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ON HARMONIC BLOCH SPACES IN THE UNIT BALL OF Cn
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Abstract

In this paper, our main aim is to discuss the properties of harmonic mappings in the unit ball Bn . First,
we characterize the harmonic Bloch spaces and the little harmonic Bloch spaces from Bn to C in terms
of weighted Lipschitz functions. Then we prove the existence of a Landau–Bloch constant for a class of
vector-valued harmonic Bloch mappings from Bn to Cn .
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1. Introduction and preliminaries

Let C denote the complex plane and let D= {z ∈ C : |z|< 1}. Also we let Cn
= {z =

(z1, . . . , zn) : z1, . . . , zn ∈ C} and for a = (a1, . . . , an) ∈ Cn ,

Bn(a, r)=

{
z ∈ Cn

: |z − a| =

√√√√ n∑
k=1

|zk − ak |
2 < r

}
.

Especially, we use Bn to denote the unit ball Bn(0, 1) and for a ∈ Rn ,

Bn
R(a, r)=

{
x ∈ Rn

: |x − a| =

√√√√ n∑
k=1

|xk − ak |
2 < r

}
.

A function f = u + iv of an open subset �⊂ Cn into C is called a harmonic
mapping if both u and v are real harmonic in �, that is, 1u = 0 and 1v = 0, where 1
represents the complex Laplacian operator (see [10, 15–17])

1= 4
n∑

k=1

∂2

∂zk∂zk
=

n∑
k=1

(
∂2

∂x2
k

+
∂2

∂y2
k

)
and for each k ∈ {1, . . . , n}, zk = xk + iyk .
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A planar harmonic mapping f in D is called a harmonic Bloch mapping if and only
if the Lipschitz number

β f = sup
z,w∈D,z 6=w

| f (z)− f (w)|

ρ(z, w)
<+∞,

where

ρ(z, w)=
1
2

log
(

1+
∣∣ z−w
1−zw

∣∣
1−

∣∣ z−w
1−zw

∣∣
)
= arctanh

∣∣∣∣ z − w

1− zw

∣∣∣∣
denotes the hyperbolic distance between z and w in D. In [7], Colonna proved that

β f = sup
z∈D
(1− |z|2)[| fz(z)| + | fz(z)|] (see also [3–6]).

DEFINITION 1.1. The harmonic Bloch space H B consists of all harmonic mappings
f of Bn into C such that

‖ f ‖H B = sup
z∈Bn
{(1− |z|2)[|∇ f (z)| + |∇ f (z)|]}<∞,

where ∇ f = (∂ f/∂z1, . . . , ∂ f/∂zn) denotes the complex gradient of f and ∇ f =
(∂ f/∂z1, . . . , ∂ f/∂zn).

DEFINITION 1.2. The little harmonic Bloch space H B0 consists of all mappings
f ∈H B such that

lim
|z|→1−

{(1− |z|2)[|∇ f (z)| + |∇ f (z)|]} = 0.

For any z 6= w ∈ Bn , let

L f (z, w)=
(1− |z|2)1/2(1− |w|2)1/2| f (z)− f (w)|

|z − w|

denote the weighted Lipschitz function, where f : Bn
→ C is a harmonic mapping.

The relationship between L f (z, w) and the Bloch space (or the little Bloch space)
has attracted much attention (see [7, 9, 13, 17]). Recently, many authors have also
discussed the relationship between Lipschitz continuity and harmonic quasi-conformal
(or quasi-regular) mappings in Bn (see [1, 2, 11, 12, 15]). In this paper, we use the
weighted Lipschitz functions to characterize the harmonic Bloch spaces and the little
harmonic Bloch spaces in Bn . Our main results are Theorems 2.2 and 2.4. Their proofs
will be presented in Section 2.

Let f = ( f1, . . . , fn) be a vector-valued harmonic mapping from Bn into Cn , that
is, for each i ∈ {1, 2, . . . , n}, fi is a harmonic mapping from Bn into C. Let H(Bn)

denote all harmonic mappings of Bn into Cn . For any f = ( f1, . . . , fn) ∈ H(Bn),
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denote by
fz = (∇ f1, . . . , ∇ fn)

T

the matrix formed by the complex gradients ∇ f1, . . . , ∇ fn , where T denotes matrix
transposition, and let

fz = (∇ f 1, . . . , ∇ f n)
T .

For an n × n matrix A, we introduce the operator norm

|A| = sup
x 6=0

|Ax |

|x |
=max{|Aθ | : θ ∈ ∂Bn

}.

Here and in the following, we always treat any z ∈ Cn as a column vector, that is,
z = (z1, . . . , zn)

T , unless otherwise stated.

DEFINITION 1.3. The vector-valued harmonic Bloch space H B(n) consists of all
mappings f ∈ H(Bn) such that

‖ f ‖H B(n) = sup
z∈Bn
{(1− |z|2)[| fz(z)| + | fz(z)|]}<∞.

In Section 3, we prove the existence of the Landau constant for a class of mappings
in H B(n), which is stated as Theorem 3.6.

2. The relationship between weighted Lipschitz functions and harmonic
Bloch spaces

We shall make use of the group consisting of all biholomorphic mappings of Bn

onto itself, which is denoted by Aut(Bn). The following results are from [16].
(i) For any a ∈ Bn , let

φa(z)=
a − Paz − (1− |a|2)1/2 Qaz

1− 〈z, a〉
.

Then φa ∈ Aut(Bn), where

〈z, a〉 = z1a1 + · · · + znan, Paz =
a〈z, a〉

〈a, a〉

and Qaz = z − Paz.
(ii) For any φa ,

φa(0)− a = φa(a)= 0, φa = φ
−1
a

and

1− |φa(z)|
2
=
(1− |z|2)(1− |a|2)

|1− 〈z, a〉|2
. (2.1)

By using similar reasoning as in the proof of [15, Lemma 2.5], we have the
following lemma.
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LEMMA 2.1. Suppose that f : Bn
R(a, r)→ R is a continuous mapping in Bn

R(a, r)
and harmonic in Bn

R(a, r). Then

|∇ f (a)| ≤

√
n

V (n)rn

∫
∂Bn

R(a,r)
| f (a)− f (y)| dσ(y),

where dσ denotes the surface measure on ∂Bn
R(a, r) and V (n) the volume of the unit

ball in Rn .

PROOF. Without loss of generality, we may assume that a = 0 and f (0)= 0. Let

K (x, y)=
r2
− |x |2

nr V (n)|x − y|n
.

Then

f (x)=
∫
∂Bn

R(0,r)
K (x, t) f (t) dσ(t), x ∈ Bn

R(0, r),

where dσ denotes the surface measure on ∂Bn
R(0, r). Calculations lead to

∂

∂xi
K (x, t)=

1
nr V (n)

[
−2xi

|x − t |n
−

n(r2
− |x |2)(xi − ti )

|x − t |n+2

]
which yields

∂

∂xi
K (0, t)=

ti
V (n)rn+1 ,

whence

|∇ f (0)| =
[ n∑

i=1

∣∣∣∣∫
∂Bn

R(0,r)

∂

∂xi
K (0, t) f (t) dσ(t)

∣∣∣∣2]1/2

≤

n∑
i=1

∣∣∣∣∫
∂Bn

R(0,r)

∂

∂xi
K (0, t) f (t) dσ(t)

∣∣∣∣
≤

∫
∂Bn

R(0,r)
| f (t)|

n∑
i=1

∣∣∣∣ ∂∂xi
K (0, t)

∣∣∣∣ dσ(t)

≤
√

n
∫
∂Bn

R(0,r)
| f (t)|

( n∑
i=1

∣∣∣∣ ∂∂xi
K (0, t)

∣∣∣∣2)1/2

dσ(t)

=

√
n

V (n)rn

∫
∂Bn

R(0,r)
| f (t)| dσ(t).

The proof of the lemma is complete. 2

THEOREM 2.2. Let f be a harmonic mapping in Bn . Then f ∈H B if and only if

sup
z,w∈Bn,z 6=w

L f (z, w) <+∞.
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PROOF. First we prove the sufficiency. Let f (z)= u(z)+ iv(z), where u and v are
real harmonic functions. Fix r ∈ (0, 1). Then by (2.1),

|φa(z)|

|z − a|
=

√
|z − a|2 + |〈z, a〉|2 − |z|2|a|2

|z − a|2|1− 〈z, a〉|2
≤

1
|1− 〈z, a〉|

,

which gives

|φa(z)| ≤
|z − a|

|1− 〈z, a〉|
≤
|z − a|

1− |a|
, (2.2)

whence for any a ∈ Bn ,

Bn
(

a,
r(1− |a|2)

2

)
⊂ E(a, r),

where
E(a, r)= {z ∈ Bn

: |φa(z)|< r}.

By Lemma 2.1,

(1− |z|2)|∇u(z)| ≤

√
2n(1− |z|2)

V (2n)
[ r(1−|z|2)

2

]2n

∫
∂Bn(z,r(1−|z|2)/2)

|u(ζ )− u(z)| dσ(ζ )

= M(|z|, r)
∫
∂Bn(z,r(1−|z|2)/2)

|u(ζ )− u(z)| dσ(ζ ),

where V (2n) denotes the volume of the unit ball in R2n and

M(|z|, r)=
22n
√

2n

V (2n)(1− |z|2)2n−1r2n
.

Similarly, we obtain

(1− |z|2)|∇v(z)| ≤ M(|z|, r)
∫
∂Bn(z,r(1−|z|2)/2)

|v(ζ )− v(z)| dσ(ζ ).

Cauchy’s inequality and chain rules of derivation show that

|∇ f (z)| ≤ 1
2 (|∇u(z)| + |∇v(z)|) and |∇ f (z)| ≤ 1

2 (|∇u(z)| + |∇v(z)|),

which implies that

(1− |z|2)(|∇ f (z)| + |∇ f (z)|) ≤ (1− |z|2)(|∇u(z)| + |∇v(z)|)

≤ M(|z|, r)
∫
∂Bn(z,r(1−|z|2)/2)

(|u(ζ )− u(z)|

+ |v(ζ )− v(z)|) dσ(ζ )

≤
√

2M(|z|, r)M1

∫
∂Bn(z,r(1−|z|2)/2)

dσ(ζ )

=
8M1n3/2

r
,
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where M1 = sup{| f (z)− f (w)| : w ∈ E(z, r)}. Hence for any w ∈ Bn(z, r(1−
|z|2)/2)⊂ E(z, r), it follows from (2.2) that

(1− |z|2)1/2(1− |w|2)1/2

|z − w|
=
(1− |z|2)1/2(1− |w|2)1/2

|1− 〈z, w〉|
·
|1− 〈z, w〉|
|z − w|

=

√
1− |φz(w)|2 ·

|1− 〈z, w〉|
|z − w|

≥

√
1− r2 ·

|1− 〈z, w〉|
|z − w|

≥

√
1− r2

r
.

Therefore, there exists a positive constant M2(n, r) such that

(1− |z|2)[|∇ f (z)| + |∇ f (z)|] ≤ M2(n, r) sup
w∈E(z,r),w 6=z

L f (z, w),

from which we see that f ∈H B.
We now prove the necessity. For any z 6= w ∈ Bn ,

| f (z)− f (w)| =

∣∣∣∣∫ 1

0

d f

dt
(zt + (1− t)w) dt

∣∣∣∣
=

∣∣∣∣ n∑
k=1

(zk − wk)

∫ 1

0

d f

dzk
(zt + (1− t)w) dt

+

n∑
k=1

(zk − wk)

∫ 1

0

d f

dzk
(zt + (1− t)w) dt

∣∣∣∣
≤

n∑
k=1

|zk − wk | ·

∣∣∣∣∫ 1

0

d f

dzk
(zt + (1− t)w) dt

∣∣∣∣
+

n∑
k=1

|zk − wk | ·

∣∣∣∣∫ 1

0

d f

dzk
(zt + (1− t)w) dt

∣∣∣∣
≤

( n∑
k=1

|zk − wk |
2
)1/2{[ n∑

k=1

(∫ 1

0

∣∣∣∣ ∂ f

∂zk
(zt + (1− t)w)

∣∣∣∣ dt

)2]1/2

+

[ n∑
k=1

(∫ 1

0

∣∣∣∣ ∂ f

∂zk
(zt + (1− t)w)

∣∣∣ dt

)2]1/2}
≤
√

n|z − w|

[∫ 1

0
|∇ f (t z + (1− t)w)| dt

+

∫ 1

0
|∇ f (t z + (1− t)w)| dt

]
,
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from which we infer that

| f (z)− f (w)|

|z − w|
≤
√

n
∫ 1

0

[|∇ f (ψ(t))| + |∇ f (ψ(t))|](1− |ψ(t)|2)

1− |ψ(t)|2
dt

≤
√

n‖ f ‖H B

∫ 1

0

dt

1− |ψ(t)|2

≤
√

n‖ f ‖H B

∫ 1

0

dt

[(1− t)(1− |z|)]1/2[t (1− |w|)]1/2

=
π
√

n‖ f ‖H B
(1− |z|)1/2(1− |w|)1/2

,

where ψ(t)= t z + (1− t)w. Thus

sup
z,w∈Bn,z 6=w

L f (z, w)≤ 2π
√

n‖ f ‖H B. (2.3)

Hence the proof is complete. 2

REMARK 2.3. When n = 1 (respectively n = 1 and fz ≡ 0), Theorem 2.2 coincides
with [7, Theorem 1] (respectively [9, Theorem 3]).

THEOREM 2.4. Let f be a harmonic mapping in Bn . Then f ∈H B0 if and only if

lim
|z|→1−

sup
z,w∈Bn,z 6=w

L f (z, w)= 0. (2.4)

PROOF. In order to prove the sufficiency, we assume that (2.4) holds. Then for any
ε > 0, there exists δ ∈ (0, 1) such that

sup
z,w∈Bn,z 6=w

L f (z, w) < ε,

whenever δ < |z|< 1. Similar arguments to the proof of the sufficiency of Theorem 2.2
show that

(1− |z|2)[|∇ f (z)| + |∇ f (z)|] ≤

√
2M(|z|, r)r
√

1− r2

∫
∂Bn(z,r(1−|z|2)/2)

L f (z, w) dσ(w)

≤

√
2M(|z|, r)r
√

1− r2
ε

∫
∂Bn(z,r(1−|z|2)/2)

dσ(w)

=
8n3/2
√

1− r2
ε,

whenever δ < |z|< 1. Hence

lim
|z|→1−

(1− |z|2)[|∇ f (z)| + |∇ f (z)|] = 0.
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We now prove the necessity. For r ∈ (0, 1), let fr (z)= f (r z). Similar reasoning
to the proof of (2.3) shows that there exist positive constants M3 and M4 such that for
any z 6= w ∈ Bn ,

(1− |z|2)1/2(1− |w|2)1/2
|( f (z)− fr (z))− ( f (w)− fr (w))|

|z − w|
≤ M3‖ f − fr‖H B

and

(1− |z|2)1/2(1− |w|2)1/2
| fr (z)− fr (w)|

|z − w|

=
r(1− |z|2)1/2(1− |w|2)1/2

(1− |zr |2)1/2(1− |wr |2)1/2
(1− |zr |2)1/2(1− |wr |2)1/2

| fr (z)− fr (w)|

|r z − rw|

≤
M4r(1− |z|2)1/2

(1− r2)
‖ f ‖H B.

These yield that

sup
z,w∈Bn,z 6=w

L f (z, w)≤ M3‖ f − fr‖H B +
M4r(1− |z|2)1/2

(1− r2)
‖ f ‖H B.

In the above inequality, by letting |z| → 1− and then r→ 1−, we obtain the desired
result. 2

3. Landau constant for a class of harmonic Bloch mappings

We introduce a version of the Schwarz lemma for planar harmonic mappings, which
is from [8].

LEMMA 3.1 [8, Lemma]. Let f be a harmonic mapping of D such that f (0)= 0 and
f (D)⊂ D. Then

| f (z)| ≤
4
π

arctan |z| ≤
4
π
|z| for z ∈ D.

The following result is a direct generalization of Lemma 3.1 to the setting of
harmonic mappings from Bn to C.

LEMMA 3.2. Let f be a harmonic mapping from Bn to C satisfying f (0)= 0 and
| f |< M, where M is a positive constant. Then

| f (z)| ≤
4M

π
·
|z|√

1− |z|2
.

COROLLARY 3.3. Let f ∈ H(Bn) such that f (0)= 0 and | f |< M, where M is a
positive constant. Then

| f (z)| ≤
4M
√

n

π
·
|z|√

1− |z|2
.
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PROOF. Let f = ( f1, . . . , fn). Then Lemma 3.2 implies that

| f (z)| =

( n∑
k=1

| fk(z)|
2
)1/2

≤
4M
√

n

π
·
|z|√

1− |z|2
,

which shows that our corollary holds. 2

COROLLARY 3.4. Let A = (ai, j (z))n×n be a matrix-valued harmonic mapping of
Bn(0, r) into the space of all n × n complex matrices, that is, each ai, j (z) is a
harmonic mapping of Bn(0, r) into C. If A(0)= 0 and |A(z)| ≤ M for z ∈ Bn(0, r),
then

|A(z)| ≤
4M
√

n

π
·

|z|√
r2 − |z|2

.

PROOF. For any fixed θ ∈ ∂Bn , let P(z)= A(z)θ . Then P ∈ H(Bn) and |P(z)| ≤ M
for z ∈ Bn(0, r). By Corollary 3.3,

|P(z)| ≤
4M
√

n

π
·

|z|√
r2 − |z|2

.

The arbitrariness of θ implies that

|A(z)| ≤
4M
√

n

π
·

|z|√
r2 − |z|2

,

which completes the proof. 2

The following lemma due to Liu is from [14], which is crucial for the proof of our
next main result.

LEMMA 3.5 [14, Lemma 4]. Let A be an n × n complex matrix. Then for any unit
vector θ ∈ ∂Bn , the inequality

|Aθ | ≥
|det A|

|A|n−1

holds.

THEOREM 3.6. Let f be a vector-valued harmonic mapping of Bn into Cn with
f (0)= 0, |det fz(0)| − α = | fz(0)| = 0 and ‖ f ‖H B(n) ≤ M, where M and α are
positive constants. Then f is univalent in Bn(0, ρ0/2), where

ρ0 =
t

√
1+ t2

and t =
3απ

44
√

nMn
.

Moreover, the range f (Bn(0, ρ0)) contains a univalent ball Bn(0, R), where

R ≥
ρ0

2

{
α

Mn−1 −
22M
√

n

3π
·

ρ0
√

1− ρ0

}
.
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PROOF. For ζ ∈ Bn , let F(ζ )= 2 f (1/2ζ ). Then

|Fζ (ζ )| + |Fζ (ζ )| ≤
M

1− |ζ |
2

4

≤
4M

3

and

|Fζ (ζ )− Fζ (0)| ≤ |Fζ (ζ )| + |Fζ (0)| ≤
7M

3
.

Corollary 3.4 implies that

|Fζ (ζ )− Fζ (0)| ≤
28M
√

n

3π
·
|ζ |√

1− |ζ |2
.

Since for any ζ ∈ Bn ,

|Fζ (ζ )− Fζ (0)| = |Fζ (ζ )| ≤
4M

3
,

Corollary 3.4 again implies that

|Fζ (ζ )− Fζ (0)| ≤
16M
√

n

3π
·
|ζ |√

1− |ζ |2
.

On the other hand, for any θ ∈ ∂Bn , we infer from Lemma 3.5 that

|Fζ (0)θ | ≥
α

|Fζ (0)|n−1 ≥
α

Mn−1 .

In order to prove the univalence of F in Bn(0, ρ), we choose two distinct points
ζ ′, ζ ′′ ∈ Bn(0, ρ) and let [ζ ′, ζ ′′] denote the segment from ζ ′ to ζ ′′ with the endpoints
ζ ′ and ζ ′′, where ρ = t/

√
1+ t2 and t = 3απ/44

√
nMn . Set dζ = (dζ1, . . . , dζn)

T

and (dζ = (dζ 1, . . . , dζ n)
T . Then we have

|F(ζ ′)− F(ζ ′′)| ≥

∣∣∣∣∫
[ζ ′,ζ ′′]

Fζ (0) dζ + Fζ (0) dζ

∣∣∣∣
−

∣∣∣∣∫
[ζ ′,ζ ′′]

(Fζ (ζ )− Fζ (0)) dζ + (Fζ (ζ )− Fζ (0)) dζ

∣∣∣∣
≥ |ζ ′ − ζ ′′|

{
α

Mn−1 −
44M
√

n

3π
·

ρ√
1− ρ2

}
> 0.

This shows that F is univalent in Bn(0, ρ).
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Furthermore, for any z with |ζ | = ρ,

|F(ζ )− F(0)| ≥

∣∣∣∣∫
[0,ζ ]

Fζ (0) dζ + Fζ (0) dζ

∣∣∣∣
−

∣∣∣∣∫
[0,ζ ]

(Fζ (ζ )− Fζ (0)) dζ + (Fζ (ζ )− Fζ (0)) dζ

∣∣∣∣
≥ ρ

{
α

Mn−1 −
22M
√

n

3π
·

ρ√
1− ρ2

}
.

Hence the range f (Bn(0, ρ0)) contains a univalent ball Bn(0, R), where

R ≥
ρ

2

{
α

Mn−1 −
22M
√

n

3π
·

ρ√
1− ρ2

}
.

The proof of this theorem is complete. 2
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