ON HARMONIC BLOCH SPACES IN THE UNIT BALL OF \mathbb{C}^{n}

SH. CHEN and X. WANG ${ }^{\boxtimes}$

(Received 9 October 2010)

Abstract

In this paper, our main aim is to discuss the properties of harmonic mappings in the unit ball \mathbb{B}^{n}. First, we characterize the harmonic Bloch spaces and the little harmonic Bloch spaces from \mathbb{B}^{n} to \mathbb{C} in terms of weighted Lipschitz functions. Then we prove the existence of a Landau-Bloch constant for a class of vector-valued harmonic Bloch mappings from \mathbb{B}^{n} to \mathbb{C}^{n}.

2010 Mathematics subject classification: primary 30C65; secondary 30C45, 30C20.
Keywords and phrases: harmonic Bloch space, little harmonic Bloch space, weighted Lipschitz function, characterization.

1. Introduction and preliminaries

Let \mathbb{C} denote the complex plane and let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Also we let $\mathbb{C}^{n}=\{z=$ $\left.\left(z_{1}, \ldots, z_{n}\right): z_{1}, \ldots, z_{n} \in \mathbb{C}\right\}$ and for $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n}$,

$$
\mathbb{B}^{n}(a, r)=\left\{z \in \mathbb{C}^{n}:|z-a|=\sqrt{\sum_{k=1}^{n}\left|z_{k}-a_{k}\right|^{2}}<r\right\} .
$$

Especially, we use \mathbb{B}^{n} to denote the unit ball $\mathbb{B}^{n}(0,1)$ and for $a \in \mathbb{R}^{n}$,

$$
\mathbb{B}_{R}^{n}(a, r)=\left\{x \in \mathbb{R}^{n}:|x-a|=\sqrt{\sum_{k=1}^{n}\left|x_{k}-a_{k}\right|^{2}}<r\right\}
$$

A function $f=u+i v$ of an open subset $\Omega \subset \mathbb{C}^{n}$ into \mathbb{C} is called a harmonic mapping if both u and v are real harmonic in Ω, that is, $\Delta u=0$ and $\Delta v=0$, where Δ represents the complex Laplacian operator (see [10, 15-17])

$$
\Delta=4 \sum_{k=1}^{n} \frac{\partial^{2}}{\partial z_{k} \partial \bar{z}_{k}}=\sum_{k=1}^{n}\left(\frac{\partial^{2}}{\partial x_{k}^{2}}+\frac{\partial^{2}}{\partial y_{k}^{2}}\right)
$$

and for each $k \in\{1, \ldots, n\}, z_{k}=x_{k}+i y_{k}$.

[^0](C) 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

A planar harmonic mapping f in \mathbb{D} is called a harmonic Bloch mapping if and only if the Lipschitz number

$$
\beta_{f}=\sup _{z, w \in \mathbb{D}, z \neq w} \frac{|f(z)-f(w)|}{\rho(z, w)}<+\infty
$$

where

$$
\rho(z, w)=\frac{1}{2} \log \left(\frac{1+\left|\frac{z-w}{1-\bar{z} w}\right|}{1-\left|\frac{z-w}{1-\bar{z} w}\right|}\right)=\operatorname{arctanh}\left|\frac{z-w}{1-\bar{z} w}\right|
$$

denotes the hyperbolic distance between z and w in \mathbb{D}. In [7], Colonna proved that

$$
\beta_{f}=\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left[\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right|\right] \quad \text { (see also [3-6]). }
$$

Definition 1.1. The harmonic Bloch space $\mathcal{H B}$ consists of all harmonic mappings f of \mathbb{B}^{n} into \mathbb{C} such that

$$
\|f\|_{\mathcal{H B}}=\sup _{z \in \mathbb{B}^{n}}\left\{\left(1-|z|^{2}\right)[|\nabla f(z)|+|\nabla \bar{f}(z)|]\right\}<\infty
$$

where $\nabla f=\left(\partial f / \partial z_{1}, \ldots, \partial f / \partial z_{n}\right)$ denotes the complex gradient of f and $\nabla \bar{f}=$ $\left(\partial f / \partial \bar{z}_{1}, \ldots, \partial f / \partial \bar{z}_{n}\right)$.
Definition 1.2. The little harmonic Bloch space \mathcal{H}_{0} consists of all mappings $f \in \mathcal{H B}$ such that

$$
\lim _{|z| \rightarrow 1-}\left\{\left(1-|z|^{2}\right)[|\nabla f(z)|+|\nabla \bar{f}(z)|]\right\}=0
$$

For any $z \neq w \in \mathbb{B}^{n}$, let

$$
\mathcal{L}_{f}(z, w)=\frac{\left(1-|z|^{2}\right)^{1 / 2}\left(1-|w|^{2}\right)^{1 / 2}|f(z)-f(w)|}{|z-w|}
$$

denote the weighted Lipschitz function, where $f: \mathbb{B}^{n} \rightarrow \mathbb{C}$ is a harmonic mapping. The relationship between $\mathcal{L}_{f}(z, w)$ and the Bloch space (or the little Bloch space) has attracted much attention (see [7, 9, 13, 17]). Recently, many authors have also discussed the relationship between Lipschitz continuity and harmonic quasi-conformal (or quasi-regular) mappings in \mathbb{B}^{n} (see $[1,2,11,12,15]$). In this paper, we use the weighted Lipschitz functions to characterize the harmonic Bloch spaces and the little harmonic Bloch spaces in \mathbb{B}^{n}. Our main results are Theorems 2.2 and 2.4. Their proofs will be presented in Section 2.

Let $f=\left(f_{1}, \ldots, f_{n}\right)$ be a vector-valued harmonic mapping from \mathbb{B}^{n} into \mathbb{C}^{n}, that is, for each $i \in\{1,2, \ldots, n\}, f_{i}$ is a harmonic mapping from \mathbb{B}^{n} into \mathbb{C}. Let $H\left(\mathbb{B}^{n}\right)$ denote all harmonic mappings of \mathbb{B}^{n} into \mathbb{C}^{n}. For any $f=\left(f_{1}, \ldots, f_{n}\right) \in H\left(\mathbb{B}^{n}\right)$,
denote by

$$
f_{z}=\left(\nabla f_{1}, \ldots, \nabla f_{n}\right)^{T}
$$

the matrix formed by the complex gradients $\nabla f_{1}, \ldots, \nabla f_{n}$, where T denotes matrix transposition, and let

$$
f_{\bar{z}}=\left(\nabla \bar{f}_{1}, \ldots, \nabla \bar{f}_{n}\right)^{T}
$$

For an $n \times n$ matrix A, we introduce the operator norm

$$
|A|=\sup _{x \neq 0} \frac{|A x|}{|x|}=\max \left\{|A \theta|: \theta \in \partial \mathbb{B}^{n}\right\} .
$$

Here and in the following, we always treat any $z \in \mathbb{C}^{n}$ as a column vector, that is, $z=\left(z_{1}, \ldots, z_{n}\right)^{T}$, unless otherwise stated.

Definition 1.3. The vector-valued harmonic Bloch space $\mathcal{H} \mathcal{B}(n)$ consists of all mappings $f \in H\left(\mathbb{B}^{n}\right)$ such that

$$
\|f\|_{\mathcal{H B}(n)}=\sup _{z \in \mathbb{B}^{n}}\left\{\left(1-|z|^{2}\right)\left[\left|f_{z}(z)\right|+\left|f_{\bar{z}}(z)\right|\right]\right\}<\infty .
$$

In Section 3, we prove the existence of the Landau constant for a class of mappings in $\mathcal{H B}(n)$, which is stated as Theorem 3.6.

2. The relationship between weighted Lipschitz functions and harmonic Bloch spaces

We shall make use of the group consisting of all biholomorphic mappings of \mathbb{B}^{n} onto itself, which is denoted by $\operatorname{Aut}\left(\mathbb{B}^{n}\right)$. The following results are from [16].
(i) For any $a \in \mathbb{B}^{n}$, let

$$
\phi_{a}(z)=\frac{a-P_{a} z-\left(1-|a|^{2}\right)^{1 / 2} Q_{a} z}{1-\langle z, a\rangle}
$$

Then $\phi_{a} \in \operatorname{Aut}\left(\mathbb{B}^{n}\right)$, where

$$
\langle z, a\rangle=z_{1} \bar{a}_{1}+\cdots+z_{n} \bar{a}_{n}, \quad P_{a} z=\frac{a\langle z, a\rangle}{\langle a, a\rangle}
$$

and $Q_{a} z=z-P_{a} z$.
(ii) For any ϕ_{a},

$$
\phi_{a}(0)-a=\phi_{a}(a)=0, \quad \phi_{a}=\phi_{a}^{-1}
$$

and

$$
\begin{equation*}
1-\left|\phi_{a}(z)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|a|^{2}\right)}{|1-\langle z, a\rangle|^{2}} \tag{2.1}
\end{equation*}
$$

By using similar reasoning as in the proof of [15, Lemma 2.5], we have the following lemma.

Lemma 2.1. Suppose that $f: \overline{\mathbb{B}}_{R}^{n}(a, r) \rightarrow \mathbb{R}$ is a continuous mapping in $\overline{\mathbb{B}}_{R}^{n}(a, r)$ and harmonic in $\mathbb{B}_{R}^{n}(a, r)$. Then

$$
|\nabla f(a)| \leq \frac{\sqrt{n}}{V(n) r^{n}} \int_{\partial \mathbb{B}_{R}^{n}(a, r)}|f(a)-f(y)| d \sigma(y),
$$

where d σ denotes the surface measure on $\partial \mathbb{B}_{R}^{n}(a, r)$ and $V(n)$ the volume of the unit ball in \mathbb{R}^{n}.

Proof. Without loss of generality, we may assume that $a=0$ and $f(0)=0$. Let

$$
K(x, y)=\frac{r^{2}-|x|^{2}}{n r V(n)|x-y|^{n}} .
$$

Then

$$
f(x)=\int_{\partial \mathbb{B}_{R}^{n}(0, r)} K(x, t) f(t) d \sigma(t), \quad x \in \mathbb{B}_{R}^{n}(0, r),
$$

where $d \sigma$ denotes the surface measure on $\partial \mathbb{B}_{R}^{n}(0, r)$. Calculations lead to

$$
\frac{\partial}{\partial x_{i}} K(x, t)=\frac{1}{n r V(n)}\left[\frac{-2 x_{i}}{|x-t|^{n}}-\frac{n\left(r^{2}-|x|^{2}\right)\left(x_{i}-t_{i}\right)}{|x-t|^{n+2}}\right]
$$

which yields

$$
\frac{\partial}{\partial x_{i}} K(0, t)=\frac{t_{i}}{V(n) r^{n+1}},
$$

whence

$$
\begin{aligned}
|\nabla f(0)| & =\left[\sum_{i=1}^{n}\left|\int_{\partial \mathbb{B}_{R}^{n}(0, r)} \frac{\partial}{\partial x_{i}} K(0, t) f(t) d \sigma(t)\right|^{2}\right]^{1 / 2} \\
& \leq \sum_{i=1}^{n}\left|\int_{\partial \mathbb{B}_{R}^{n}(0, r)} \frac{\partial}{\partial x_{i}} K(0, t) f(t) d \sigma(t)\right| \\
& \leq \int_{\partial \mathbb{B}_{R}^{n}(0, r)}|f(t)| \sum_{i=1}^{n}\left|\frac{\partial}{\partial x_{i}} K(0, t)\right| d \sigma(t) \\
& \leq \sqrt{n} \int_{\partial \mathbb{B}_{R}^{n}(0, r)}|f(t)|\left(\sum_{i=1}^{n}\left|\frac{\partial}{\partial x_{i}} K(0, t)\right|^{2}\right)^{1 / 2} d \sigma(t) \\
& =\frac{\sqrt{n}}{V(n) r^{n}} \int_{\partial \mathbb{B}_{R}^{n}(0, r)}|f(t)| d \sigma(t) .
\end{aligned}
$$

The proof of the lemma is complete.
Theorem 2.2. Let f be a harmonic mapping in \mathbb{B}^{n}. Then $f \in \mathcal{H B}$ if and only if

$$
\sup _{z, w \in \mathbb{B}^{n}, z \neq w} \mathcal{L}_{f}(z, w)<+\infty .
$$

Proof. First we prove the sufficiency. Let $f(z)=u(z)+i v(z)$, where u and v are real harmonic functions. Fix $r \in(0,1)$. Then by (2.1),

$$
\frac{\left|\phi_{a}(z)\right|}{|z-a|}=\sqrt{\frac{|z-a|^{2}+|\langle z, a\rangle|^{2}-|z|^{2}|a|^{2}}{|z-a|^{2}|1-\langle z, a\rangle|^{2}}} \leq \frac{1}{|1-\langle z, a\rangle|},
$$

which gives

$$
\begin{equation*}
\left|\phi_{a}(z)\right| \leq \frac{|z-a|}{|1-\langle z, a\rangle|} \leq \frac{|z-a|}{1-|a|} \tag{2.2}
\end{equation*}
$$

whence for any $a \in \mathbb{B}^{n}$,

$$
\mathbb{B}^{n}\left(a, \frac{r\left(1-|a|^{2}\right)}{2}\right) \subset E(a, r),
$$

where

$$
E(a, r)=\left\{z \in \mathbb{B}^{n}:\left|\phi_{a}(z)\right|<r\right\}
$$

By Lemma 2.1,

$$
\begin{aligned}
\left(1-|z|^{2}\right)|\nabla u(z)| & \leq \frac{\sqrt{2 n}\left(1-|z|^{2}\right)}{V(2 n)\left[\frac{r\left(1-|z|^{2}\right)}{2}\right]^{2 n}} \int_{\partial \mathbb{B}^{n}\left(z, r\left(1-|z|^{2}\right) / 2\right)}|u(\zeta)-u(z)| d \sigma(\zeta) \\
& =M(|z|, r) \int_{\partial \mathbb{B}^{n}\left(z, r\left(1-|z|^{2}\right) / 2\right)}|u(\zeta)-u(z)| d \sigma(\zeta)
\end{aligned}
$$

where $V(2 n)$ denotes the volume of the unit ball in $\mathbb{R}^{2 n}$ and

$$
M(|z|, r)=\frac{2^{2 n} \sqrt{2 n}}{V(2 n)\left(1-|z|^{2}\right)^{2 n-1} r^{2 n}}
$$

Similarly, we obtain

$$
\left(1-|z|^{2}\right)|\nabla v(z)| \leq M(|z|, r) \int_{\partial \mathbb{B}^{n}\left(z, r\left(1-|z|^{2}\right) / 2\right)}|v(\zeta)-v(z)| d \sigma(\zeta)
$$

Cauchy's inequality and chain rules of derivation show that

$$
|\nabla f(z)| \leq \frac{1}{2}(|\nabla u(z)|+|\nabla v(z)|) \quad \text { and } \quad|\nabla \bar{f}(z)| \leq \frac{1}{2}(|\nabla u(z)|+|\nabla v(z)|)
$$

which implies that

$$
\begin{aligned}
\left(1-|z|^{2}\right)(|\nabla f(z)|+|\nabla \bar{f}(z)|) \leq & \left(1-|z|^{2}\right)(|\nabla u(z)|+|\nabla v(z)|) \\
\leq & M(|z|, r) \int_{\partial \mathbb{B}^{n}\left(z, r\left(1-|z|^{2}\right) / 2\right)}(|u(\zeta)-u(z)| \\
& +|v(\zeta)-v(z)|) d \sigma(\zeta) \\
\leq & \sqrt{2} M(|z|, r) M_{1} \int_{\partial \mathbb{B}^{n}\left(z, r\left(1-|z|^{2}\right) / 2\right)} d \sigma(\zeta) \\
= & \frac{8 M_{1} n^{3 / 2}}{r},
\end{aligned}
$$

where $M_{1}=\sup \{|f(z)-f(w)|: w \in E(z, r)\}$. Hence for any $w \in \mathbb{B}^{n}(z, r(1-$ $\left.\left.|z|^{2}\right) / 2\right) \subset E(z, r)$, it follows from (2.2) that

$$
\begin{aligned}
\frac{\left(1-|z|^{2}\right)^{1 / 2}\left(1-|w|^{2}\right)^{1 / 2}}{|z-w|} & =\frac{\left(1-|z|^{2}\right)^{1 / 2}\left(1-|w|^{2}\right)^{1 / 2}}{|1-\langle z, w\rangle|} \cdot \frac{|1-\langle z, w\rangle|}{|z-w|} \\
& =\sqrt{1-\left|\phi_{z}(w)\right|^{2}} \cdot \frac{|1-\langle z, w\rangle|}{|z-w|} \\
& \geq \sqrt{1-r^{2}} \cdot \frac{|1-\langle z, w\rangle|}{|z-w|} \\
& \geq \frac{\sqrt{1-r^{2}}}{r} .
\end{aligned}
$$

Therefore, there exists a positive constant $M_{2}(n, r)$ such that

$$
\left(1-|z|^{2}\right)[|\nabla f(z)|+|\nabla \bar{f}(z)|] \leq M_{2}(n, r) \sup _{w \in E(z, r), w \neq z} \mathcal{L}_{f}(z, w)
$$

from which we see that $f \in \mathcal{H B}$.
We now prove the necessity. For any $z \neq w \in \mathbb{B}^{n}$,

$$
\begin{aligned}
&|f(z)-f(w)|=\left|\int_{0}^{1} \frac{d f}{d t}(z t+(1-t) w) d t\right| \\
&= \left\lvert\, \sum_{k=1}^{n}\left(z_{k}-w_{k}\right) \int_{0}^{1} \frac{d f}{d z_{k}}(z t+(1-t) w) d t\right. \\
& \left.+\sum_{k=1}^{n}\left(\bar{z}_{k}-\bar{w}_{k}\right) \int_{0}^{1} \frac{d f}{d \bar{z}_{k}}(z t+(1-t) w) d t \right\rvert\, \\
& \leq \sum_{k=1}^{n}\left|z_{k}-w_{k}\right| \cdot\left|\int_{0}^{1} \frac{d f}{d z_{k}}(z t+(1-t) w) d t\right| \\
&+\sum_{k=1}^{n}\left|\bar{z}_{k}-\bar{w}_{k}\right| \cdot\left|\int_{0}^{1} \frac{d f}{d \bar{z}_{k}}(z t+(1-t) w) d t\right| \\
& \leq\left(\sum_{k=1}^{n}\left|z_{k}-w_{k}\right|^{2}\right)^{1 / 2}\left\{\left[\sum_{k=1}^{n}\left(\int_{0}^{1}\left|\frac{\partial f}{\partial z_{k}}(z t+(1-t) w)\right| d t\right)^{2}\right]^{1 / 2}\right. \\
&\left.+\left[\sum_{k=1}^{n}\left(\int_{0}^{1}\left|\frac{\partial f}{\partial \bar{z}_{k}}(z t+(1-t) w)\right| d t\right)^{2}\right]^{1 / 2}\right\} \\
& \leq \sqrt{n}|z-w|\left[\int_{0}^{1}|\nabla f(t z+(1-t) w)| d t\right. \\
&\left.+\int_{0}^{1}|\nabla \bar{f}(t z+(1-t) w)| d t\right]
\end{aligned}
$$

from which we infer that

$$
\begin{aligned}
\frac{|f(z)-f(w)|}{|z-w|} & \leq \sqrt{n} \int_{0}^{1} \frac{[|\nabla f(\psi(t))|+|\nabla \bar{f}(\psi(t))|]\left(1-|\psi(t)|^{2}\right)}{1-|\psi(t)|^{2}} d t \\
& \leq \sqrt{n}\|f\|_{\mathcal{H B}} \int_{0}^{1} \frac{d t}{1-|\psi(t)|^{2}} \\
& \leq \sqrt{n}\|f\|_{\mathcal{H B}} \int_{0}^{1} \frac{d t}{[(1-t)(1-|z|)]^{1 / 2}[t(1-|w|)]^{1 / 2}} \\
& =\frac{\pi \sqrt{n}\|f\|_{\mathcal{H B}}}{(1-|z|)^{1 / 2}(1-|w|)^{1 / 2}},
\end{aligned}
$$

where $\psi(t)=t z+(1-t) w$. Thus

$$
\begin{equation*}
\sup _{z, w \in \mathbb{B}^{n}, z \neq w} \mathcal{L}_{f}(z, w) \leq 2 \pi \sqrt{n}\|f\|_{\mathcal{H B}} . \tag{2.3}
\end{equation*}
$$

Hence the proof is complete.
REMARK 2.3. When $n=1$ (respectively $n=1$ and $f_{\bar{z}} \equiv 0$), Theorem 2.2 coincides with [7, Theorem 1] (respectively [9, Theorem 3]).

THEOREM 2.4. Let f be a harmonic mapping in \mathbb{B}^{n}. Then $f \in \mathcal{H} \mathcal{B}_{0}$ if and only if

$$
\begin{equation*}
\lim _{|z| \rightarrow 1-} \sup _{z, w \in \mathbb{B}^{n}, z \neq w} \mathcal{L}_{f}(z, w)=0 \tag{2.4}
\end{equation*}
$$

Proof. In order to prove the sufficiency, we assume that (2.4) holds. Then for any $\varepsilon>0$, there exists $\delta \in(0,1)$ such that

$$
\sup _{z, w \in \mathbb{B}^{n}, z \neq w} \mathcal{L}_{f}(z, w)<\varepsilon,
$$

whenever $\delta<|z|<1$. Similar arguments to the proof of the sufficiency of Theorem 2.2 show that

$$
\begin{aligned}
\left(1-|z|^{2}\right)[|\nabla f(z)|+|\nabla \bar{f}(z)|] & \leq \frac{\sqrt{2} M(|z|, r) r}{\sqrt{1-r^{2}}} \int_{\partial \mathbb{B}^{n}\left(z, r\left(1-|z|^{2}\right) / 2\right)} \mathcal{L}_{f}(z, w) d \sigma(w) \\
& \leq \frac{\sqrt{2} M(|z|, r) r}{\sqrt{1-r^{2}}} \varepsilon \int_{\partial \mathbb{B}^{n}\left(z, r\left(1-|z|^{2}\right) / 2\right)} d \sigma(w) \\
& =\frac{8 n^{3 / 2}}{\sqrt{1-r^{2}}} \varepsilon
\end{aligned}
$$

whenever $\delta<|z|<1$. Hence

$$
\lim _{|z| \rightarrow 1-}\left(1-|z|^{2}\right)[|\nabla f(z)|+|\nabla \bar{f}(z)|]=0 .
$$

We now prove the necessity. For $r \in(0,1)$, let $f_{r}(z)=f(r z)$. Similar reasoning to the proof of (2.3) shows that there exist positive constants M_{3} and M_{4} such that for any $z \neq w \in \mathbb{B}^{n}$,

$$
\left(1-|z|^{2}\right)^{1 / 2}\left(1-|w|^{2}\right)^{1 / 2} \frac{\left|\left(f(z)-f_{r}(z)\right)-\left(f(w)-f_{r}(w)\right)\right|}{|z-w|} \leq M_{3}\left\|f-f_{r}\right\|_{\mathcal{H B}}
$$

and

$$
\begin{aligned}
(1- & \left.|z|^{2}\right)^{1 / 2}\left(1-|w|^{2}\right)^{1 / 2} \frac{\left|f_{r}(z)-f_{r}(w)\right|}{|z-w|} \\
& =\frac{r\left(1-|z|^{2}\right)^{1 / 2}\left(1-|w|^{2}\right)^{1 / 2}}{\left(1-|z r|^{2}\right)^{1 / 2}\left(1-|w r|^{2}\right)^{1 / 2}}\left(1-|z r|^{2}\right)^{1 / 2}\left(1-|w r|^{2}\right)^{1 / 2} \frac{\left|f_{r}(z)-f_{r}(w)\right|}{|r z-r w|} \\
& \leq \frac{M_{4} r\left(1-|z|^{2}\right)^{1 / 2}}{\left(1-r^{2}\right)}\|f\|_{\mathcal{H B}} .
\end{aligned}
$$

These yield that

$$
\sup _{z, w \in \mathbb{B}^{n}, z \neq w} \mathcal{L}_{f}(z, w) \leq M_{3}\left\|f-f_{r}\right\|_{\mathcal{H B}}+\frac{M_{4} r\left(1-|z|^{2}\right)^{1 / 2}}{\left(1-r^{2}\right)}\|f\|_{\mathcal{H B}}
$$

In the above inequality, by letting $|z| \rightarrow 1-$ and then $r \rightarrow 1-$, we obtain the desired result.

3. Landau constant for a class of harmonic Bloch mappings

We introduce a version of the Schwarz lemma for planar harmonic mappings, which is from [8].

Lemma 3.1 [8, Lemma]. Let f be a harmonic mapping of \mathbb{D} such that $f(0)=0$ and $f(\mathbb{D}) \subset \mathbb{D}$. Then

$$
|f(z)| \leq \frac{4}{\pi} \arctan |z| \leq \frac{4}{\pi}|z| \quad \text { for } z \in \mathbb{D} .
$$

The following result is a direct generalization of Lemma 3.1 to the setting of harmonic mappings from \mathbb{B}^{n} to \mathbb{C}.

Lemma 3.2. Let f be a harmonic mapping from \mathbb{B}^{n} to \mathbb{C} satisfying $f(0)=0$ and $|f|<M$, where M is a positive constant. Then

$$
|f(z)| \leq \frac{4 M}{\pi} \cdot \frac{|z|}{\sqrt{1-|z|^{2}}}
$$

Corollary 3.3. Let $f \in H\left(\mathbb{B}^{n}\right)$ such that $f(0)=0$ and $|f|<M$, where M is a positive constant. Then

$$
|f(z)| \leq \frac{4 M \sqrt{n}}{\pi} \cdot \frac{|z|}{\sqrt{1-|z|^{2}}}
$$

Proof. Let $f=\left(f_{1}, \ldots, f_{n}\right)$. Then Lemma 3.2 implies that

$$
|f(z)|=\left(\sum_{k=1}^{n}\left|f_{k}(z)\right|^{2}\right)^{1 / 2} \leq \frac{4 M \sqrt{n}}{\pi} \cdot \frac{|z|}{\sqrt{1-|z|^{2}}}
$$

which shows that our corollary holds.
COROLLARY 3.4. Let $A=\left(a_{i, j}(z)\right)_{n \times n}$ be a matrix-valued harmonic mapping of $\mathbb{B}^{n}(0, r)$ into the space of all $n \times n$ complex matrices, that is, each $a_{i, j}(z)$ is a harmonic mapping of $\mathbb{B}^{n}(0, r)$ into \mathbb{C}. If $A(0)=0$ and $|A(z)| \leq M$ for $z \in \mathbb{B}^{n}(0, r)$, then

$$
|A(z)| \leq \frac{4 M \sqrt{n}}{\pi} \cdot \frac{|z|}{\sqrt{r^{2}-|z|^{2}}}
$$

Proof. For any fixed $\theta \in \partial \mathbb{B}^{n}$, let $P(z)=A(z) \theta$. Then $P \in H\left(\mathbb{B}^{n}\right)$ and $|P(z)| \leq M$ for $z \in \mathbb{B}^{n}(0, r)$. By Corollary 3.3,

$$
|P(z)| \leq \frac{4 M \sqrt{n}}{\pi} \cdot \frac{|z|}{\sqrt{r^{2}-|z|^{2}}}
$$

The arbitrariness of θ implies that

$$
|A(z)| \leq \frac{4 M \sqrt{n}}{\pi} \cdot \frac{|z|}{\sqrt{r^{2}-|z|^{2}}}
$$

which completes the proof.
The following lemma due to Liu is from [14], which is crucial for the proof of our next main result.
Lemma 3.5 [14, Lemma 4]. Let A be an $n \times n$ complex matrix. Then for any unit vector $\theta \in \partial \mathbb{B}^{n}$, the inequality

$$
|A \theta| \geq \frac{|\operatorname{det} A|}{|A|^{n-1}}
$$

holds.
THEOREM 3.6. Let f be a vector-valued harmonic mapping of \mathbb{B}^{n} into \mathbb{C}^{n} with $f(0)=0$, $\left|\operatorname{det} f_{z}(0)\right|-\alpha=\left|f_{\bar{z}}(0)\right|=0$ and $\|f\|_{\mathcal{H}(n)} \leq M$, where M and α are positive constants. Then f is univalent in $\mathbb{B}^{n}\left(0, \rho_{0} / 2\right)$, where

$$
\rho_{0}=\frac{t}{\sqrt{1+t^{2}}} \quad \text { and } \quad t=\frac{3 \alpha \pi}{44 \sqrt{n} M^{n}} .
$$

Moreover, the range $f\left(\mathbb{B}^{n}\left(0, \rho_{0}\right)\right)$ contains a univalent ball $\mathbb{B}^{n}(0, R)$, where

$$
R \geq \frac{\rho_{0}}{2}\left\{\frac{\alpha}{M^{n-1}}-\frac{22 M \sqrt{n}}{3 \pi} \cdot \frac{\rho_{0}}{\sqrt{1-\rho_{0}}}\right\}
$$

Proof. For $\zeta \in \mathbb{B}^{n}$, let $F(\zeta)=2 f(1 / 2 \zeta)$. Then

$$
\left|F_{\zeta}(\zeta)\right|+\left|F_{\bar{\zeta}}(\zeta)\right| \leq \frac{M}{1-\frac{|\zeta|^{2}}{4}} \leq \frac{4 M}{3}
$$

and

$$
\left|F_{\zeta}(\zeta)-F_{\zeta}(0)\right| \leq\left|F_{\zeta}(\zeta)\right|+\left|F_{\zeta}(0)\right| \leq \frac{7 M}{3}
$$

Corollary 3.4 implies that

$$
\left|F_{\zeta}(\zeta)-F_{\zeta}(0)\right| \leq \frac{28 M \sqrt{n}}{3 \pi} \cdot \frac{|\zeta|}{\sqrt{1-|\zeta|^{2}}}
$$

Since for any $\zeta \in \mathbb{B}^{n}$,

$$
\left|F_{\bar{\zeta}}(\zeta)-F_{\bar{\zeta}}(0)\right|=\left|F_{\bar{\zeta}}(\zeta)\right| \leq \frac{4 M}{3}
$$

Corollary 3.4 again implies that

$$
\left|F_{\bar{\zeta}}(\zeta)-F_{\bar{\zeta}}(0)\right| \leq \frac{16 M \sqrt{n}}{3 \pi} \cdot \frac{|\zeta|}{\sqrt{1-|\zeta|^{2}}}
$$

On the other hand, for any $\theta \in \partial \mathbb{B}^{n}$, we infer from Lemma 3.5 that

$$
\left|F_{\zeta}(0) \theta\right| \geq \frac{\alpha}{\left|F_{\zeta}(0)\right|^{n-1}} \geq \frac{\alpha}{M^{n-1}}
$$

In order to prove the univalence of F in $\mathbb{B}^{n}(0, \rho)$, we choose two distinct points $\zeta^{\prime}, \zeta^{\prime \prime} \in \mathbb{B}^{n}(0, \rho)$ and let $\left[\zeta^{\prime}, \zeta^{\prime \prime}\right]$ denote the segment from ζ^{\prime} to $\zeta^{\prime \prime}$ with the endpoints ζ^{\prime} and $\zeta^{\prime \prime}$, where $\rho=t / \sqrt{1+t^{2}}$ and $t=3 \alpha \pi / 44 \sqrt{n} M^{n}$. Set $d \zeta=\left(d \zeta_{1}, \ldots, d \zeta_{n}\right)^{T}$ and $\left(d \bar{\zeta}=\left(d \bar{\zeta}_{1}, \ldots, d \bar{\zeta}_{n}\right)^{T}\right.$. Then we have

$$
\begin{aligned}
\left|F\left(\zeta^{\prime}\right)-F\left(\zeta^{\prime \prime}\right)\right| \geq & \left|\int_{\left[\zeta^{\prime}, \zeta^{\prime \prime}\right]} F_{\zeta}(0) d \zeta+F_{\bar{\zeta}}(0) d \bar{\zeta}\right| \\
& \quad-\left|\int_{\left[\zeta^{\prime}, \zeta^{\prime \prime}\right]}\left(F_{\zeta}(\zeta)-F_{\zeta}(0)\right) d \zeta+\left(F_{\bar{\zeta}}(\zeta)-F_{\bar{\zeta}}(0)\right) d \bar{\zeta}\right| \\
\geq & \left|\zeta^{\prime}-\zeta^{\prime \prime}\right|\left\{\frac{\alpha}{M^{n-1}}-\frac{44 M \sqrt{n}}{3 \pi} \cdot \frac{\rho}{\sqrt{1-\rho^{2}}}\right\} \\
> & 0 .
\end{aligned}
$$

This shows that F is univalent in $\mathbb{B}^{n}(0, \rho)$.

Furthermore, for any z with $|\zeta|=\rho$,

$$
\begin{aligned}
|F(\zeta)-F(0)| \geq & \left|\int_{[0, \zeta]} F_{\zeta}(0) d \zeta+F_{\bar{\zeta}}(0) d \bar{\zeta}\right| \\
& -\left|\int_{[0, \zeta]}\left(F_{\zeta}(\zeta)-F_{\zeta}(0)\right) d \zeta+\left(F_{\bar{\zeta}}(\zeta)-F_{\bar{\zeta}}(0)\right) d \bar{\zeta}\right| \\
\geq & \rho\left\{\frac{\alpha}{M^{n-1}}-\frac{22 M \sqrt{n}}{3 \pi} \cdot \frac{\rho}{\sqrt{1-\rho^{2}}}\right\}
\end{aligned}
$$

Hence the range $f\left(\mathbb{B}^{n}\left(0, \rho_{0}\right)\right)$ contains a univalent ball $\mathbb{B}^{n}(0, R)$, where

$$
R \geq \frac{\rho}{2}\left\{\frac{\alpha}{M^{n-1}}-\frac{22 M \sqrt{n}}{3 \pi} \cdot \frac{\rho}{\sqrt{1-\rho^{2}}}\right\}
$$

The proof of this theorem is complete.

References

[1] M. Arsenović, V. Kojić and M. Mateljević, 'On Lipschitz continuity of harmonic quasiregular maps on the unit ball in \mathbb{R}^{n}, Ann. Acad. Sci. Fenn. Math. 33 (2008), 315-318.
[2] M. Arsenović, V. Manojlović and M. Mateljević, 'Lipschitz-type spaces and harmonic mappings in the space', Ann. Acad. Sci. Fenn. Math. 35 (2010), 379-387.
[3] Sh. Chen, S. Ponnusamy and X. Wang, 'Properties of some classes of planar harmonic and planar biharmonic mappings', Complex Anal. Oper. Theory (2010), doi:10.1007/s11785-010-0061-x.
[4] Sh. Chen, S. Ponnusamy and X. Wang, 'Landau's theorem and Marden constant for harmonic v-Bloch mappings', Bull. Aust. Math. Soc. (2011), accepted.
[5] Sh. Chen, S. Ponnusamy and X. Wang, 'Coefficient estimates and Landau's theorem for planar harmonic mappings', Bull. Malays. Math. Sci. Soc. 34 (2011), 1-11.
[6] Sh. Chen, S. Ponnusamy and X. Wang, 'Bloch and Landau's theorems for planar p-harmonic mappings', J. Math. Anal. Appl. 373 (2011), 102-110.
[7] F. Colonna, 'The Bloch constant of bounded harmonic mappings', Indiana Univ. Math. J. 38 (1989), 829-840.
[8] E. Heinz, 'On one-to-one harmonic mappings', Pacific J. Math. 9 (1959), 101-105.
[9] F. Holland and D. Walsh, 'Criteria for membership of Bloch space and its subspace, BMOA', Math. Ann. 273 (1986), 317-335.
[10] D. Kalaj, 'On the univalent solution of PDE $\Delta u=f$ between spherical annuli', J. Math. Anal. Appl. 327 (2007), 1-11.
[11] D. Kalaj, 'On harmonic quasiconformal self-mappings of the unit ball', Ann. Acad. Sci. Fenn. Math. 33 (2008), 261-271.
[12] D. Kalaj, 'Lipschitz spaces and harmonic mappings', Ann. Acad. Sci. Fenn. Math. 34 (2009), 475-485.
[13] S. X. Li and H. Wulan, 'Characterizations of α-Bloch spaces on the unit ball', J. Math. Anal. Appl. 337 (2008), 880-887.
[14] X. Y. Liu, 'Bloch functions of several complex variables', Pacific J. Math. 152 (1992), 347-363.
[15] M. Mateljević and M. Vuorinen, 'On harmonic quasiconformal quasi-isometries', J. Inequal. Appl. (2010), Article ID 178732, 19 pp.
[16] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n} (Springer, Berlin, 1980).
[17] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball (Springer, New York, 2005).

SH. CHEN, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, PR China
e-mail: shlchen1982@yahoo.com.cn
X. WANG, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, PR China
e-mail: xtwang @hunnu.edu.cn

[^0]: The research was partly supported by NSF of China (No. 11071063), Hunan Provincial Innovation Foundation for Postgraduate (No. 125000-4113) and the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

