,

the False value causes selection of the second branch of ifthenelse:

arr (set CID) >>>editread (eid ,e)

(write BID (serialize False) s0 ,Right False ,Processed)

which, in turn, is rewritten as:

editread (eid ,e) (write BID (serialize False) s0 ,CID ,Processed)

Here, editread is set to read the CID store. Because s0 ⊇ {. . . , (CID, c0)}, editread
yields the final result:

(write BID (serialize False) s0 , deserialize c0 , Processed)

The BID store contains False, the CID store has not changed and hence its value

is still bound by N.

• p0 = Pending: we distinguish two cases for eid:

— eid �= BID: this case proceeds analogously to the above case because eid �=
BID causes the same branches to be chosen for editset and ifthenelse.

Again, the CID store remains unaltered, and the final result is:

(write BID (serialize False) s0 , deserialize c0 , Pending)

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 217

— eid = BID: In this case we have a pending event for the button GUI:

ifthenelse id (self ((min N) o ((+) 1)) CID)

(arr (set CID) >>>editread)

(BID ,e)

(arr snd (BID ,e)

(first editset (BID ,e)

(arr (add1 (BID ,False)) (BID ,e)

(editread (BID ,e)

(s0 ,BID ,Pending)

))))

which causes editread to store value e in the BID store, and emit its

deserialized value:

ifthenelse id (self ((min N) o ((+) 1)) CID)

(arr (set CID) >>>editread)

(BID ,e)

(arr snd (BID ,e)

(first editset (BID ,e)

(arr (add1 (BID ,False)) (BID ,e)

(write BID e s0 ,deserialize e ,Processed)

)))

The button press event is immediately “neutralized” by editset which

resets the BID store value to False:

ifthenelse id (self ((min N) o ((+) 1)) CID)

(arr (set CID) >>>editread)

(BID ,e)

(write BID (serialize False) s0 ,deserialize e , Processed)

We need to distinguish between two further cases:

– e = False: actually, this case cannot occur in an implementation

because you cannot unpress an unpressed button. Because e = False,

ifthenelse chooses the second branch, and we end with the final value:

(write BID (serialize False) s0 , deserialize c0 , Processed)

which is identical to the very first case.

– e = True: rewriting of ifthenelse now selects the first branch:

self ((min N) o ((+) 1)) CID

(BID ,True)

(write BID (serialize False) s0 , deserialize True , Processed)

Expanding the self definition, and the subsequent occurrences of @ and

>>>gives:

editset (BID ,True)

(arr (add1 CID) (BID ,True)

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

218 P. Achten et al.

(arr ((min N) o ((+) 1))

(BID ,True)

(editread (BID ,True)

(arr (set CID) (BID ,True)

(write BID (serialize False) s0

, deserialize True

, Processed

)

))))

First, the value of the CID store is obtained:

editset (BID ,True)

(arr (add1 CID) (BID ,True)

(arr ((min N) o ((+) 1))

(BID ,True)

(write BID (serialize False) s0

, deserialize c0

, Processed

)

))

This value is incremented with upper limit N:

editset (BID ,True)

(arr (add1 CID) (BID ,True)

(write BID (serialize False) s0

, min N (1 + deserialize c0)

, Processed

)

)

and stored in the CID store by editset. This gives the final result:

(write CID (serialize (min N (1 + deserialize c0)))

(write BID (serialize False) s0)

, min N (1 + deserialize c0)

, Processed

)

Again, the BID store is reset to False. The emitted value is equal to the

value that is placed in the CID store. Moreover, its value is an increment

of the original value, except when the upper bound N has been reached.

This concludes the proof.

6 Related work

We have presented the semantic EditorArrow model that uses value-editors as

elementary interactive components, and EditorArrow combinators to glue these

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 219

elements. The inspiration for this work was based on the high-level GEC and

iData toolkits. We discuss two other Arrow based approaches in detail: Fudgets and

Fruit/Yampa.

Fudgets (Carlsson & Hallgren, 1993, 1998) is a seminal GUI toolkit. The base

element in Fudgets is a fudget, which is a typed unit (of type F a b) that processes

two input streams and produces two output streams. One input stream contains low-

level GUI events (such as mouse movements, screen update requests, and keyboard

presses). These are transformed to low-level GUI commands (such as rendering

commands, widget movement, and size control) but also high-level program values

of type b (such as letting the remainder of the program know that a button has been

pressed, and that text has been entered). High-level program values of predecessor

fudgets are received as values of type a on the high-level input stream. In order

to integrate computation with GUI handling, abstract fudgets are introduced. An

abstract fudget neither consumes low-level GUI events nor produces low-level GUI

commands; hence, it processes only high-level program values. The original Fudgets

toolkit comes with a comprehensive set of combinator functions. This library is

in fact an extended Arrow library (Hughes, 2000). By construction, communica-

tion between fudgets follows the combinator structure. In order to allow “later”

fudgets to manipulate “earlier” fudgets, feedback is created by means of loop-like

combinators.

We believe that our proposed framework is sufficiently expressive to model

Fudgets. When a fudget of type (F a b) handles low-level GUI events and decides

to emit a high-level value, then we consider this as an editing event of a new value

v of type b. This is the same as sending it the event (id ,v) where id identifies the

fudget. (In Carlsson & Hallgren, 1998,, Section 21.1, events are tagged with the path

in the fudget expression where the fudget can be found. Hence, these paths serve

well as identifiers.) Using high-level values to control fudget behavior is the same

as setting a new value in an editor using editset. The editor adapts its rendering

accordingly. Feedback using a loop is implemented in Fudgets by maintaining a

local queue (Carlsson & Hallgren, 1998, Section 20.4.2) that needs to be consumed

entirely before new “external” high-level values are consumed. As observed in

Carlsson & Hallgren (1993, Section 3.2.4), this may lead to non-termination: if

textF :: F String String does not discern “edited” values from “received” values,

then (loopAll (textF >==< textF)) loops forever. Because our model has been set

up to prevent non-termination as much as possible, loops cannot be modeled in

a direct manner. However, our model supports identified state; hence, we can also

maintain a local queue for a feedback construct that is written to when producing

values. An editor within a loop construct must first read the local queue if there are

still pending values. If that is the case, then the new value is appended to the queue,

and the oldest pending value is removed and passed on to the editor. If the local

queue is empty, then the editor uses the new value. In this way, the system becomes

similarly non-productive when editors continue filling the local queue even though

at each event the system terminates.

Fruit/Yampa (Courtney, 2004) is an exponent of the school of reactive program-

ming. In reactive programming, interactive programs are constructed by composing

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

220 P. Achten et al.

and transforming typed units that represent time-varying values. For an in-depth

discussion of the various approaches within this school, we refer to Courtney (2004,

Chapter 3). Yampa is an Arrow based language embedded in Haskell for describing

reactive systems. Fruit is the GUI toolkit that is founded on Yampa. Fruit and Yampa

have been developed to enable formal reasoning about GUI programs. Although we

also wish to reason formally about GUI programs, and use Arrows to structure our

programs, the model used by Yampa and Fruit differs materially from our model. In

Yampa, programs are constructed as combinations of signals

:: Signal a :== Time → a

and signal functions

:: SF a b :== (Signal a) → Signal b

A Fruit program is a signal function that transforms GUI-event signals (of type

GUIInput) to rendering signals (of type Picture), and hence, a program has type

:: GUI a b :== SF (GUIInput ,a) (Picture ,b)

When constructing a GUI program in Fruit, a programmer keeps composing

and transforming signal (functions) to reach the desired behavior. This is clearly

analogous to the functional programming style. The evaluation of such a program

is “within” the signal function: elements consume and produce events and values.

This also motivates the need for a loop construct.

The above features make programming and reasoning about Fruit programs

radically different from our model. Here, the evaluation of a program is only

required to compute the answer to one single event. This is much more analogous

to programming traditional GUI systems (see Section 1). We can afford to restrict

ourselves to primitive recursion because there are no events that need to be consumed

during the program. Primitive recursion is required to guarantee that the program

yields a GUI. Nevertheless, we have shown that our system can be structured as

an Arrow, that it satisfies the Arrow laws, and that equational reasoning can be

applied.

Another way of modeling interactive programs is to regard them as collections of

communicating processes. From this point of view, it seems to be natural to provide

a model in terms of a process algebra. There is a wide variety of process algebras

available, such as CCS (Milner, 1980), CSP (Hoare, 1985), ACP (Baeten & Weijland,

1990), and μCRL (Groote & Reniers, 2001). Especially the last might be interesting

in this context because it augments ACP with algebraic data types in a spirit that

is very similar to functional programming. In general, the fine grained control over

concurrency that is usually provided by process algebraic models is not necessary

when dealing with interactive applications.

7 Discussion and conclusions

We have introduced the formal EditorArrow semantic model for the GEC and the

iData toolkits. This model is based on the Arrow framework and extends it with

the primitive combinator functions editread and editset for creating editors with

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 221

shared state. Furthermore, to guarantee the defined termination of editors, we have

replaced arbitrary loops with controlled iteration.

The unified, Arrow based framework provides an API that is highly platform

independent: the very same Arrow expression can be compiled and executed as

a widget-based application as well as a thin-client web application. The sharp

distinction between desktop and web applications is blurring. The framework that

we have presented here can be a first step toward formalization of such applications.

In Section 6 we have argued informally that the seminal Fudgets system can be

modeled within EditorArrow. It is interesting to answer the question to what extent

the formal EditorArrow framework can be used to structure or model GUI toolkits

other than GEC and iData. The application domain is typically dialog based: the

core interface component is that of a dialog (or form) and manipulating that dialog

may create new dialogs. These dialogs have resident state, and that state can both

be read and altered. We think that for these application domains, the framework

can be used as well.

The long-term goal that initiated this project is to reason formally about real-

world GUI programs. In the past we have performed case studies: a conference

management system (Plasmeijer & Achten, 2006a) and a project adminstration

system (Plasmeijer & Achten, 2006b) in iData. Neither is written in Arrow style. In

case of the conference management system, we conjecture that it can be captured

with the Arrow combinators, as the program uses chiefly sequencing and choice.

There is only one place that uses recursion (guestHomePage), but there it is only used

to implement the three stages of a user first creating an account, then provide the

data for that account, and finally submit a paper with that account. The project

administration system has a sequential structure in which feedback between the

editors takes care that after each user event, the administration is consistently

updated. So we expect that this example can also be transformed to an Arrow

structure.

We have proved the classis Arrow laws for our framework, as well as a number

of additional laws for iteration and editors. Furthermore, we have introduced de-

finedness laws for the semantic model. This is relevant because the edit combinators

impose very strict requirements on their input values, output values and events that

are passed through the system, which is in contrast with the requirements of the

standard Arrow combinators. If Arrows are used for domains that contain undefined

values, then the definition of the Arrow combinators needs to handle undefined

values as well. This experiment confirms the general insight that reasoning about

Arrows is relatively easy.

We have formally proved all laws with Sparkle. Working with this proof assistant

helped us to identify issues that escaped our attention in the process of specifying

the model and its expected properties. One consequence is that proofs need to be

reconstructed when the model has been adapted to repair these issues. Unfortunately,

Sparkle has no means of refactoring (partial) proofs; hence, this was a time-

consuming effort. Nevertheless, having such a tool available that allows reasoning

about source code is an invaluable asset because it greatly increases confidence in

the correctness of the proofs.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

222 P. Achten et al.

Acknowledgments

The authors thank the reviewers for their valuable feedback.

References

Achten, P., Eekelen, M. van & Plasmeijer, R. (2003) Generic Graphical User Interfaces.

In Selected Papers of the 15th International Workshop on the Implementation of Functional

Languages, IFL03, Edinburgh, UK. Michaelson, G. & Trinder, P. (eds), LNCS, vol. 3145.

Springer Verlag.

Achten, P., Eekelen, M. van & Plasmeijer, R. (2004a) Compositional model-views with generic

Graphical User Interfaces. In Practical Aspects of Declarative Programming, PADL04.

LNCS, vol. 3057. Springer Verlag, pp. 39–55.

Achten, P., Eekelen, M. van, Plasmeijer, R. & van Weelden, A. (2004b) Automatic Generation

of editors for higher-order data structures. In Second Asian Symposium on Programming

Languages and Systems (APLAS 2004), Wei-Ngan C. (ed), LNCS, vol. 3302. Springer

Verlag, pp. 262–279.

Achten, P., Eekelen, M. van, Plasmeijer, R. & van Weelden, A. (2004c) GEC: A toolkit

for Generic Rapid Prototyping of type safe interactive applications. In Proceedings of the

5th International Summer School on Advanced Functional Programming (AFP 2004). LNCS,

vol. 3622. Springer Verlag, pp. 210–244.

Baeten, J. C. M. & Weijland, W. P. (1990) Process Algebra. Cambridge Tracts in Theoretical

Computer Science, vol. 18. Cambridge University Press.

Carlsson, M. & Hallgren, T. (1993) Fudgets – a graphical user interface in a lazy functional

language. In Proceedings of the ACM Conference on Functional Programming and Computer

Architecture (FPCA ’93).

Carlsson, M. & Hallgren, T. (1998) Fudgets – Purely Functional Processes with Applications

to Graphical User Interfaces. PhD thesis, Chalmers University of Technology, Göteborg

University, Sweden. ISBN 91-7197-611-6; ISSN 0346-718X.

Cartwright, R. & Donahue, J. (1982) The semantics of lazy (and industrious) evaluation. In

Proceedings of the 1982 ACM Symposium on Lisp and Functional Programming (LFP ’82).

New York: ACM, pp. 253–264.

Courtney, A. A. (2004 May) Modeling User Interfaces in a Functional Language. PhD thesis,

Yale University.

Courtney, A. & Elliott, C. (2001 September) Genuinely Functional User Interfaces. In

Proceedings of the 2001 Haskell Workshop.

Courtney, A., Nilsson, H. & Peterson, J. (2003) The Yampa arcade. In Proceedings of

the 2003 ACM SIGPLAN Haskell Workshop (Haskell’03). Uppsala, Sweden: ACM Press,

pp. 7–18.

Dowse, M., Butterfield, A. & Eekelen, M. van. (2004) Reasoning about deterministic

concurrent functional i/o. In Ifl, Grelck, C., Huch, F., Michaelson, G. & Trinder, Philip W.

(eds), Lecture Notes in Computer Science, vol. 3474. Springer, pp. 177–194.

Eekelen, M. van & Mol, Ma. de. (2005) Proof tool support for explicit strictness. In

Implementation and Application of Functional Languages, 17th International Workshop, IFL

2005, Dublin, Ireland, September 19–21, 2005, Revised Selected Papers, Butterfield, A.,

Grelck, C. & Huch, F. (eds), LNCS, vol. 4015. Springer Verlag, pp. 37–54.

Eekelen, M. van, Smetsers, S. & Plasmeijer, R. (1997) Graph rewriting semantics for functional

programming languages. Computer Science Logic, 106–128.

Elliott, C. & Hudak, P. (1997, June). Functional reactive animation. In International Conference

on Functional Programming, pp. 163–173.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

EditorArrow: An arrow-based model for editor-based programming 223

Groningen, J. van, Noort, T. van, Achten, P., Koopman, P. & Plasmeijer, R. (2010) Exchanging

sources between Clean and Haskell – A double-edged front end for the Clean compiler.

Proceedings of the Haskell Symposium, Haskell’10, Baltimore, MD, USA, Gibbons, J. (ed),

ACM Press, pp. 49–60.

Groote, J. F. & Reniers, M. A. (2001) Algebraic process verification. In Handbook of Process

Algebra. Bergstra, J. A., Ponse, A. & Smolka, S. A. (eds), Elsevier Science B.V., Chap. 17,

pp. 1151–1208.

Hanus, M. (2006) Type-oriented construction of Web User Interfaces. In Proceedings of the 8th

International ACM Sigplan Conference on Principle and Practice of Declarative Programming

(PPDP’06). ACM Press, pp. 27–38.

Hoare, C. A. R. (1985) Communicating Sequential Processes. International Series in Computer

Science. Prentice-Hall International.

Hudak, P., Courtney, A., Nilsson, H. & Peterson, J. (2003) Arrows, robots, and functional

reactive programming. In Advanced Functional Programming, 4th International School,

Oxford. Jeuring, J. & Peyton Jones, S. (eds), LNCS, vol. 2638. Springer Verlag, pp. 159–187.

Hudak, P., Hughes, J., Peyton Jones, S. & Wadler, P. (2007) A history of haskell: Being lazy

with class. In Proceedings of the Third ACM Sigplan Conference on History of Programming

Languages. HOPL III. New York: ACM, pp. 12-1–12-55.

Hughes, J. (2000) Generalising monads to arrows. Sci. Comput. Program. 37(May), 67–111.

Kesteren, R. van, Eekelen, M. van & Mol, M. de. (2004) Proof support for general type

classes. In Trends in Functional Programming 5: Selected Papers from the 5th International

Symposium on Trends in Functional Programming (TFP04). Loidl, H.-W. (ed), Intellect,

pp. 1–16.

Milner, R. (1980) A Calculus of Communicating Systems. LNCS, vol. 92. Springer Verlag.

Mol, M. de. (2009 March 4) Reasoning about Functional Programs – Sparkle: A Proof Assistant

for Clean. PhD thesis, University of Nijmegen, The Netherlands. ISBN 978-90-9023885-2.

Mol, M. de, Eekelen, M. van & Plasmeijer, R. (2002) Theorem proving for functional

programmers – Sparkle: A functional theorem prover. In Proceedings of the 13th

International Workshop on Implementation of Functional Languages, IFL 2001, Stockholm,

Sweden, Selected Papers. Arts, T. & Mohnen, M. (eds), LNCS, vol. 2312. Springer Verlag,

pp. 55–72.

Mol, M. de, Eekelen, M. van & Plasmeijer, R. (2008) Proving properties of lazy functional

programs with SPARKLE. In Proceedings of the 2nd Central-European Functional

Programming School, CEFP 2007, Cluj-Napoca, Romania. Horváth, Z. (ed), LNCS,

vol. 5161. Springer Verlag, pp. 41–86.

Paterson, R. (2001) A new notation for arrows. In International Conference on Functional

Programming. ACM Press, pp. 229–240.

Plasmeijer, R. & Achten, P. (2005) Generic editors for the World Wide Web. In Central-

European Functional Programming School, Eötvös Loránd University, Budapest, Hungary –

Revised Selected Lectures. LNCS, vol. 4164. Springer Verlag, pp. 1–34.

Plasmeijer, R. & Achten, P. (2006a) A conference management system based on the

iData toolkit. In Proceedings of the 18th International Symposium on Implementation and

Application of Functional Languages, IFL’06. Horváth, Z. & Zsók, V. (eds), LNCS, vol.

4449. Budapest, Hungary, Eötvös Loránd University, Faculty of Informatics, Department

of Programming Languages and Compilers: Springer Verlag, pp. 108–125.

Plasmeijer, R. & Achten, P. (2006b) iData for the World Wide Web – Programming

interconnected web forms. In Proceedings of the 8th International Symposium on Functional

and Logic Programming (FLOPS 2006). LNCS, vol. 3945. Fuji Susone, Japan: Springer

Verlag, pp. 242–258.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

224 P. Achten et al.

Plasmeijer, R. & Achten, P. (2006c) The implementation of iData – A case study in

generic programming. In Implementation and Application of Functional Languages, 17th

International Workshop, ifl 2005, Dublin, Ireland, September 19–21, 2005, revised selected

papers, Butterfield, A., Grelck, C. & Huch, F. (eds), LNCS, vol. 4015. Department of

Computer Science, Trinity College, University of Dublin: Springer Verlag, pp. 106–123.

Plasmeijer, R. & Eekelen, M. van. (1999) Keep it clean: A unique approach to functional

programming. ACM SIGPLAN Noti. 34(6), 23–31.

Plasmeijer, R. & Eekelen, M. van. (2002) Clean language report version 2.1. Department of

Software Technology, University of Nijmegen.

Shneiderman, B. (1992) Designing the User Interface: Strategies for Effective Human-Computer

Interaction, 2nd ed. Addison Wesley.

Thiemann, P. (2002) WASH/CGI: Server-side web scripting with sessions and typed,

compositional forms. In Practical Aspects of Declarative Languages: 4th International

Symposium, PADL 2002, Krishnamurthi, S. & Ramakrishnan, C. R. (eds), LNCS, vol.

2257. Portland, OR: Springer-Verlag, pp. 192–208.

https://doi.org/10.1017/S0956796812000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000421

