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REMARKS ON THE SEMIVARIATION OF VECTOR MEASURES
WITH RESPECT TO BANACH SPACES.

OSCAR BLASCO

Suppose that L«(i/)<§7,*' = L<>{v,Y) and XQ^Wbt) = If^X). It is shown

that any ^(/ij-valued measure has finite L2(i/)-semivariation with respect to the

tensor norm L2(v)Q& L?(n) for 1 ^ p < oo and finite L'(i/)-semivaxiation with

respect to the tensor norm L9(v)Qy U{n) whenever either q = 2 and 1 ^ p ^ 2

or q > max{p, 2}. However there exist measures with infinite L'-semivariation with

respect to the tensor norm i ' ( ^ ) ® 7 -^(A4) for any 1 ^ q < 1. It is also shown that

the measure m(A) = XA has infinite L'-semivariation with respect to the tensor norm

1. INTRODUCTION

Let Z be a Banach space and let m : E —• Z be a vector measure defined on a
cr-algebra E of subsets of Q. We write \m\ for the variation of the measure

r * .. „ 1
|m|(/l) = sup< ^ J l m ^ n •^)[| : ^i pairwise disjoints , k G N >

and denote, for 1 ̂  p < oo, the p-variation of the measure

( * 1
||m||p = sup< (yj||m(>lj)||p)1'p : Aj pairwise disjoints , A; G N >.

"• j=i J

We also write ||m|| = sup/teE||m(i4)||, which is equivalent to the semivariation of the
vector measure m, that is

IH|«sup{|(z',m)|(n):||2'|| = l}.

Suppose that X, Y is a Banach spaces and let r be a norm on X ® Y such that
® y\\T ^ C \\x\\ \\y\\ for x € X, y G Y and denote XQ$TY the completion under such a
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norm. Given a vector measure m : E —»• Y defined on a tr-algebra E of subsets of fi, R.
Bartle (see [2, 7]) introduced the notion of X-semivariation of m in X ®T Y given by

Px{m,T,Y)(A) = sup{ ^ i j O m ^ n ^ )

for every A € E where the supremum is taken over ||XJ|| < 1, Aj pairwise disjoints sets
in E and A; € N. We shall denote

fa{m, T, Y) = sup 0x{m, T, Y)(A).

It is clear that

If X<QeY and X(QvY stand for the injective and projective tensor norms respec-
tively, then one always has

H | < Px{m,e,Y) ^ 0x{m,r,Y) ^ 0x(m,n,Y) < Hi!.

It is well-known and easy to see that actually /?x(m, e,Y) = ||m||.

In [7] Jefferies and Okada developed a theory of integration of A"-valued functions
with respect to Y-valued measures of bounded X-semivariation in the case of completely
separated tensor norms.

We shall be concerned with some interesting examples of norms coming from the
theory of vector-valued functions: Throughout the paper (£)i,Ei,/i) and (n2>E2,^) are
finite measure spaces, 1 4 p, q < oo and the Banach spaces will be either Y = V{n) or
X = L"{v). We define 7, and Ap the norms on Lq{u) ® Y and X ® L?{ii) identified as
subspace of Lq(y, Y) and W(n,X), that is to say

^Y = L"{v, Y), XQ^LUJA) = U{y., X).

In the case p = q the Lp(i/)-semivariation of LJ>(/x)-valued measures with respect to the
topology TP such that Lp(/x)<g>Tj>L

p(i/) becomes LP{^ x v) for the product measure was
studied in [8, 9].

In particular, if both X = Lq(y) and Y = V{n) then L9(i/)<gJApL»'(/j) and

7 ^ ( / i ) coincide with the spaces of measurable functions / : fij x Q2 —¥ R
such that a / r \ P/« \ I/P

^ \ f ( ) \ q d ( ) j d ( ) j c o
a / r \ P

^ \f(x,y)\qdu(y)jand

< oo.
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[3] Semivariation of vector measures 471

In this paper we shall try to understand better the difference between the classical

semivariation or variation of a L^/j)-valued measure m and the L'(i/)-semivariation with

respect to the norms Ap, j q and n.

Let us establish the main results of the paper. Our first result establishes the fol-

lowing descriptions of the L'-semivariation of ZAvalued measures with respect to the

projective tensor norm, where we denote IP = /^([0,1]) for 1 ̂  p ̂  oo.

THEOREM 1 . 1 . Let 1 ^ p,q ^ oo and let m : £ -> L"([0,1]) be a vector

measure. Then

(i) )9L/(m,7r,L')«|H|i l^p<cc .

(ii) j8LJ(m,7r,LP)«||m||i, 1 < p < oo.

(iii) 0 L , (m,7r ,Z , 1 )« |M| .

This result shows that L2-valued measures are of finite L2-semivariation on L2 (£)n I?

if and only if they are of finite variation.

It was noticed in [8] that any L2-valued measure is of bounded L2-semivariation with

respect to L2([0,1])<8>T2£
2([O,1]), in other words / ^ ( m , A2,12) « ||m||.

On the other hand /?L«(m,TT, Ll) = pLi(m, Ai.L1). Hence Theorem 1.1 shows that

Let us just point out that this implies

(1) 0L2(m,Ap,L
p)zi\\m\\,l4

due to the simple observation

(2) /?£,(„) (m, AP1, LP1 (/i)) < C / 3 L . M (m, A w ,

We shall present another alternative proof that cover all the cases and gives an alternative

proof of the known case p = q = 2 and extend (1) as follows.

THEOREM 1 . 2 . Let 1 ̂  p < oo and let m : E ->• ̂ ( [0 ,1]) be a vector measure.
Then

The question which now arises is whether or not there exist I^-valued measures

with pLq^)(m, Ap,U"^)) = oo if q ^ 2. In [7] examples of I/"([0, l])-valued measures

of infinite i /([0, l])-semivariation in ^([0,1])<8>T ^([0,1]) were obtained for the values

p / 2. For 1 < p < 2 the approach was much simpler than for p > 2 and the example in

this case relies on the existence of a non absolutely summing operator from £l —¥ P for

p > 2 (see [8, 9]).

We shall use the relationship between the tensor norms 7, and Ap to get other

examples. Recall that Minkowski's inequality gives l?{p,, Lq(v)) C Lq{y, LPin)) loxp^q
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and L"(v, V(n)) C LP{\x, U>(y)) for q^p. Hence

(3) fcM^I^M) ^ ^,M(m, Ap.L"̂ )), p < g,

(4) ^ M ( m , Ap,U>(fj,)) ^ ft.M(m,7,,#V)), 9 < P-

Also using general techniques, similar to those used in [8] one can show that

for 1 < p < co and 1 ^ q < 2 there exist I/(/x)-valued measures m such that

PLi(v)(?n,lq,-^(M)) = °°- This, in particular, using the estimate (3), shows the exis-

tence of measures for which /3L«(I/) (m, Ap, V{n)) = oo if 1 < q < 2,p < q, completing

and extending the case p = q.

THEOREM 1 . 3 . Let 1 s% p ̂  oo and let m : S ->• I^([0,1]) be a vector measure.

Then

(i) ^(771,72,/^) «||m||, Up<2.

(ii) ^L,(m,7,,LP) « ||m||, max{p,2} < 9.

This gives that any measure has /9£,?(m,7,,Z^) < 00 for q > p > 2. However in

the last section it is shown that the I^([0, l])-valued measure mp(A) = X/i has infinite

Lq([0, l])-semivariation in L»([0,1])®^I^([0,1]) for 9 < p.

2. BOUNDED X-SEMIVARIATION

We start by the following characterisation of the bounded A~-semivariation.

Taking into account that X®nY C X®TY, then (X(%)TY) can be regarded as a

subspace of the space of bounded operators C(Y, X*). Moreover ||u|| < IML

any u e (X®TY) , where the duality is given by

h ®yjj = 2_,(u[yj),xj).

THEOREM 2 . 1 . Let m : E -» Y be a vector measure. Then

0x(m,T, Y) « sup{||U o mil! : u G C(Y,X'), | |u | | ( X g T n . < l } .

PROOF: Let (XJ) be a bounded sequence in X and (Aj) be a sequence of pairwise

disjoint sets in E. Consider, for k G N, the A~-valued simple function <j> = ^XJXAJ and

denote }~

m{A) = 2_. xi ® m(-^ n -^i) e ^ ® ^-

Clearly this defines a new A~®ry-valued measure and one can rewrite

Px(m,T,Y) = sup{|^(g)Tm|| : <j> G S(X),\\4>\\*> <
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[5] Semivariation of vector measures 473

We now write the semivariation of <j> (§§T m using duality, that is to say

disjoint, | | u | | ( x g ;y ) . ^ 1 \,= sup j Yl\(u ° m( j4j) ' I j) | : (Ai) Pairwi

which, taking supremum over \\XJ\\ < 1, gives

Px{rn, T, Y) « sup j 5Z||« o m(A,)|| : (^)pairwise disjoint, I M I ^ g ^ . ^ 1 >

« sup{||U o mil, : u € C(Y,X'), | |«| | (xgry). £ l} . Q

Let us see the formulation of Theorem 2.1 in the case r = Ap or r = 7,.

It is well known that for 1 < p, q < 00 and 1/p' + 1/p = 1,1/q + \/q' = 1 and for

X, Y such that X* and Y* have the Radon-Nikodym property (see [6]) then

and

Now for each / € l/{n,X*) we can define the operators uj : W(fj) -* X* and

: X -¥ i/ (n) given by

and

Of course («/)* = u/ and (u/)* = vj ii X is reflexive.

THEOREM 2 . 2 . Let Kp,q< 00, X = Lq{u) andY = W(n). Ifm : E

is a vector measure fcien

(5) pLHl/)(m,Ap,I/(fi)) =sup{||U/om||i : H / I L P - ^ ^ M ) ^ l},

(6) pLo(u){m,lq,U'{n)) =sup{||u9om||i : \\9\\L<,'(l/tIyM) < l } .

P R O O F : In the case Y = L?{ii) and X = Lq{v) for 1 < q,p < 00 the elements

u : /^(/i) —> L^ (v) such that u € ( ^ ( ^ ( S ^ ^ " ( M ) ) c a n D e s e e n as u = u/ for some

/ € 1/'(/x, L*\u)), that is u : ^ ( / i ) -> i ' ( i ' ) is given by

u(<P)(y)= f f{x,y)<S>{x)dii{x).
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Then (6) follows from Theorem 2.1 in this case.

Similarly the elements u : L?{ii) -+ L<{v) such that u € (Lq(v)(&^Lp(n)\ can be

seen as u = vg for some g € L9" {y, I?'(/x)) and now

u(ip)(y) = (g,ip) = / g{y,x)ip(x)dfi(x).
Jiii

Again (6) follows from Theorem 2.1. D

3. P R O O F OF THE MAIN THEOREMS

We use first the characterisation in Theorem 2.1 to get the following corollaries.

COROLLARY 3 . 1 . Let m : £ —»• Y be a vector measure and X a Banach space.

Then

We use the notation Hp(X, Y) for the space of p-summing operators from X into Y

and write TTP(U) for the p-summing norm. The reader is referred to [5] for the basics in
the theory of summing operators.

COROLLARY 3 . 2 . Let Y be a Grothendieck space, that is, U^Y, H) = C(Y, H)
for any Hilbert space H. Then

(7) ^ ( m , 7 r , y ) w | | m | | .

P R O O F : Note that X)m(-^>) ' s a n unconditionally convergent series in Y for any

sequence of pairwise disjoint sets Aj. Now for any operator from u : Y —» H one

has 2~I u (m(-^i ) ) ^ KG \\U\\ llmll i where KQ is the Grothendieck constant. Now use

Corollary 3.1. D

P R O O F OF T H E O R E M 1.1: (i) Let Y — V and X = 1/ then choosing u = Id :

D> ->• (Z/)*, one concludes that | |uom| | i = ||m||i. This shows ^Lv){m,i^,l?) = \\m\\i

(ii) follows from the following observation: If X* is isomorphic to a complemented

subspace of Y then /?x(m, TT, Y) « ||m||i.

Indeed, assume id : Y -¥ Y factors through X* as id = Ui o u2 where u2 : Y -> X*

and u\ : X* -+ Y are bounded operators. Now observe that ||m||i ^ ||ui|| ||u2 ° m||x and

use Corollary 3.1.

Now use that the space Rad is complemented in ^([0,1]) and isomorphic to I? (see

[5, Theorem 1.12]) and therefore to L2, to conclude that

(8) fo (m, K, L"([0,1])) « ||m||i, 1 < p < oo.

(iii) follows from Corollary 3.2. D

We now recall a lemma that we shall need in the sequel.
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LEMMA 3 . 3 . (i) Suppose that 1 < q < oo and let Y bea Banach space such that

Y' € RNP. Ifu:Y-> L<(v) belongs to ( W < g > 7 , r ) * then »,(«) < I M I ( t , M § ^ r

(ii) Let 1 < p < oo and let X be a Banach space such that X* e RNP. If

u : IS(n) -> X* belongs to ( j f ® A p ^ ( / i ) ) * then *y(«') ^ H«1l(xgApWM)-

PROOF: (i) It is well known (see [5, Example 2.11]) that if g 6 L"'{v,Y*) then

vg : Y -*• L*{v) given by vg{y) = (g,y) is g'-summing and 7iy(?;9) ^ ||5lL«'(,/,y)- Now

use that, under the assumptions, [L9(u)^y Yj = L*{v, Y*) and u = vg for certain

(ii) Note that u = uf for some / G l/(n,X*). Hence v} = u* : X** -» i / ( p ) is

p'-summing and v ( u * ) < ll/llzy^,x-) = llull(£,'(^)®7,r)-- ^

P R O O F OF T H E O R E M 1.2: The case p = 1 is included in (iii) Theorem 1.1.

Assume now 1 < p < oo and let m : E —• IP be a vector measure. Given u : I ^

-> L2 with u e (•t'2(S*A ^ p ) w e c a n u s e (") m Lemma 3.3 to conclude that there exist

/ € 1/ ([0,1], L2) such that v} : L2 -> 1/ given by </> -> / ^ <l>{y)f{x, y)dy is p'-summing

and u = Uf = (v/)*. Hence, using [5, Theorem 2.21], one has that (v/)' = u : V -¥ L2

is 1-summing. Therefore

m\\ < C||/|| lyao1]l,.)||in||. Q

Let us mention another useful lemma.

LEMMA 3 . 4 . ([1, Proposition 6]) Suppose that Y is a Banach space of finite
cotype r and let J ^ yj be an unconditionally convergent series in Y.

(i) If r = 2 then there exist (Q^) € P and a sequence in (j/J) c Y such that
yj = oijy'j and

IIVII=1

(ii) Ifr>2 then for any q > r there exist (a,-) 6 lq and a sequence in (y'j) C Y
such that Vi = a,?/' and

PROOF: (i) Let T : Co -4 K such that T(ej) = j / ; . Note that £(co,F) = n2(co, F)
for any cotype 2 space F . Now apply [5, Lemma 2.23] to the sequence (e,) which satisfies
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s u Pi 5Zj|(ej '2) | : IMI'1 = 11 to conclude that T(ej) = yj = cijy'j with the desired
properties.

(ii) Repeat the proof using now L(c$, Y) = II,(co, Y) for any q > r (see [5, Theorem
11.14]). D

PROOF OF THEOREM 1.3: Note that Theorem 1.2 and (4) give

(9)

To obtain (ii) we simply use the following more general result.

THEOREM 3 . 5 . IfY hascotyper< oo and Y* has the RNP then

(10) fe(l/)(m, 72, Y) « ||m||, r = 2.

(U) / W ) ( m , 7«. ̂ ) « ||m||, g > r > 2.

PROOF: We only prove (11). The other is exactly the same.

Suppose that (Aj) is a sequence of pairwise disjoint sets. Since m(Aj) is uncondi-
tionally convergent in Y, Lemma 3.4 implies that there exist (a7) € £q and a sequence in
(yj) C Y with m(Aj) = OjVj and

On the other hand if u 6 (L9(i/)®y)*, using (i) in Lemma 3.3, one has u e
Therefore

D

4. MEASURES OF INFINITE X-SEMIVARIATION

We shall present now some necessary conditions to have bounded X-semivariation.

PROPOSITION 4 . 1 . (i) Assume that X%TY is of 6nite cotype q. Ifm:T,
Y be a vector measure then
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for some constant Cq independent of m.

In particular, if X has finite cotype q and 1 < p < oo then

||m||max{,,2j,} ^ C0x(m, Ap,Lp(/x)).

(ii) Let 1 ^ q < oo, iet v be a finite measure for which there exists a sequence of

pairwise disjoint sets with v(Bj) > 0 and let m : S —> Y be a vector measure. Then

\\m\\, <<?,&,,(„)(m, 7,, K)

PROOF: (i) Suppose that (ij) is a sequence in the unit ball of X and a sequence
of pairwise disjoint sets Aj. Hence, for 0 ^ t ^ 1, one has

where r, stands for the Rademacher sequence. Now integrate over [0,1] and use the
cotype estimate to get

1/9

Taking the sup over (XJ) and (Aj) one obtains the desired result.
Note that LP^X) has cotype equals max{p,q, 2}.

k

(ii) Take Xj = {XBj)/{^{Bj)1^9), <j> = 51 XJX^J f°r some sequence of pairwise dis-

joint sets in £ and notice that, for any i e S ,

This gives the result. 0

COROLLARY 4 . 2 . Let Y be infinite dimensional Banach space, 1 < q < 2 and

v be a finite measure for which there exists a sequence of pairwise disjoint sets with
v{En) > 0.

(i) There exist Y-valued measure such that /?£,«(„) (m, 7,, Y) = 00.
(ii) If V{n) is infinite dimensional then there exist U^-valued measures m

such that PLIM (m, Ap, LP(y)) — 00 for 1 ^ q < 2 and g > p.

PROOF: (i) Select an unconditionally convergent series (yn) with Ylh Il2/*ll' = °°
(this can be done for 1 < q < 2, see, for instance [5]).

Now we define the measure over N given by m({k}) = y*. Clearly ||m||, = 00 and
therefore /3t«(i/)(m,7,,y) = 00 from (ii) in Proposition 4.1.
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(ii) follows from (i) and the estimate (3). D

A very important example to analyse is mp : E —• IJ'(fi) given by mp(A) = \A- We
shall see that these measures are enough to produce examples with /?£»(„) (m, 7,,LJ>(/x))
= oo for q < p.

THEOREM 4 . 3 . Let /i(fii) < oo, v{Q2) < oo, X = L"{v) and Y = IS(ji). Then

the Lp(/x)-vaiued measure mp(A) = \A has finite L'(i/)-semivariation in Lq(i

if and only if V* (v, l/(n))Q L1 (n, L* [y)).

PROOF: Let g : flj x fi2 -* 1 be such that

Or { r i \^^ \ ^^

( / \9(y,x)\pdfx(x)) du{y)) < oo.
fl2 \J(ll J /

Note that the operator vg : I^(M) -> i*\v) becomes
r

vg(ip)(y)= g{y,x)ip{x)dn(x),

hence, we have vg o mp{A) = JAg(y,x)dfj,(x) for all A € £i. This shows that vg o mp is
the Z/ (i/)-valued measure with Radon-Nikodym derivative g(y,.). Therefore

= / (f
Now Theorem 2.2 shows that mp is of bounded L'(i/)-semivariation in Lq(i>)(Q L?{n)

if and only if there exists C > 0 such that

That is to say L"1 {v, 1/ (/x)) C L1 (/x, L*{y)).

COROLLARY 4 . 4 . Let 1 < p < oo and mp : E ->• Z/(/x) given
Tien 0L,[l/)(mp,'yq,L

p(iJ,)) < oo for p ^ q.

PROOF: Note that for p < q one obviously has

L«{v,l/(»)) C iS&tfM^L'fal/iv)) C L1^,^^)).

Apply now Theorem 4.3.

Actually the previous result is also a consequence of the following general fact.

PROPOSITION 4 . 5 . Let 1 ^ p < oo, X a Banaci space and let m : E
be a positive vector measure, that is m(i4) ^ 0 for aU J4 € S. Then

In particular, ifm is positive and p ^ q then
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PROOF: It is well-known that (L"(/x, X))* = (I/t{fj)®Xy can be identified with the

space of X'-valued measures in V ^ / J . X * ) (see [4]). In particular, if u €

C ! ( / / ( / / ) , X*) (see for instance [3]) there exists <j> 6 V'(//) such that

^ IMI(L*0i)§x)- a n d satisfies that

[
Jn
[
Jn

for any positive function xp € L?{n)- Therefore, if IMI^p^gx)- = 1 then

I2W

Hence \\uf o m||i < ||m||. Apply now Theorem 2.2.

In the case X = Lq(u) and p < q (4) allows us to conclude the proof. D

We shall now see that the range of values in Theorem 4.3 is sharp.

LEMMA 4 . 6 . Ifp>q then there exists f : [0,1]2 -^ R+ such that

Jo \Jo
dx < oo

Jo wo /

and

(J f(x,y)"dx\ "dy = 00.

PROOF: Denoting 0 = p/q > 1 and g(x,y) = f(x,y)q it suffices to find g : [0,1]2

-• R+ such that

/ ( / 9(x> y)dy I dx < 00

and

fx (r1 \1/p

Jo \Jo /
Recall that the Hardy operator T(<t>)(x) = (1/x) f* <j>(y)dy is bounded on L^([0,1]) for

/? > 1 and define
g(x,y) = -X[o,x)(y)<i>(y)

for a function 0 G ^([0 ,1]) to be chosen later.

Clearly
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On the other hand
l / r1 \1/p r1 / rl

 ^T\

Now select 0(j/) = l/(y1/0)log(l/y) to have 0 € £"([0,1]) and

dy

COROLLARY 4 . 7 . For g < p t ie IS([0,1])-valued measure mp(A) = \A has
infinite Lq([0, l])-semivariation in L«([0, l])<8yqW([0,1]).
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