REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES WITH RESPECT TO BANACH SPACES.

OSCAR BLASCO

Suppose that $L^q(\nu)\widehat{\bigotimes}_{\gamma_q}Y = L^q(\nu, Y)$ and $X\widehat{\bigotimes}_{\Delta_p}L^p(\mu) = L^p(\mu, X)$. It is shown that any $L^p(\mu)$ -valued measure has finite $L^2(\nu)$ -semivariation with respect to the tensor norm $L^2(\nu)\widehat{\bigotimes}_{\Delta_p}L^p(\mu)$ for $1 \leq p < \infty$ and finite $L^q(\nu)$ -semivariation with respect to the tensor norm $L^q(\nu)\widehat{\bigotimes}_{\gamma_q}L^p(\mu)$ whenever either q = 2 and $1 \leq p \leq 2$ or $q > \max\{p, 2\}$. However there exist measures with infinite L^q -semivariation with respect to the tensor norm $L^q(\nu)\widehat{\bigotimes}_{\gamma_q}L^p(\mu)$ for any $1 \leq q < 2$. It is also shown that the measure $m(A) = \chi_A$ has infinite L^q -semivariation with respect to the tensor norm $L^q(\nu)\widehat{\bigotimes}_{\gamma_q}L^p(\mu)$ if q < p.

1. INTRODUCTION

Let Z be a Banach space and let $m : \Sigma \to Z$ be a vector measure defined on a σ -algebra Σ of subsets of Ω . We write |m| for the variation of the measure

$$|m|(A) = \sup \left\{ \sum_{j=1}^{k} \left\| m(A_j \cap A) \right\| : A_j \text{ pairwise disjoints }, k \in \mathbb{N} \right\}$$

and denote, for $1 \leq p < \infty$, the *p*-variation of the measure

$$||m||_{p} = \sup \left\{ \left(\sum_{j=1}^{k} ||m(A_{j})||^{p} \right)^{1/p} : A_{j} \text{ pairwise disjoints }, k \in \mathbb{N} \right\}.$$

We also write $||m|| = \sup_{A \in \Sigma} ||m(A)||$, which is equivalent to the semivariation of the vector measure m, that is

$$||m|| \approx \sup \left\{ \left| \langle z^*, m \rangle \right| (\Omega) : ||z^*|| = 1 \right\}.$$

Suppose that X, Y is a Banach spaces and let τ be a norm on $X \otimes Y$ such that $||x \otimes y||_{\tau} \leq C ||x|| ||y||$ for $x \in X, y \in Y$ and denote $X \bigotimes_{\tau} Y$ the completion under such a

Received 28th November, 2006

The author was partially supported by Proyecto MTM 2005-08350.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

O. Blasco

norm. Given a vector measure $m: \Sigma \to Y$ defined on a σ -algebra Σ of subsets of Ω , R. Bartle (see [2, 7]) introduced the notion of X-semivariation of m in $X \otimes_{\tau} Y$ given by

$$\beta_X(m, au,Y)(A) = \sup\left\{\left\|\sum_{j=1}^k x_j \otimes m(A \cap A_j)\right\|_{\tau}\right\}$$

for every $A \in \Sigma$ where the supremum is taken over $||x_j|| \leq 1$, A_j pairwise disjoints sets in Σ and $k \in \mathbb{N}$. We shall denote

$$\beta_X(m,\tau,Y) = \sup_{A \in \Sigma} \beta_X(m,\tau,Y)(A)$$

It is clear that

$$||m|| \leq \beta_X(m,\tau,Y) \leq ||m||_1.$$

If $X\widehat{\otimes}_{\epsilon} Y$ and $X\widehat{\otimes}_{\pi} Y$ stand for the injective and projective tensor norms respectively, then one always has

$$||m|| \leq \beta_X(m,\varepsilon,Y) \leq \beta_X(m,\tau,Y) \leq \beta_X(m,\pi,Y) \leq ||m||_1.$$

It is well-known and easy to see that actually $\beta_X(m, \varepsilon, Y) = ||m||$.

In [7] Jefferies and Okada developed a theory of integration of X-valued functions with respect to Y-valued measures of bounded X-semivariation in the case of completely separated tensor norms.

We shall be concerned with some interesting examples of norms coming from the theory of vector-valued functions: Throughout the paper $(\Omega_1, \Sigma_1, \mu)$ and $(\Omega_2, \Sigma_2, \nu)$ are finite measure spaces, $1 \leq p, q < \infty$ and the Banach spaces will be either $Y = L^p(\mu)$ or $X = L^q(\nu)$. We define γ_q and Δ_p the norms on $L^q(\nu) \otimes Y$ and $X \otimes L^p(\mu)$ identified as subspace of $L^q(\nu, Y)$ and $L^p(\mu, X)$, that is to say

$$L^{q}(\nu) \bigotimes_{\gamma_{q}}^{\gamma} Y = L^{q}(\nu, Y), \quad X \bigotimes_{\Delta_{p}}^{\gamma} L^{p}(\mu) = L^{p}(\mu, X).$$

In the case p = q the $L^{p}(\nu)$ -semivariation of $L^{p}(\mu)$ -valued measures with respect to the topology τ_{p} such that $L^{p}(\mu)\widehat{\bigotimes}_{\tau_{p}}L^{p}(\nu)$ becomes $L^{p}(\mu \times \nu)$ for the product measure was studied in [8, 9].

In particular, if both $X = L^q(\nu)$ and $Y = L^p(\mu)$ then $L^q(\nu) \widehat{\bigotimes}_{\Delta_p} L^p(\mu)$ and $L^q(\nu) \widehat{\bigotimes}_{\gamma_q} L^p(\mu)$ coincide with the spaces of measurable functions $f : \Omega_1 \times \Omega_2 \to \mathbb{R}$ such that

$$\left(\int_{\Omega_1} \left(\int_{\Omega_2} \left|f(x,y)\right|^q d\nu(y)\right)^{p/q} d\mu(x)\right)^{1/p} < \infty$$

and

$$\left(\int_{\Omega_2} \left(\int_{\Omega_1} \left|f(x,y)\right|^p d\mu(x)\right)^{q/p} d\nu(x)\right)^{1/q} < \infty.$$

In this paper we shall try to understand better the difference between the classical semivariation or variation of a $L^{p}(\mu)$ -valued measure m and the $L^{q}(\nu)$ -semivariation with respect to the norms Δ_{p} , γ_{q} and π .

Let us establish the main results of the paper. Our first result establishes the following descriptions of the L^q -semivariation of L^p -valued measures with respect to the projective tensor norm, where we denote $L^p = L^p([0,1])$ for $1 \le p \le \infty$.

THEOREM 1.1. Let $1 \leq p, q \leq \infty$ and let $m : \Sigma \to L^p([0,1])$ be a vector measure. Then

- (i) $\beta_{L^{p'}}(m,\pi,L^p) \approx ||m||_1 \qquad 1 \leq p \leq \infty.$
- (ii) $\beta_{L^2}(m, \pi, L^p) \approx ||m||_1, \quad 1$
- (iii) $\beta_{L^2}(m, \pi, L^1) \approx ||m||.$

This result shows that L^2 -valued measures are of finite L^2 -semivariation on $L^2 \bigotimes_{\pi} L^2$ if and only if they are of finite variation.

It was noticed in [8] that any L^2 -valued measure is of bounded L^2 -semivariation with respect to $L^2([0,1])\widehat{\bigotimes}_{\tau_2}L^2([0,1])$, in other words $\beta_{L^2}(m, \Delta_2, L^2) \approx ||m||$.

On the other hand $\beta_{L^q}(m, \pi, L^1) = \beta_{L^q}(m, \Delta_1, L^1)$. Hence Theorem 1.1 shows that $\beta_{L^2}(m, \Delta_1, L^1) = ||m||$.

Let us just point out that this implies

(1)
$$\beta_{L^2}(m, \Delta_p, L^p) \approx ||m||, 1 \leq p \leq 2$$

due to the simple observation

(2)
$$\beta_{L^q(\nu)}(m, \Delta_{p_1}, L^{p_1}(\mu)) \leq C\beta_{L^q(\nu)}(m, \Delta_{p_2}, L^{p_2}(\mu)) \qquad p_1 \leq p_2.$$

We shall present another alternative proof that cover all the cases and gives an alternative proof of the known case p = q = 2 and extend (1) as follows.

THEOREM 1.2. Let $1 \leq p < \infty$ and let $m : \Sigma \to L^p([0,1])$ be a vector measure. Then

$$\beta_{L^2}(m, \Delta_p, L^p) \approx ||m||.$$

The question which now arises is whether or not there exist L^p -valued measures with $\beta_{L^q(\nu)}(m, \Delta_p, L^p(\mu)) = \infty$ if $q \neq 2$. In [7] examples of $L^p([0, 1])$ -valued measures of infinite $L^p([0, 1])$ -semivariation in $L^p([0, 1]) \bigotimes_{\tau_p} L^p([0, 1])$ were obtained for the values $p \neq 2$. For $1 \leq p < 2$ the approach was much simpler than for p > 2 and the example in this case relies on the existence of a non absolutely summing operator from $\ell^1 \to \ell^p$ for p > 2 (see [8, 9]).

We shall use the relationship between the tensor norms γ_q and Δ_p to get other examples. Recall that Minkowski's inequality gives $L^p(\mu, L^q(\nu)) \subseteq L^q(\nu, L^p(\mu))$ for $p \leq q$

and $L^q(\nu, L^p(\mu)) \subseteq L^p(\mu, L^q(\nu))$ for $q \leq p$. Hence

(3)
$$\beta_{L^{q}(\nu)}(m,\gamma_{q},L^{p}(\mu)) \leq \beta_{L^{q}(\nu)}(m,\Delta_{p},L^{p}(\mu)), \quad p \leq q$$

(4)
$$\beta_{L^{q}(\nu)}(m, \Delta_{p}, L^{p}(\mu)) \leq \beta_{L^{q}(\nu)}(m, \gamma_{q}, L^{p}(\mu)), \quad q \leq p.$$

Also using general techniques, similar to those used in [8] one can show that for $1 \leq p \leq \infty$ and $1 \leq q < 2$ there exist $L^p(\mu)$ -valued measures m such that $\beta_{L^q(\nu)}(m, \gamma_q, L^p(\mu)) = \infty$. This, in particular, using the estimate (3), shows the existence of measures for which $\beta_{L^q(\nu)}(m, \Delta_p, L^p(\mu)) = \infty$ if $1 \leq q < 2, p \leq q$, completing and extending the case p = q.

THEOREM 1.3. Let $1 \leq p \leq \infty$ and let $m : \Sigma \to L^p([0,1])$ be a vector measure. Then

(i)
$$\beta_{L^2}(m,\gamma_2,L^p) \approx ||m||, \quad 1 \leq p \leq 2.$$

(ii) $\beta_{L^q}(m, \gamma_q, L^p) \approx ||m||, \quad \max\{p, 2\} < q.$

This gives that any measure has $\beta_{L^q}(m, \gamma_q, L^p) < \infty$ for $q > p \ge 2$. However in the last section it is shown that the $L^p([0,1])$ -valued measure $m_p(A) = \chi_A$ has infinite $L^q([0,1])$ -semivariation in $L^q([0,1])\widehat{\bigotimes}_{\gamma_q}L^p([0,1])$ for q < p.

2. Bounded X-semivariation

We start by the following characterisation of the bounded X-semivariation.

Taking into account that $X\widehat{\otimes}_{\pi}Y \subset X\widehat{\otimes}_{\tau}Y$, then $(X\widehat{\otimes}_{\tau}Y)^*$ can be regarded as a subspace of the space of bounded operators $\mathcal{L}(Y, X^*)$. Moreover $||u|| \leq ||u||_{(X\widehat{\otimes}_{\tau}Y)^*}$ for any $u \in (X\widehat{\otimes}_{\tau}Y)^*$, where the duality is given by

$$\left\langle u, \sum_{j=1}^{k} x_j \otimes y_j \right\rangle = \sum_{j=1}^{k} \left\langle u(y_j), x_j \right\rangle$$

THEOREM 2.1. Let $m: \Sigma \to Y$ be a vector measure. Then

$$\beta_X(m,\tau,Y)\approx \sup\{\|u\circ m\|_1: u\in \mathcal{L}(Y,X^*), \|u\|_{(X\widehat{\otimes}_{\tau}Y)^*}\leq 1\}.$$

PROOF: Let (x_j) be a bounded sequence in X and (A_j) be a sequence of pairwise disjoint sets in Σ . Consider, for $k \in \mathbb{N}$, the X-valued simple function $\phi = \sum_{j=1}^{k} x_j \chi_{A_j}$ and denote

$$\phi \bigotimes_{\tau} m(A) = \sum_{j=1}^{k} x_j \otimes m(A \cap A_j) \in X \otimes Y.$$

Clearly this defines a new $X \widehat{\otimes}_{\tau} Y$ -valued measure and one can rewrite

$$\beta_X(m,\tau,Y) = \sup\Big\{ \left\| \phi \bigotimes_{\tau} m \right\| : \phi \in \mathcal{S}(X), \|\phi\|_{\infty} \leq 1 \Big\}.$$

We now write the semivariation of $\phi \bigotimes_{\tau} m$ using duality, that is to say

$$\begin{split} \left\| \phi \bigotimes_{\tau} m \right\| &\approx \sup \Big\{ \left| \langle u, \phi \otimes m \rangle \right| (\Omega) : \left\| u \right\|_{(X \widehat{\otimes_{\tau}} Y)^{\bullet}} \leqslant 1 \Big\} \\ &= \sup \Big\{ \sum_{j=1}^{k} \Big| \langle u \circ m(A_{j}), x_{j} \rangle \Big| : (A_{j}) \text{ pairwise disjoint}, \left\| u \right\|_{(X \widehat{\otimes_{\tau}} Y)^{\bullet}} \leqslant 1 \Big\}, \end{split}$$

which, taking supremum over $||x_j|| \leq 1$, gives

$$\beta_X(m,\tau,Y) \approx \sup \left\{ \sum_{j=1}^k \left\| u \circ m(A_j) \right\| : (A_j) \text{ pairwise disjoint, } \|u\|_{(X\widehat{\otimes}_\tau Y)^*} \leqslant 1 \right\}$$
$$\approx \sup \left\{ \|u \circ m\|_1 : u \in \mathcal{L}(Y,X^*), \|u\|_{(X\widehat{\otimes}_\tau Y)^*} \leqslant 1 \right\}.$$

Let us see the formulation of Theorem 2.1 in the case $\tau = \Delta_p$ or $\tau = \gamma_q$.

It is well known that for $1 < p, q < \infty$ and 1/p' + 1/p = 1, 1/q + 1/q' = 1 and for X, Y such that X^* and Y^* have the Radon-Nikodym property (see [6]) then

$$\left(L^{q}(\nu)\widehat{\bigotimes}_{\gamma_{q}}Y\right)^{*} = L^{q'}(\nu)\widehat{\otimes}_{\gamma_{q'}}Y^{*}$$

and

$$\left(X\widehat{\bigotimes}_{\Delta_{p}}L^{p}(\mu)\right)^{*}=X^{*}\widehat{\bigotimes}_{\Delta_{p'}}L^{p'}(\mu).$$

Now for each $f \in L^{p'}(\mu, X^*)$ we can define the operators $u_f : L^p(\mu) \to X^*$ and $v_f : X \to L^{p'}(\mu)$ given by

$$\langle u_f(\phi), x \rangle = \int_{\Omega} \langle f(t), x \rangle \phi(t) d\mu(t)$$

and

$$v_f(x) = \langle f, x \rangle.$$

Of course $(v_f)^* = u_f$ and $(u_f)^* = v_f$ if X is reflexive.

THEOREM 2.2. Let $1 < p, q < \infty$, $X = L^q(\nu)$ and $Y = L^p(\mu)$. If $m : \Sigma \to L^p(\mu)$ is a vector measure then

(5)
$$\beta_{L^{q}(\nu)}(m, \Delta_{p}, L^{p}(\mu)) = \sup\{\|u_{f} \circ m\|_{1} : \|f\|_{L^{p'}(\mu, L^{q'}(\nu))} \leq 1\},\$$

(6)
$$\beta_{L^{q}(\nu)}(m,\gamma_{q},L^{p}(\mu)) = \sup\{\|v_{g} \circ m\|_{1}: \|g\|_{L^{q'}(\nu,L^{p'}(\mu))} \leq 1\}.$$

PROOF: In the case $Y = L^{p}(\mu)$ and $X = L^{q}(\nu)$ for $1 < q, p < \infty$ the elements $u : L^{p}(\mu) \to L^{q'}(\nu)$ such that $u \in \left(L^{q}(\nu)\widehat{\bigotimes}_{\Delta_{p}}L^{p}(\mu)\right)^{*}$ can be seen as $u = u_{f}$ for some $f \in L^{p'}(\mu, L^{q'}(\nu))$, that is $u : L^{p}(\mu) \to L^{q}(\nu)$ is given by

$$u(\phi)(y) = \int_{\Omega_1} f(x,y)\phi(x)d\mu(x).$$

473

Then (6) follows from Theorem 2.1 in this case.

Similarly the elements $u: L^{p}(\mu) \to L^{q'}(\nu)$ such that $u \in \left(L^{q}(\nu) \widehat{\bigotimes}_{\gamma_{q}} L^{p}(\mu)\right)^{*}$ can be seen as $u = v_{g}$ for some $g \in L^{q'}(\nu, L^{p'}(\mu))$ and now

$$u(\psi)(y) = \langle g, \psi \rangle = \int_{\Omega_1} g(y, x) \psi(x) d\mu(x) d\mu(x)$$

Again (6) follows from Theorem 2.1.

3. PROOF OF THE MAIN THEOREMS

We use first the characterisation in Theorem 2.1 to get the following corollaries.

COROLLARY 3.1. Let $m: \Sigma \to Y$ be a vector measure and X a Banach space. Then

$$\beta_X(m,\pi,Y) pprox \sup \{ \|u \circ m\|_1 : u \in \mathcal{L}(Y,X^*), \|u\| \leqslant 1 \}.$$

We use the notation $\Pi_p(X, Y)$ for the space of *p*-summing operators from X into Y and write $\pi_p(u)$ for the *p*-summing norm. The reader is referred to [5] for the basics in the theory of summing operators.

COROLLARY 3.2. Let Y be a Grothendieck space, that is, $\Pi_1(Y, H) = \mathcal{L}(Y, H)$ for any Hilbert space H. Then

(7)
$$\beta_H(m,\pi,Y) \approx \|m\|.$$

PROOF: Note that $\sum m(A_j)$ is an unconditionally convergent series in Y for any sequence of pairwise disjoint sets A_j . Now for any operator from $u : Y \to H$ one has $\sum \left\| u(m(A_j)) \right\| \leq K_G \|u\| \|m\|$, where K_G is the Grothendieck constant. Now use Corollary 3.1.

PROOF OF THEOREM 1.1: (i) Let $Y = L^p$ and $X = L^{p'}$ then choosing u = Id: $L^p \to (L^{p'})^*$, one concludes that $||u \circ m||_1 = ||m||_1$. This shows $\beta_{L^{p'}}(m, \pi, L^p) = ||m||_1$

(ii) follows from the following observation: If X^* is isomorphic to a complemented subspace of Y then $\beta_X(m, \pi, Y) \approx ||m||_1$.

Indeed, assume $id: Y \to Y$ factors through X^* as $id = u_1 \circ u_2$ where $u_2: Y \to X^*$ and $u_1: X^* \to Y$ are bounded operators. Now observe that $||m||_1 \leq ||u_1|| ||u_2 \circ m||_1$ and use Corollary 3.1.

Now use that the space Rad is complemented in $L^{p}([0,1])$ and isomorphic to ℓ^{2} (see [5, Theorem 1.12]) and therefore to L^{2} , to conclude that

(8)
$$\beta_{L^2}\left(m, \pi, L^p([0,1])\right) \approx \|m\|_1, 1$$

(iii) follows from Corollary 3.2.

We now recall a lemma that we shall need in the sequel.

474

0

0

475

LEMMA 3.3. (i) Suppose that $1 < q < \infty$ and let Y be a Banach space such that $Y^* \in RNP$. If $u: Y \to L^{q'}(\nu)$ belongs to $\left(L^q(\nu)\widehat{\bigotimes}_{\gamma_q}Y\right)^*$ then $\pi_{q'}(u) \leq ||u||_{(L^q(\nu)\widehat{\bigotimes}_{\gamma_q}Y)^*}$. (ii) Let $1 and let X be a Banach space such that <math>X^* \in RNP$. If $u: L^p(\mu) \to X^*$ belongs to $\left(X\widehat{\bigotimes}_{\Delta_p}L^p(\mu)\right)^*$ then $\pi_{p'}(u^*) \leq ||u^*||_{(X\widehat{\bigotimes}_{\Delta_p}L^p(\mu))^*}$.

PROOF: (i) It is well known (see [5, Example 2.11]) that if $g \in L^{q'}(\nu, Y^*)$ then $v_g: Y \to L^{q'}(\nu)$ given by $v_g(y) = \langle g, y \rangle$ is q'-summing and $\pi_{q'}(v_g) \leq ||g||_{L^{q'}(\nu,Y)}$. Now use that, under the assumptions, $\left(L^q(\nu)\widehat{\bigotimes}_{\gamma_q}Y\right)^* = L^{q'}(\nu, Y^*)$ and $u = v_g$ for certain $g \in L^{q'}(\nu, Y^*)$.

(ii) Note that $u = u_f$ for some $f \in L^{p'}(\mu, X^*)$. Hence $v_f = u^* : X^{**} \to L^p(\mu)$ is p'-summing and $\pi_{p'}(u^*) \leq ||f||_{L^{p'}(\mu, X^*)} = ||u||_{(L^q(\nu)\widehat{\otimes}_{\gamma_0}Y)^*}$.

PROOF OF THEOREM 1.2: The case p = 1 is included in (iii) Theorem 1.1.

Assume now $1 and let <math>m : \Sigma \to L^p$ be a vector measure. Given $u : L^p \to L^2$ with $u \in \left(L^2 \widehat{\bigotimes}_{\Delta_p} L^p\right)^*$ we can use (ii) in Lemma 3.3 to conclude that there exist $f \in L^{p'}([0,1],L^2)$ such that $v_f : L^2 \to L^{p'}$ given by $\phi \to \int_0^1 \phi(y) f(x,y) dy$ is p'-summing and $u = u_f = (v_f)^*$. Hence, using [5, Theorem 2.21], one has that $(v_f)^* = u : L^p \to L^2$ is 1-summing. Therefore

$$||u_f \circ m||_1 \leq C ||u_f|| ||m|| \leq C ||f||_{L^{p'}([0,1],L^2)} ||m||.$$

Let us mention another useful lemma.

LEMMA 3.4. ([1, Proposition 6]) Suppose that Y is a Banach space of finite cotype r and let $\sum_{j} y_{j}$ be an unconditionally convergent series in Y.

(i) If r = 2 then there exist $(\alpha_j) \in \ell^2$ and a sequence in $(y'_j) \subset Y$ such that $y_j = \alpha_j y'_j$ and

$$\sum_{j} |\alpha_{j}|^{2} \leqslant \sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}, y^{*}\rangle|,$$
$$\sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}, y^{*}\rangle|^{2} \leqslant \sup_{\|y^{*}\|=1} \sum_{j} |\langle y_{j}, y^{*}\rangle|.$$

(ii) If r > 2 then for any q > r there exist $(\alpha_j) \in \ell^q$ and a sequence in $(y'_j) \subset Y$ such that $y_j = \alpha_j y'_j$ and

$$\left(\sum_{j} |\alpha_{j}|^{q}\right)^{1/q} \leq \left(\sup_{||y^{*}||=1} \sum_{j} |\langle y_{j}, y^{*}\rangle|\right)^{1/q}.$$
$$\left(\sup_{||y^{*}||=1} \sum_{j} |\langle y_{j}, y^{*}\rangle|^{q'}\right)^{1/q'} \leq \left(\sup_{||y^{*}||=1} \sum_{j} |\langle y_{j}, y^{*}\rangle|\right)^{1/q'}.$$

PROOF: (i) Let $T: c_0 \to Y$ such that $T(e_j) = y_j$. Note that $\mathcal{L}(c_0, Y) = \Pi_2(c_0, Y)$ for any cotype 2 space Y. Now apply [5, Lemma 2.23] to the sequence (e_j) which satisfies

[8]

 $\sup \left\{ \sum_{j} |\langle e_{j}, z \rangle| : ||z||_{\ell^{1}} = 1 \right\}$ to conclude that $T(e_{j}) = y_{j} = \alpha_{j} y_{j}'$ with the desired properties.

(ii) Repeat the proof using now $L(c_0, Y) = \prod_q(c_0, Y)$ for any q > r (see [5, Theorem 11.14]).

PROOF OF THEOREM 1.3: Note that Theorem 1.2 and (4) give

(9)
$$\beta_{L^2}(m,\gamma_2,L^p) \approx ||m||, \qquad 1 \leq p \leq 2.$$

To obtain (ii) we simply use the following more general result.

THEOREM 3.5. If Y has cotype $r < \infty$ and Y^{*} has the RNP then

(10)
$$\beta_{L^2(\nu)}(m,\gamma_2,Y) \approx ||m||, \quad r=2.$$

(11)
$$\beta_{L^q(\nu)}(m,\gamma_q,Y)\approx ||m||, \quad q>r>2.$$

PROOF: We only prove (11). The other is exactly the same.

Suppose that (A_j) is a sequence of pairwise disjoint sets. Since $m(A_j)$ is unconditionally convergent in Y, Lemma 3.4 implies that there exist $(\alpha_j) \in \ell^q$ and a sequence in $(y_j) \subset Y$ with $m(A_j) = \alpha_j y_j$ and

$$\left(\sum_{j} |\alpha_{j}|^{q}\right)^{1/q} \leq \left(\sup_{||y^{*}||=1} \sum_{j} \left| \left\langle m(A_{j}), y^{*} \right\rangle \right| \right)^{1/q}.$$
$$\left(\sup_{||y^{*}||=1} \sum_{j} \left| \left\langle y_{j}, y^{*} \right\rangle \right|^{q'}\right)^{1/q'} \leq \left(\sup_{||y^{*}||=1} \sum_{j} \left| \left\langle m(A_{j}), y^{*} \right\rangle \right| \right)^{1/q'}.$$

On the other hand if $u \in (L^q(\nu)\widehat{\otimes}Y)^*$, using (i) in Lemma 3.3, one has $u \in \Pi_{q'}(Y, L^{q'})$. Therefore

$$\begin{split} \sum_{j} \left\| u(m(A_{j})) \right\| &= \sum_{j} |\alpha_{j}| |u(y_{j})| \\ &\leq \left(\sum_{j} |\alpha_{j}|^{q} \right)^{1/q} \left(\sum_{j} ||u(y_{j})||^{q'} \right)^{1/q'} \\ &\leq \pi_{q'}(u) \left(\sum_{j} |\alpha_{j}|^{q} \right)^{1/q} \left(\sup_{||y^{*}||=1} \sum_{j} |\langle y_{j}, y^{*} \rangle|^{q'} \right)^{1/q'} \\ &\leq C ||u||_{(L^{q}(\nu)\widehat{\otimes}Y)^{*}} ||m||. \end{split}$$

4. MEASURES OF INFINITE X-SEMIVARIATION

We shall present now some necessary conditions to have bounded X-semivariation. **PROPOSITION 4.1.** (i) Assume that $X\widehat{\otimes}_{\tau}Y$ is of finite cotype q. If $m: \Sigma \to Y$ be a vector measure then

$$||m||_q \leq C_q \beta_X(m,\tau,Y)$$

for some constant C_a independent of m.

In particular, if X has finite cotype q and $1 \leq p < \infty$ then

$$||m||_{\max\{q,2,p\}} \leq C\beta_X(m,\Delta_p,L^p(\mu)).$$

(ii) Let $1 \leq q < \infty$, let ν be a finite measure for which there exists a sequence of pairwise disjoint sets with $\nu(B_j) > 0$ and let $m : \Sigma \to Y$ be a vector measure. Then

$$||m||_q \leq C_q \beta_{L^q(\nu)}(m, \gamma_q, Y)$$

PROOF: (i) Suppose that (x_j) is a sequence in the unit ball of X and a sequence of pairwise disjoint sets A_j . Hence, for $0 \le t \le 1$, one has

$$\left\|\sum_{j=1}^{k} r_{j}(t) x_{k} \otimes m(A_{j})\right\|_{X \widehat{\otimes}_{\tau} Y} \leq \beta_{X}(m, \tau, Y)$$

where r_j stands for the Rademacher sequence. Now integrate over [0, 1] and use the cotype estimate to get

$$\left(\sum_{j=1}^k \|x_k\|^q \|m(A_j)\|^q\right)^{1/q} \leqslant C_q \beta_X(m,\tau,Y).$$

Taking the sup over (x_j) and (A_j) one obtains the desired result.

Note that $L^{p}(\mu, X)$ has cotype equals $\max\{p, q, 2\}$.

(ii) Take $x_j = (\chi_{B_j})/(\nu(B_j)^{1/q})$, $\phi = \sum_{j=1}^k x_j \chi_{A_j}$ for some sequence of pairwise disjoint sets in Σ and notice that, for any $A \in \Sigma$,

$$\|\phi \otimes m(A)\|_{L^{q}(\nu,Y)} = \left(\sum_{j=1}^{k} \|m(A \cap A_{j})\|^{q}\right)^{1/q}$$

This gives the result.

COROLLARY 4.2. Let Y be infinite dimensional Banach space, $1 \le q < 2$ and ν be a finite measure for which there exists a sequence of pairwise disjoint sets with $\nu(E_n) > 0$.

- (i) There exist Y-valued measure such that $\beta_{L^q(\nu)}(m, \gamma_q, Y) = \infty$.
- (ii) If $L^{p}(\mu)$ is infinite dimensional then there exist $L^{p}(\mu)$ -valued measures m such that $\beta_{L^{q}(\nu)}(m, \Delta_{p}, L^{p}(\mu)) = \infty$ for $1 \leq q < 2$ and $q \geq p$.

PROOF: (i) Select an unconditionally convergent series (y_n) with $\sum_k ||y_k||^q = \infty$ (this can be done for $1 \le q < 2$, see, for instance [5]).

Now we define the measure over N given by $m(\{k\}) = y_k$. Clearly $||m||_q = \infty$ and therefore $\beta_{L^q(\nu)}(m, \gamma_q, Y) = \infty$ from (ii) in Proposition 4.1.

O. Blasco

(ii) follows from (i) and the estimate (3).

A very important example to analyse is $m_p : \Sigma \to L^p(\mu)$ given by $m_p(A) = \chi_A$. We shall see that these measures are enough to produce examples with $\beta_{L^q(\nu)}(m, \gamma_q, L^p(\mu)) = \infty$ for q < p.

THEOREM 4.3. Let $\mu(\Omega_1) < \infty$, $\nu(\Omega_2) < \infty$, $X = L^q(\nu)$ and $Y = L^p(\mu)$. Then the $L^p(\mu)$ -valued measure $m_p(A) = \chi_A$ has finite $L^q(\nu)$ -semivariation in $L^q(\nu) \bigotimes_{\gamma_q} L^p(\mu)$ if and only if $L^{q'}(\nu, L^{p'}(\mu)) \subseteq L^1(\mu, L^{q'}(\nu))$.

PROOF: Let $g: \Omega_1 \times \Omega_2 \to \mathbb{R}$ be such that

$$\|g\|_{L^{q'}(\nu,L^{p'}(\mu))} = \left(\int_{\Omega_2} \left(\int_{\Omega_1} |g(y,x)|^{p'} d\mu(x)\right)^{q'/p'} d\nu(y)\right)^{1/q'} < \infty.$$

Note that the operator $v_g: L^p(\mu) \to L^{q'}(\nu)$ becomes

$$v_g(\psi)(y) = \int_{\Omega_1} g(y,x)\psi(x)d\mu(x),$$

hence, we have $v_g \circ m_p(A) = \int_A g(y, x) d\mu(x)$ for all $A \in \Sigma_1$. This shows that $v_g \circ m_p$ is the $L^{q'}(\nu)$ -valued measure with Radon-Nikodym derivative g(y, .). Therefore

$$\|v_g \circ m_p\|_1 = \int_{\Omega_1} \left(\int_{\Omega_2} |g(y,x)|^{q'} d\nu(y) \right)^{1/q'} d\mu(x).$$

Now Theorem 2.2 shows that m_p is of bounded $L^q(\nu)$ -semivariation in $L^q(\nu) \bigotimes_{\gamma_q} L^p(\mu)$ if and only if there exists C > 0 such that

$$\int_{\Omega_{1}} \left(\int_{\Omega_{2}} |g(y,x)|^{q'} d\nu(y) \right)^{1/q'} d\mu(y) \leqslant C \left(\int_{\Omega_{2}} \left(\int_{\Omega_{1}} |g(y,x)|^{p'} d\mu(x) \right)^{q'/p'} d\nu(y) \right)^{1/q'}.$$

That is to say $L^{q'}(\nu, L^{p'}(\mu)) \subset L^{1}(\mu, L^{q'}(\nu)).$

COROLLARY 4.4. Let $1 \leq p < \infty$ and $m_p : \Sigma \to L^p(\mu)$ given by $m_p(A) = \chi_A$. Then $\beta_{L^q(\mu)}(m_p, \gamma_q, L^p(\mu)) < \infty$ for $p \leq q$.

PROOF: Note that for $p \leq q$ one obviously has

$$L^{q'}(\nu, L^{p'}(\mu)) \subset L^{q'}(\nu, L^{q'}(\mu)) = L^{q'}(\mu, L^{q'}(\nu)) \subset L^{1}(\mu, L^{q'}(\nu)).$$

Apply now Theorem 4.3.

Actually the previous result is also a consequence of the following general fact.

PROPOSITION 4.5. Let $1 \le p < \infty$, X a Banach space and let $m : \Sigma \to L^p(\mu)$ be a positive vector measure, that is $m(A) \ge 0$ for all $A \in \Sigma$. Then

$$\beta_X(m,\Delta_p,L^p(\mu)) = ||m||.$$

In particular, if m is positive and $p \leq q$ then

$$\beta_{L^q(\nu)}(m,\gamma_q,L^p(\mu)) = \|m\|.$$

0

[10]

Π

PROOF: It is well-known that $(L^{p}(\mu, X))^{*} = (L^{p}(\mu)\widehat{\otimes}X)^{*}$ can be identified with the space of X^{*} -valued measures in $V^{p'}(\mu, X^{*})$ (see [4]). In particular, if $u \in (L^{p}(\mu)\widehat{\otimes}X)^{*} \subset L(L^{p}(\mu), X^{*})$ (see for instance [3]) there exists $\phi \in L^{p'}(\mu)$ such that $\|\phi\|_{p'} \leq \|u\|_{(L^{p}(\mu)\widehat{\otimes}X)^{*}}$ and satisfies that

$$\left\| u(\psi) \right\| \leqslant \int_{\Omega} \phi(t) \psi(t) d\mu(t)$$

for any positive function $\psi \in L^p(\mu)$. Therefore, if $||u||_{(L^p(\mu)\widehat{\otimes}X)^*} = 1$ then

$$\begin{split} \sum_{j=1}^{k} \left\| u\big(m(A_{j})\big) \right\| &\leq \|\phi\|_{p'} \int_{\Omega} \sum_{j=1}^{k} \frac{|\phi(t)|}{\|\phi\|_{p'}} m(A_{j})(t) d\mu(t) \\ &\leq \sup\left\{ \sum_{j=1}^{k} \left| \left\langle \phi', m(A_{j}) \right\rangle \right| : \|\phi'\|_{L^{p'}} = 1 \right\} \end{split}$$

Hence $||u_f \circ m||_1 \leq ||m||$. Apply now Theorem 2.2.

In the case $X = L^q(\nu)$ and $p \leq q$ (4) allows us to conclude the proof. We shall now see that the range of values in Theorem 4.3 is sharp.

LEMMA 4.6. If p > q then there exists $f : [0,1]^2 \to \mathbb{R}^+$ such that

$$\int_0^1 \left(\int_0^1 f(x,y)^q dy\right)^{p/q} dx < \infty$$

and

$$\int_0^1 \left(\int_0^1 f(x,y)^p dx\right)^{1/p} dy = \infty.$$

PROOF: Denoting $\beta = p/q > 1$ and $g(x, y) = f(x, y)^q$ it suffices to find $g : [0, 1]^2 \rightarrow \mathbb{R}^+$ such that

$$\int_0^1 \left(\int_0^1 g(x,y) dy\right)^\beta dx < \infty$$

and

$$\int_0^1 \left(\int_0^1 g(x,y)^\beta dx \right)^{1/p} dy = \infty.$$

Recall that the Hardy operator $T(\phi)(x) = (1/x) \int_0^x \phi(y) dy$ is bounded on $L^{\beta}([0,1])$ for $\beta > 1$ and define

$$g(x,y) = \frac{1}{x}\chi_{[0,x]}(y)\phi(y)$$

for a function $\phi \in L^{\beta}([0,1])$ to be chosen later.

Clearly

$$\int_0^1 \left(\int_0^1 g(x,y) dy \right)^\beta dx = \left\| T(\phi) \right\|_\beta^\beta \le \left\| T \right\|^\beta \left\| (\phi) \right\|_\beta^\beta$$

0

On the other hand

$$\begin{split} \int_0^1 \left(\int_0^1 g(x,y)^\beta dx \right)^{1/p} dy &= \int_0^1 \phi(y)^{\beta/p} \left(\int_y^1 \frac{dx}{x^\beta} \right)^{1/p} dy \\ &\ge C \int_0^1 \phi(y)^{\beta/p} \frac{1}{y^{(\beta-1)/p}} dy \\ &= C \left(\int_0^1 \left(\frac{\phi(y)}{y^{1/\beta'}} \right) \right)^{\beta/p} dy \\ &\ge C \left(\int_0^1 \frac{\phi(y)}{y^{1/\beta'}} dy \right)^{\beta/p}. \end{split}$$

Now select $\phi(y) = 1/(y^{1/\beta})log(1/y)$ to have $\phi \in L^{\beta}([0,1])$ and

$$\int_{0}^{1} \frac{\phi(y)}{y^{1/\beta'}} dy = \int_{0}^{1} \frac{dy}{y \log(1/y)} = \infty.$$

COROLLARY 4.7. For q < p the $L^p([0,1])$ -valued measure $m_p(A) = \chi_A$ has infinite $L^q([0,1])$ -semivariation in $L^q([0,1])\widehat{\bigotimes}_{\gamma_a} L^p([0,1])$.

References

- J.L. Arregui and O. Blasco, '(p,q)-summing sequences', J. Math. Anal. Appl. 247 (2002), 812-827.
- [2] R. Bartle, 'A general bilinear vector integral', Studia Math. 15 (1956), 337-351.
- [3] O. Blasco and P. Gregori, 'Lorentz spaces of vector-valued measures', J. London Math. Soc. 67 (2003), 739-751.
- [4] N. Dinculeanu, Vector measures, International Series of Monographs in Pure and Applied Mathematics 95 (Pergamon Press, Oxford, New York, Toronto, 1967).
- J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators (Cambridge Univ. Press, Cambridge, 1995).
- [6] J. Diestel and J.J. Uhl, Vector measures, Math. Surveys 15 (Amer. Math. Soc., Providence, R.I., 1997).
- B. Jefferies and S. Okada, 'Bilinear integration in tensor products', Rocky Mountain J. Math. 28 (1998), 517-545.
- [8] B. Jefferies and S. Okada, 'Semivariation in L^p-spaces', Comment. Math. Univ. Carolin. 44 (2005), 425-436.
- [9] B. Jefferies, S. Okada and L. Rodrigues-Piazza, 'L^p-valued measures without finite X-semivariation for 2 ', (preprint).

Department of Mathematics Universitat de Valencia Burjassot 46100 (Valencia) Spain e-mail: oscar.blasco@uv.es