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Abstract
The sheaf-function correspondence identifies the group of constructible functions on a real analytic manifold M
with the Grothendieck group of constructible sheaves on M. When M is a finite dimensional real vector space,
Kashiwara-Schapira have recently introduced the convolution distance between sheaves of k-vector spaces on M.
In this paper, we characterize distances on the group of constructible functions on a real finite dimensional vector
space that can be controlled by the convolution distance through the sheaf-function correspondence. Our main
result asserts that such distances are almost trivial: they vanish as soon as two constructible functions have the same
Euler integral. We formulate consequences of our result for Topological Data Analysis: there cannot exist nontrivial
additive invariants of persistence modules that are continuous for the interleaving distance.
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1. Introduction

Inspired by persistence theory from topological data analysis (TDA) [36, 21], Kashiwara and Schapira
have recently introduced the convolution distance between (derived) sheaves of k-vector spaces on a
finite-dimensional real normed vector space [27]. This construction has found important applications,
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2 N. Berkouk

both in TDA – where it allows expressing stability of certain constructions with respect to noise in
datasets – [6, 9, 7, 8] and in symplectic topology [2, 3, 23]. A challenging research direction, of interest
to these two fields, is to associate numerical invariants to a sheaf on a vector space, which satisfy a
certain form of continuity with respect to the convolution distance.

To do so, the TDA community has been mostly using module-theoretic notions, such as the rank-
invariant [15, 16], the Hilbert function or the graded Betti numbers [24, 5, 35, 31]. From a sheaf-theoretic
perspective, a natural numerical invariant to consider is the local Euler characteristic. It is a constructible
function that exactly encodes the class of a sheaf in the Grothendieck group by a result of Kashiwara
[26]. This is usually called the sheaf-function correspondence.

The group of constructible functions is well understood and has the surprisingly nice property that
the formalism of Grothendieck’s six operations descend to it through the sheaf-function correspondence
[39]. In particular, this allows one to introduce well-behaved transforms of constructible functions, such
as the Radon or hybrid transforms [38, 4, 29, 28]. Constructible functions have already been successfully
applied in several domains, such as target enumeration for sensor networks, image and shape analysis
[4, 20], though the question of their stability with respect to noise in the input data remains poorly
understood [19, Chapter 16]. For instance, in the context of predicting clinical outcomes in glioblastoma
[18], the authors overcome numerical instability by introducing an ad-hoc smoothed version of the Euler
characteristic transform (ECT) [20], that is empirically more stable than the standard ECT, though no
theoretical stability result is provided.

In this context, a natural question is to understand the stability of the sheaf-function correspondence.
The convolution distance is already considered as a meaningful measurement of dissimilarity between
sheaves, both in applied and pure contexts. Therefore, we propose in this work to characterize the
pseudo-extended metrics on the group of constructible functions on a vector space, which are controlled
in an appropriate sense by the convolution distance through the sheaf-function correspondence. Our
main result (Theorem 3.11) asserts that these pseudo-metrics are almost trivial: They vanish as soon as
two constructible functions have the same Euler integral.

Thanks to results by the author and F. Petit [7], we are able to transfer Theorem 3.11 in the context of
persistence modules. In particular, we obtain that every K0-additive invariants of compactly generated
constructible persistence modules that are continuous for the interleaving distance is trivial (Theorems
4.14 and 4.15). Formulation in terms of persistence modules allows using Lesnick’s theorem on the
universality of the interleaving distance [30] and to obtain that K0-additive invariants of sublevel sets
persistence modules cannot be controlled in terms of 𝑑∞ distance (Corollary 4.18).

In the final section of the paper, we provide several applications of our results to commonly used
TDA constructions.

We acknowledge that similar results to Theorem 4.15 have been obtained independently by Biran,
Cornea and Zhang in [10], in the specific case of 𝑑 = 1, with the aim to study K0-theoretical invariants
of triangulated persistence categories.

2. Sheaves and constructible functions

In this section, we introduce the necessary background and terminology on constructible sheaves and
constructible functions.

2.1. Sheaf-function correspondence

Throughout this paper, k denotes a field. For a topological space X, we denote by Mod(k𝑋 ) the category
of sheaves of k-vector spaces on X, and D𝑏 (k𝑋 ) its bounded derived category. Let M be a real analytic
manifold. The definitions and results of this section are exposed in detail in [25, Chapters 8 & 9.7].

Definition 2.1. A sheaf 𝐹 ∈ Mod(k𝑀 ) isR-constructible (or constructible for simplicity), if there exists
a locally finite covering of M by subanalytic subsets 𝑀 = ∪𝜆𝑀𝜆 such that for all 𝑀𝜆 and all 𝑗 ∈ Z, the
restriction 𝐹|𝑀𝜆 is locally constant and of finite rank.
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We denote by ModR𝑐 (k𝑀 ) the full subcategory of Mod(k𝑀 ) consisting of constructible sheaves and
by D𝑏

R𝑐 (k𝑀 ) the full subcategory of D𝑏 (k𝑀 ) whose objects are sheaves 𝐹 ∈ D𝑏 (k𝑀 ) such that H 𝑗 (𝐹) ∈

ModR𝑐 (k𝑀 ) for all 𝑗 ∈ Z. It is well known [25, Th. 8.4.5] that the functor D𝑏 (ModR𝑐 (k𝑀 )) −→
D𝑏
R𝑐 (k𝑀 ) is an equivalence. The objects of D𝑏

R𝑐 (k𝑀 ) are still called constructible sheaves.

Definition 2.2. A constructible function on M is a map 𝜑 : 𝑀 −→ Z such that the fibers 𝜑−1(𝑚) are
subanalytic subsets, and the family {𝜑−1(𝑚)}𝑚∈Z is locally finite in M.

We denote by CF(𝑀) the group of constructible functions on M. All the remaining results of this
section are contained in [25, Chapter 9.7].

Theorem 2.3. Let 𝜑 ∈ CF(𝑀). There exists a locally finite family of compact contractible subanalytic
subsets {𝑋𝜆} such that 𝜑 =

∑
𝜆 𝐶𝜆 · 1𝑋𝜆 , with 𝐶𝜆 ∈ Z.

Proposition 2.4. Let 𝜑 ∈ CF(𝑀) with compact support. For any finite sum decomposition 𝜑 =
∑
𝜆 𝐶𝜆 ·

1𝑋𝜆 , where the 𝑋𝜆’s are subanalytic compact and contractible, the quantity
∑
𝜆 𝐶𝜆 only depends on 𝜑.

Definition 2.5. With the above notations, one defines
∫
𝜑 d𝜒 :=

∑
𝜆 𝐶𝜆.

To any constructible sheaf 𝐹 ∈ D𝑏
R𝑐 (k𝑀 ), it is possible to associate a constructible function 𝜒(𝐹) ∈

CF(𝑀), called the local Euler characteristic of F, and defined by:

𝜒(𝐹) (𝑥) = 𝜒(𝐹𝑥) =
∑
𝑖∈Z

(−1)𝑖dimk (H𝑖 (𝐹)𝑥).

It is clear that for any distinguished triangle 𝐹 ′ −→ 𝐹 −→ 𝐹 ′′ +1
−→ in D𝑏

R𝑐 (k𝑀 ), one has 𝜒(𝐹) =
𝜒(𝐹 ′) + 𝜒(𝐹 ′′). Therefore, 𝜒 factorizes through the Grothendieck group K0 (D𝑏

R𝑐 (k𝑀 )) and there is a
well-defined morphism of groups K0(D𝑏

R𝑐 (k𝑀 )) −→ CF(𝑀) mapping [𝐹] to 𝜒(𝐹).

Theorem 2.6 (Sheaf-function correspondence). The morphism K0 (D𝑏
R𝑐 (k𝑀 )) −→ CF(𝑀) is an iso-

morphism of groups.

Remark 2.7. The proof of the above theorem in [25, Theorem 9.7.1] does not make use of the charac-
teristic 0 hypothesis stated at the beginning of [25, Chapter 9] for expository convenience and therefore
extends to any field.

Lemma 2.8. Let 𝐹 ∈ D𝑏
R𝑐 (k𝑀 ) with compact support, then∫
𝜒(𝐹) d𝜒 = 𝜒(RΓ(𝑀; 𝐹)) =

∑
𝑖∈Z

(−1)𝑖dimk
(
H𝑖 (𝑀; 𝐹)

)
.

We briefly review the construction of the direct image operation for constructible functions. Let
𝑓 : 𝑋 −→ 𝑌 be a morphism of real analytic manifolds and 𝜑 ∈ CF(𝑋) such that f is proper on supp(𝜑).
Then, for each 𝑦 ∈ 𝑌 , 𝜑 · 1 𝑓 −1 (𝑦) is constructible and has compact support.

Definition 2.9. Keeping the above notations, one defines the function 𝑓∗𝜑 : 𝑌 −→ Z by

( 𝑓∗𝜑) (𝑦) :=
∫

𝜑 · 1 𝑓 −1 (𝑦) d𝜒.

Remark 2.10. With 𝑓 = 𝑎𝑋 : 𝑋 −→ {𝑝𝑡}, one has 𝑎𝑋∗𝜑 = (
∫
𝜑 d𝜒) · 1{𝑝𝑡 }.

Theorem 2.11. Let 𝜑 ∈ CF(𝑋) and 𝑓 : 𝑋 −→ 𝑌 be a morphism of real analytic manifolds such that f
is proper on supp(𝜑).

1. The function 𝑓∗𝜑 is constructible on Y.
2. Let 𝐹 ∈ D𝑏

R𝑐 (k𝑋 ) such that 𝜒(𝐹) = 𝜑. Then 𝜒(R 𝑓∗𝐹) = 𝑓∗𝜒(𝐹) = 𝑓∗𝜑.
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3. Let 𝑔 : 𝑌 −→ 𝑍 be another morphism of real analytic manifold such that 𝑔 ◦ 𝑓 is proper on
supp(𝑔 ◦ 𝑓 ). Then

(𝑔 ◦ 𝑓 )∗𝜑 = 𝑔∗( 𝑓∗𝜑).

2.2. Convolution distance

We consider a finite-dimensional real vector space V endowed with a norm ‖ · ‖. We equip V with the
usual topology. Following [27], we briefly present the convolution distance, which is inspired from the
interleaving distance between persistence modules [17]. We introduce the following notations:

𝑠 : V × V −→ V, 𝑠(𝑥, 𝑦) = 𝑥 + 𝑦

𝑝𝑖 : V × V −→ V (𝑖 = 1, 2), 𝑝1(𝑥, 𝑦) = 𝑥, 𝑝2 (𝑥, 𝑦) = 𝑦.

The convolution bifunctor −★− : D𝑏 (kV) × D𝑏 (kV) −→ D𝑏 (kV) is defined as follows. For 𝐹, 𝐺 ∈
D𝑏 (kV), we set

𝐹 ★𝐺 := R𝑠!(𝐹 � 𝐺).

For 𝑟 ≥ 0 and 𝑥 ∈ V, let 𝐵(𝑥, 𝑟) = {𝑣 ∈ V | ‖𝑥 − 𝑣‖ ≤ 𝑟}. For 𝜀 ∈ R, we set

𝐾𝜀 :=

{
k𝐵 (0, 𝜀) if 𝜀 ≥ 0,
kInt(𝐵 (0,−𝜀)) [dim(V)] if 𝜀 < 0

∈ D𝑏 (kV).

The following proposition is proved in [27].

Proposition 2.12. Let 𝜀, 𝜀′ ∈ R and 𝐹 ∈ D𝑏 (kV). There are isomorphisms, functorial in F:

𝐾𝜀 ★ (𝐾𝜀′ ★ 𝐹) � (𝐾𝜀 ★𝐾𝜀′ ) ★ 𝐹 � 𝐾𝜀+𝜀′ ★ 𝐹 𝑎𝑛𝑑 𝐾0 ★ 𝐹 � 𝐹.

If 𝜀 ≥ 𝜀′ ≥ 0, there is a canonical morphism 𝜒𝜀,𝜀′ : 𝐾𝜀 −→ 𝐾𝜀′ in D𝑏 (kV). It induces a canonical
morphism 𝜒𝜀,𝜀′ ★ 𝐹 : 𝐾𝜀 ★ 𝐹 −→ 𝐾𝜀′ ★ 𝐹. In particular when 𝜀′ = 0, we get

𝜒𝜀,0 ★ 𝐹 : 𝐾𝜀 ★ 𝐹 −→ 𝐹. (2.1)

Following [27], we recall the notion of 𝜀-isomorphic sheaves.

Definition 2.13. Let 𝐹, 𝐺 ∈ D𝑏 (kV), and let 𝜀 ≥ 0. The sheaves F and G are 𝜀-isomorphic if there are
morphisms 𝑓 : 𝐾𝜀 ★ 𝐹 −→ 𝐺 and 𝑔 : 𝐾𝜀 ★𝐺 −→ 𝐹 such that the diagrams

𝐾2𝜀 ★ 𝐹
𝐾2𝜀★𝑓 ��

𝜒2𝜀,0★𝐹

��𝐾𝜀 ★𝐺
𝑔 �� 𝐹 ,

𝐾2𝜀 ★𝐺
𝐾2𝜀★𝑔 ��

𝜒2𝜀,0★𝐺

��𝐾𝜀 ★ 𝐹
𝑓 �� 𝐺 .

are commutative. The pair of morphisms ( 𝑓 , 𝑔) is called a pair of 𝜀-isomorphisms.

https://doi.org/10.1017/fms.2023.115 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.115


Forum of Mathematics, Sigma 5

Definition 2.14. For 𝐹, 𝐺 ∈ D𝑏 (kV), their convolution distance is

𝑑𝐶 (𝐹, 𝐺) := inf({𝜀 ≥ 0 | 𝐹 and 𝐺 are 𝜀 − isomorphic} ∪ {∞}).

Definition 2.15. A pseudo-extended metric on a set X is a map 𝛿 : 𝑋 × 𝑋 −→ R≥0 ∪ {+∞} satisfying
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋: 𝛿(𝑥, 𝑦) ≤ 𝛿(𝑥, 𝑧) + 𝛿(𝑧, 𝑦).

It is proved in [27] that the convolution is, indeed, a pseudo-extended metric, that is, it satisfies the
triangular inequality. Having isomorphic global sections is a necessary condition for two sheaves to be
at finite convolution distance, as expressed in the following proposition, which can be found as [27,
Remark 2.5 (i)].

Proposition 2.16. Let 𝐹, 𝐺 ∈ D𝑏 (kV) such that 𝑑𝐶 (𝐹, 𝐺) < +∞. Then

RΓ(V; 𝐹) � RΓ(V;𝐺).

Moreover, it satisfies the following important stability property.

Theorem 2.17. Let 𝑢, 𝑣 : 𝑋 −→ V be continuous maps, and let 𝐹 ∈ D𝑏 (kV). Then,

𝑑𝐶 (R𝑢∗𝐹,R𝑣∗𝐹) ≤ sup
𝑥∈𝑋

‖𝑢(𝑥) − 𝑣(𝑥)‖.

We will often make use of the following result, that we call the additivity of interleavings, which is
a direct consequence of the additivity of the convolution functor.

Proposition 2.18 (Additivity of interleavings). Let (𝐹𝑖)𝑖∈𝐼 and (𝐺 𝑗 ) 𝑗∈𝐽 be two finite families of D𝑏 (kV).
For all 𝐼 ′ ⊆ 𝐼 and 𝐽 ′ ⊆ 𝐽 of the same cardinality (eventually empty) and for all bijections 𝜎 : 𝐼 ′ −→ 𝐽 ′,
one has

𝑑𝐶 (⊕𝑖∈𝑖𝐹𝑖 , ⊕ 𝑗∈𝐽𝐺 𝑗 ) ≤ max
(
max
𝑖∈𝐼 ′

𝑑𝐶 (𝐹𝑖 , 𝐺𝜎 (𝑖) ), max
𝑖∈𝐼\𝐼 ′

𝑑𝐶 (𝐹𝑖 , 0), max
𝑗∈𝐽\𝐽 ′

𝑑𝐶 (𝐺 𝑗 , 0))
)
.

Proof. Let 𝐼 ′ ⊆ 𝐼 and 𝐽 ′ ⊆ 𝐽 of the same cardinality (eventually empty), and 𝜎 : 𝐼 ′ −→ 𝐽 ′ a bijection.
We set

𝑀 = max
(
max
𝑖∈𝐼 ′

𝑑𝐶 (𝐹𝑖 , 𝐺𝜎 (𝑖) ), max
𝑖∈𝐼\𝐼 ′

𝑑𝐶 (𝐹𝑖 , 0), max
𝑗∈𝐽\𝐽 ′

𝑑𝐶 (𝐺 𝑗 , 0))
)
.

If 𝑀 = +∞, the inequality is true. Let us now assume that 𝑀 < +∞. Let 𝜀 > 𝑀 . Then for all 𝑖 ∈ 𝐼\𝐼 ′,
𝐹𝑖 is 𝜀-interleaved with 0, so the canonical map 𝐹𝑖 ★𝐾2𝜀 −→ 𝐹𝑖 is zero. Similarly, for all 𝑗 ∈ 𝐽\𝐽 ′, 𝐺 𝑗

is 𝜀-interleaved with 0, so the canonical map 𝐺 𝑗 ★ 𝐾2𝜀 −→ 𝐺 𝑗 is zero. Moreover, for all 𝑖 ∈ 𝐼 ′, there
exists a pair of 𝜀-interleavings morphisms 𝑓𝑖 : 𝐹𝑖 ★𝐾𝜀 −→ 𝐺𝜎 (𝑖) and 𝑔𝑖 : 𝐺𝜎 (𝑖) ★𝐾𝜀 −→ 𝐹𝑖 .

Since (⊕𝑖∈𝐼𝐹𝑖)★𝐾𝜀 � ⊕𝑖∈𝐼 (𝐹𝑖 ★𝐾𝜀) and (⊕ 𝑗∈𝐽𝐺 𝑗 )★𝐾𝜀 � ⊕ 𝑗∈𝐽 (𝐺 𝑗 ★𝐾𝜀), and these direct sums
are finite, we can define 𝑓 : ⊕𝑖∈𝐼𝐹𝑖 ★ 𝐾𝜀 −→ ⊕ 𝑗∈𝐽𝐺 𝑗 and 𝑔 : ⊕ 𝑗∈𝐽𝐺 𝑗 ★ 𝐾𝜀 −→ ⊕𝑖∈𝐼𝐹𝑖 uniquely by
specifying 𝑓𝑖 𝑗 ∈ Hom(𝐹𝑖 ★𝐾𝜀 , 𝐺 𝑗 ) and 𝑔 𝑗𝑖 ∈ Hom(𝐺 𝑗 ★𝐾𝜀 , 𝐹𝑖). We set, for all (𝑖, 𝑗) ∈ 𝐼 × 𝐽

𝑓𝑖 𝑗 =

{
𝑓𝑖 if 𝑖 ∈ 𝐼 ′ and 𝑗 = 𝜎(𝑖)

0 else
and 𝑔 𝑗𝑖 =

{
𝑔𝑖 if 𝑖 ∈ 𝐼 ′ and 𝑗 = 𝜎(𝑖)

0 else
.

Let us verify that ( 𝑓 , 𝑔) is an 𝜀-interleaving pair between ⊕𝑖∈𝑖𝐹𝑖 and ⊕ 𝑗∈𝐽𝐺 𝑗 . For all (𝑖, 𝑙) ∈ 𝐼2, one has

(𝑔 ◦ ( 𝑓 ★ 𝐾𝜀))𝑖𝑙 =
∑
𝑗∈𝐽

𝑔 𝑗𝑙 ◦ ( 𝑓𝑖 𝑗 ★𝐾𝜀) =

{
𝜒2𝜀,0 ★ 𝐹𝑖 if 𝑖 = 𝑙

0 else
.
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Therefore, 𝑔 ◦ ( 𝑓 ★ 𝐾𝜀) = 𝜒2𝜀,0 ★ 𝐹. A similar computation yields 𝑓 ◦ (𝑔 ★ 𝐾𝜀) = 𝜒2𝜀,0 ★ 𝐺. Thus,
( 𝑓 , 𝑔) is indeed an 𝜀-interleaving pair.

By taking the infimum over 𝜀 > 𝑀 , we get the desired inequality. �

2.3. PL-sheaves and functions

We consider a finite-dimensional real vector space V endowed with a norm ‖ · ‖. We equip V with the
topology induced by the norm ‖ · ‖, and D𝑏 (kV) with the convolution distance 𝑑𝐶 associated to ‖ · ‖.
The notion of piecewise-linear(PL) sheaves was introduced by Kashiwara–Schapira in [27].
Definition 2.19. A convex polytope P in V is the intersection of a finite family of open or closed affine
half-spaces.
Definition 2.20. A sheaf 𝐹 ∈ D𝑏

R𝑐 (kV) is PL if there exists a locally finite family (𝑃𝑎)𝑎∈𝐴 of locally
closed convex polytopes covering V such that 𝐹|𝑃𝑎 is locally constant and of finite rank for all 𝑎 ∈ 𝐴.

We shall denote by D𝑏
PL (kV) the full subcategory of D𝑏 (kV) consisting of PL sheaves. The two first

points of the following approximation theorem are proved in [27], we provide a proof for three.
Theorem 2.21. Let 𝐹 ∈ D𝑏

R𝑐 (kV) and 𝐶 ∈ Z≥0 such that for all |𝑖 | > 𝐶, one has H𝑖 (𝐹) � 0. Then for
any 𝜀 > 0, there exists a sheaf 𝐹𝜀 ∈ D𝑏

PL (kV) satisfying
1. 𝑑𝐶 (𝐹, 𝐹𝜀) ≤ 𝜀,
2. supp(𝐹𝜀) ⊂ supp(𝐹) + 𝐵(0, 𝜀),
3. H𝑖 (𝐹𝜀) � 0, for all |𝑖 | > 𝐶 + dim(V) + 1.
Proof. (1) and (2) are [27, Theorem 2.11]. For (3), we have to use the construction of the proof of [27,
Theorem 2.11]. More precisely, the authors construct a simplicial complex (𝑆,Δ) such that there is an
homeomorphism 𝑓 : |𝑆 | ∼

−→ V and a PL continuous map 𝑔 : |𝑆 | −→ V such that 𝐹 � R 𝑓∗ 𝑓
−1𝐹 and

𝐹𝜀 � R𝑔∗ 𝑓 −1𝐹. We conclude by observing that the flabby dimension of V (hence of |𝑆 |) is dim(V) + 1
[25, Exercise III.2]. �

Following [29], we introduce the PL counterpart of constructible functions.
Definition 2.22. A function 𝜑 : V −→ Z is PL-constructible if there exists a locally finite covering
V =

⋃
𝜆∈𝐴 𝑃𝜆 by locally closed convex polytopes such that 𝜑 is constant on each 𝑃𝜆.

We denote by CFPL(V) the group of PL-constructible functions on V.
Proposition 2.23 [29]. Any 𝜑 ∈ CFPL(V) with compact support can be written as a finite sum 𝜑 =∑
𝜆 𝐶𝜆 · 1𝑋𝜆 , where 𝑋𝜆 is a compact convex polytope, and 𝐶𝜆 ∈ Z.

3. Main result

Let (V, ‖ · ‖) be a finite-dimensional normed real vector space. We endow D𝑏 (kV) with the associated
convolution distance 𝑑𝐶 [27]. Let 𝒞 be an abelian category. We denote by D𝑏 (𝒞) its bounded derived
category. Given 𝑎 ≤ 𝑏 two integers, we also denote by D[𝑎,𝑏] (kV) the full subcategory of D𝑏 (𝒞)
spanned by objects 𝑋 ∈ D𝑏 (𝒞) such that H𝑖 (𝑋) � 0 for all 𝑖 ∈ Z\[𝑎, 𝑏].
Definition 3.1. A sequence of objects (𝑋𝑛)𝑛≥0 of D𝑏 (𝒞) is said to be cohomologically bounded if there
exists some integers 𝑎 ≤ 𝑏 such that for all 𝑛 ≥ 0, 𝑋𝑛 ∈ D[𝑎,𝑏] (kV).

Let 𝛿 be a pseudo-extended metric on CF(V).
Definition 3.2. The pseudo-extended metric 𝛿 is said to be 𝑑𝐶 -dominated if for all cohomologically
bounded sequences (𝐹𝑛) ∈ D𝑏

R𝑐 (kV) of compactly supported sheaves, and 𝐹 ∈ D𝑏
R𝑐 (kV) with compact

support, one has

𝑑𝐶 (𝐹, 𝐹𝑛) −→
𝑛−→+∞

0 =⇒ 𝛿(𝜒(𝐹), 𝜒(𝐹𝑛)) −→
𝑛−→+∞

0.
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It shall be noted that by Proposition 2.16 and Lemma 2.8, the condition 𝑑𝐶 (𝐹, 𝐺) < +∞ implies
that

∫
𝜒(𝐹) d𝜒 =

∫
𝜒(𝐺) d𝜒. Our aim is to characterize all 𝑑𝐶 -dominated pseudo-extended metrics

on CF(V). This will be achieved in Theorem 3.11. In all this section, 𝛿 designates a 𝑑𝐶 -dominated
pseudo-extended metric on CF(V).

Our strategy is to prove that for any 𝜑 ∈ CF(V) with compact support, it is possible to concentrate the
‘mass’ of 𝜑 on one single point, that is 𝛿(𝜑, (

∫
𝜑 d𝜒) · 1{0}) = 0. To do so, we first assume that 𝜑 is PL-

constructible, which allows us to use rather straightforward arguments instead of sophisticated one from
subanalytic geometry. We then generalize to arbitrary stratifications thanks to Kashiwara–Schapira’s
approximation Theorem 2.21.

In Section 3.1, we introduce the notion of 𝜀-flag, which is a nested sequence of convex compact
sets. It allows us to successively concentrate the mass of an indicator PL-function onto one single point.
This is our technical tool to treat the PL-case in Section 3.2, from which we deduce the general one in
Section 3.3

3.1. Convolution distance of the difference of compact convex subsets

Recall that for 𝑥 ∈ V and 𝜀 ≥ 0, we denote by 𝐵(𝑥, 𝜀) the closed ball of radius 𝜀 centered at x.

Lemma 3.3. Let 𝐹 ∈ D𝑏 (kV) with compact support, and 𝜀 ≥ 0. If for all 𝑥 ∈ supp(𝐹) one has
RΓ(𝐵(𝑥, 𝜀); 𝐹) � 0, then F is 𝜀

2 -isomorphic to 0.

Proof. Let F and 𝜀 be as in the statement. By definition of interleavings, it is sufficient to prove that the
canonical map 𝐹 ★ 𝐾𝜀 −→ 𝐹 is zero. Let 𝑥 ∈ V. If 𝑥 ∉ supp(𝐹), it is clear that the induced morphism
(𝐹 ★ 𝐾𝜀)𝑥 −→ 𝐹𝑥 is zero. Let us assume that 𝑥 ∈ supp(𝐹). By Equation (2.12) in [37], one has

(𝐹 ★ 𝐾𝜀)𝑥 � RΓ(𝐵(𝑥, 𝜀); 𝐹) � 0.

Therefore, the morphism (𝐹 ★𝐾𝜀)𝑥 −→ 𝐹𝑥 is zero in every case, which implies that 𝐹 ★𝐾𝜀 −→ 𝐹
is also zero. �

Definition 3.4. Given 𝑋 ⊂ V and 𝜀 ≥ 0, the 𝜀-thickening of X is defined by

𝑇𝜀 (𝑋) := {𝑣 ∈ V | 𝑑 (𝑣, 𝑋) ≤ 𝜀}.

Lemma 3.5. Let 𝑋 ⊂ 𝑌 be compact convex subsets of V, and assume that there exists 𝜀 ≥ 0 such that
𝑌 ⊂ 𝑇𝜀 (𝑋). Then 𝑑𝐶 (k𝑌 \𝑋 , 0) ≤ 𝜀

2 .

Proof. For 𝑦 ∈ 𝑌 and 𝜀′ > 𝜀, one has the following distinguished triangle:

RΓ(𝐵(𝑦, 𝜀′); k𝑌 \𝑋 ) −→ RΓ(𝐵(𝑦, 𝜀′); k𝑌 ) −→ RΓ(𝐵(𝑦, 𝜀′); k𝑋 )
+1
−→ .

By hypothesis, 𝐵(𝑦, 𝜀′) ∩ 𝑌 ∩ 𝑋 is nonempty and convex. Since X and Y are closed convex sub-
sets, we deduce that the map RΓ(𝐵(𝑦, 𝜀′); k𝑌 ) −→ RΓ(𝐵(𝑦, 𝜀′); k𝑋 ) is an isomorphism. There-
fore, RΓ(𝐵(𝑦, 𝜀′); k𝑌 \𝑋 ) � 0, for all 𝑦 ∈ supp(k𝑌 \𝑋 ) ⊂ 𝑌 and 𝜀′ > 𝜀. Lemma 3.3 implies that
𝑑𝐶 (k𝑌 \𝑋 , 0) ≤ 𝜀

2 . �

Definition 3.6. Let 𝜀 ≥ 0. An 𝜀-flag is a finite sequence of nested subsets 𝑋0 ⊂ 𝑋1 ⊂ . . . ⊂ 𝑋𝑛 of V
satisfying

1. 𝑋 𝑖 is a compact convex subset of V, for all i;
2. 𝑋0 = {𝑥0} is a single point;
3. 𝑋 𝑖 ⊂ 𝑇𝜀 (𝑋

𝑖−1) for all i.

We designate these data by 𝑋•.
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Given an 𝜀-flag 𝑋• = (𝑋 𝑖)𝑖=0...𝑛, and 𝑖 ∈ �0, 𝑛�, we define the spaces Gr𝑖 (𝑋•) by

Gr0(𝑋
•) := 𝑋0, andforall 1 ≤ 𝑖 ≤ 𝑛,Gr𝑖 (𝑋•) := 𝑋 𝑖\𝑋 𝑖−1.

It is immediate to verify that Gr𝑖 (𝑋•) is locally closed for all 𝑖 ∈ �0, 𝑛� and that one has 𝑋𝑛 = �𝑖Gr𝑖 (𝑋•).
Moreover, we set

𝑆(𝑋•) :=
𝑛⊕
𝑖=0

kGr𝑖 (𝑋•) ∈ D𝑏
R𝑐 (kV).

Proposition 3.7. Let 𝑋• = (𝑋 𝑖)𝑖=0...𝑛 be an 𝜀-flag. Then one has
1. 𝜒(𝑆(𝑋•)) = 𝜒(k𝑋𝑛 );
2. 𝑑𝐶 (𝑆(𝑋

•), k𝑋0) ≤ 𝜀
2 .

Proof.
1. This is a direct consequence of the fact that 𝑋𝑛 = �𝑖Gr𝑖 (𝑋•).
2. For 𝑖 ≥ 1, the definition of 𝜀-flag implies that the pair (𝑋 𝑖−1, 𝑋 𝑖) satisfy the hypothesis of Lemma 3.5.

Therefore, 𝑑𝐶 (kGr𝑖 (𝑋•) , 0) ≤ 𝜀
2 . By additivity of interleavings, one deduces

𝑑𝐶 (𝑆(𝑋
•), k𝑋0) = 𝑑𝐶 (k𝑋0 ⊕

𝑛⊕
𝑖=1

kGr𝑖 (𝑋•) , k𝑋0 )

≤ max
(
𝑑𝐶 (k𝑋0 , k𝑋0 ), max

𝑖=1...𝑛
𝑑𝐶

(
kGr𝑖 (𝑋•) , 0

) )
(Proposition 2.18)

= max
𝑖=1...𝑛

𝑑𝐶 (kGr𝑖 (𝑋•) , 0)

≤
𝜀

2
.

�

3.2. PL-case

The first step of our proof is the following concentration lemma in the PL case, that we will extend later
on to arbitrary stratification by density of PL-sheaves with respect to the convolution distance.
Lemma 3.8. Let 𝛿 be a 𝑑𝐶 -dominated pseudo-extended metric on CF(V). Let 𝜑 ∈ CFPL (V) with
compact support. Therefore, there exists a finite set A, and for all 𝜆 ∈ 𝐴, a nonempty compact subset
𝑋𝜆 ⊂ V which is a convex polytope such that 𝜑 =

∑
𝜆∈𝐴𝐶𝜆 · 1𝑋𝜆 , with 𝐶𝜆 ∈ Z. For 𝜆 ∈ 𝐴, let 𝑥𝜆 ∈ 𝑋𝜆.

Then one has

𝛿

(
𝜑,

∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 }

)
= 0.

Proof. We consider the linear deformation retraction 𝐻𝜆 : 𝑋𝜆 × [0, 1] −→ 𝑋𝜆 from {𝑥𝜆} to 𝑋𝜆 defined
by

𝐻𝜆 (𝑥, 𝑡) = (1 − 𝑡) · 𝑥𝜆 + 𝑡 · 𝑥.

We set ℓ𝜆 = max{‖𝑥 − 𝑥𝜆‖ | 𝑥 ∈ 𝑋𝜆} and ℓ = max𝜆 ℓ𝜆. Let 𝜀 > 0 and 𝑛 = � ℓ𝜀 �. We define for
𝑖 ∈ �0, 𝑛� the sequence of subsets 𝑋 𝑖𝜆 := 𝐻𝜆 (𝑋𝜆 × [0, 𝑖𝑛 ]). By construction, 𝑋•

𝜆 = (𝑋 𝑖𝜆)𝑖=0...𝑛 is an
𝜀-flag. We depict an illustration of 𝑋•

𝜆 in Figure 1.
Let us define the following sheaves:

𝐹𝜀 =
⊕
𝜆∈𝐴

𝑆(𝑋•
𝜆)

|𝐶𝜆 | [(1 − sgn(𝐶𝜆))/2],

𝐹 =
⊕
𝜆∈𝐴

k |𝐶𝜆 |
{𝑥𝜆 }

[(1 − sgn(𝐶𝜆))/2] .
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Figure 1. Illustration of the 𝜀-flag 𝑋•
𝜆.

Then one has

𝜒(𝐹𝜀) = 𝜒

(⊕
𝜆∈𝐴

𝑆(𝑋•
𝜆)

|𝐶𝜆 | [(1 − sgn(𝐶𝜆))/2]

)

=
∑
𝜆∈𝐴

𝐶𝜆 · 𝜒(𝑆(𝑋
•
𝜆))

=
∑
𝜆∈𝐴

𝐶𝜆 · 1𝑋𝜆 (Proposition 3.7−(1)).

= 𝜑.

Similarly,

𝜒(𝐹) =
∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 } .

Moreover, one has by additivity of interleavings (Proposition 2.18)

𝑑𝐶 (𝐹𝜀 , 𝐹) ≤ max
𝜆∈𝐴

𝑑𝐶

(
𝑆(𝑋•

𝜆)
|𝐶𝜆 | [(1 − sgn(𝐶𝜆))/2], k |𝐶𝜆 |

{𝑥𝜆 }
[(1 − sgn(𝐶𝜆))/2]

)
= max

𝜆∈𝐴
𝑑𝐶

(
𝑆(𝑋•

𝜆), k{𝑥𝜆 }

)
≤

𝜀

2
≤ 𝜀 (Proposition 3.7−(2)).

Therefore, one has for all 𝑘 ∈ Z>0

𝛿

(
𝜑,

∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 }

)
= 𝛿

(
𝜒(𝐹), 𝜒(𝐹 1

𝑘
)
)
.
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Since 𝛿 is 𝑑𝐶 -dominated, (𝐹 1
𝑘
)𝑘>0 is a cohomologically bounded sequence of compactly supported

constructible sheaves, and 𝑑𝐶 (𝐹, 𝐹 1
𝑘
) −→
𝑘−→+∞

0, we conclude that

𝛿

(
𝜑,

∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 }

)
= 0.

�

Proposition 3.9. Let 𝛿 be a 𝑑𝐶 -dominated pseudo-extended metric on CF(V). Let 𝜑 ∈ CFPL (V) with
compact support, and let 𝑥 ∈ V. Then one has

𝛿

(
𝜑,

(∫
𝜑 d𝜒

)
· 1{𝑥 }

)
= 0.

Proof. Given 𝑢, 𝑣 ∈ V, we set [𝑢, 𝑣] = {𝑡 · 𝑢 + (1 − 𝑡) · 𝑣 | 𝑡 ∈ [0, 1]}. Let us write 𝜑 =
∑
𝜆∈𝐴𝐶𝜆 · 1𝑋𝜆 ,

with A finite, 𝐶𝜆 ∈ Z and 𝑋𝜆 compact convex polytopes. For 𝜆 ∈ 𝐴, let 𝑥𝜆 ∈ 𝑋𝜆. Then by Lemma 3.8
applied to 𝜓 =

∑
𝜆∈𝐴𝐶𝜆 · 1[𝑥𝜆 ,𝑥 ] , one has

𝛿

(
𝜓,

∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 }

)
= 0 = 𝛿

(
𝜓,

∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥 }

)
.

Therefore,

𝛿

(∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 },
∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥 }

)
= 0.

We now apply Lemma 3.8 to 𝜑:

𝛿

(
𝜑,

(∫
𝜑 d𝜒

)
· 1{𝑥 }

)
= 𝛿

(
𝜑,

∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥 }

)

≤ 𝛿

(
𝜑,

∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 }

)
+ 𝛿

(∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥𝜆 },
∑
𝜆∈𝐴

𝐶𝜆 · 1{𝑥 }

)

= 0. �

3.3. General case

In this final section, we generalize the previous results to arbitrary stratifications, by PL approximation
(Theorem 2.21).

Lemma 3.10. Let 𝛿 be a 𝑑𝐶 -dominated pseudo-extended metric on CF(V). Let 𝜑 ∈ CF(V) with compact
support, and let 𝑥 ∈ V. Then one has

𝛿

(
𝜑,

(∫
𝜑 d𝜒

)
· 1{𝑥 }

)
= 0.

Proof. Let 𝐹 ∈ D𝑏
R𝑐 (kV) with compact support such that 𝜑 = 𝜒(𝐹). According to Theorem 2.21, for

all 𝑛 ∈ Z>0, there exists 𝐹𝑛 ∈ D𝑏
PL(kV) such that 𝑑𝐶 (𝐹, 𝐹𝑛) ≤ 1

𝑛 , supp(𝐹𝑛) ⊂ 𝑇 1
𝑛
(supp(𝐹)), and

the sequence (𝐹𝑛) is cohomologically bounded. In particular, 𝐹𝑛 has compact support for all 𝑛 ≥ 1.

https://doi.org/10.1017/fms.2023.115 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.115


Forum of Mathematics, Sigma 11

Moreover, by Proposition 2.16, one has for all 𝑛 ≥ 1,

RΓ(V; 𝐹) � RΓ(V; 𝐹𝑛).

Therefore,
∫
𝜒(𝐹𝑛) d𝜒 =

∫
𝜑 d𝜒 according to Lemma 2.8. Consequently, for all 𝑛 > 0

𝛿

(
𝜑,

(∫
𝜑 d𝜒

)
· 1{𝑥 }

)
≤ 𝛿(𝜑, 𝜒(𝐹𝑛)) + 𝛿

(
𝜒(𝐹𝑛),

(∫
𝜑 d𝜒

)
· 1{𝑥 }

)

= 𝛿(𝜑, 𝜒(𝐹𝑛)) + 𝛿

(
𝜒(𝐹𝑛),

(∫
𝜒(𝐹𝑛) d𝜒

)
· 1{𝑥 }

)
= 𝛿(𝜑, 𝜒(𝐹𝑛)) (Proposition 3.9)
= 𝛿(𝜒(𝐹), 𝜒(𝐹𝑛)).

Since 𝛿 is 𝑑𝐶 -dominated, (𝐹𝑛) is a cohomologically bounded sequence of constructible compactly
supported sheaves, and 𝑑𝐶 (𝐹, 𝐹𝑛) −→

𝑛−→+∞
0, we conclude that

𝛿

(
𝜑,

(∫
𝜑 d𝜒

)
· 1{𝑥 }

)
= 0. �

Theorem 3.11. Let 𝛿 be a 𝑑𝐶 -dominated pseudo-extended metric on CF(V), and let 𝜑, 𝜓 ∈ CF(V) with
compact supports be such that

∫
𝜑 d𝜒 =

∫
𝜓 d𝜒. Then

𝛿(𝜑, 𝜓) = 0.

Proof. By the above lemma,

𝛿(𝜑, 𝜓) ≤ 𝛿

(
𝜑,

(∫
𝜑 d𝜒

)
· 1{0}

)
+ 𝛿

((∫
𝜓 d𝜒

)
· 1{0}, 𝜓

)
= 0 (Lemma 3.10). �

Corollary 3.12. Let 𝐹, 𝐺 ∈ D𝑏
R𝑐 (kV) with compact support such that 𝑑𝐶 (𝐹, 𝐺) < +∞. Then

𝛿(𝜒(𝐹), 𝜒(𝐺)) = 0.

Corollary 3.13. Let X be a real analytic manifold, and let 𝜑 ∈ CF(𝑋) with compact support. Also,
consider 𝑓 , 𝑔 : 𝑋 −→ V some morphisms of real analytic manifolds proper on supp(𝜑). Then

𝛿( 𝑓∗𝜑, 𝑔∗𝜑) = 0.

Proof. By [39, Theorem 2.3], 𝑓∗𝜑 and 𝑔∗𝜑 are indeed constructible and have compact support by the
hypothesis. Let 𝑎𝑋 : 𝑋 −→ {pt} and 𝑎V : V −→ {pt} be the constant maps. Then by [39, Section 2],
under the identification CF({𝑝𝑡}) � Z, one has∫

𝑓∗𝜑 d𝜒 = 𝑎V∗( 𝑓∗𝜑)

= (𝑎V ◦ 𝑓 )∗𝜑 (Theorem 2.11−3)
= 𝑎𝑋∗𝜑

=
∫

𝜑 d𝜒.

Similarly,
∫
𝑔∗𝜑 d𝜒 =

∫
𝜑 d𝜒 =

∫
𝑓∗𝜑 d𝜒. Since both 𝑓∗𝜑 and 𝑔∗𝜑 have compact support, we

conclude the proof by applying Theorem 3.11. �
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4. Consequences for TDA

This section is devoted to applying our main result to constructions of TDA. We start by recalling
standard definitions concerning multiparameter persistence modules and review results of [7] that allows
to compare the categories of persistence modules with d parameters equipped with the interleaving
distance 𝑑𝐼 , and sheaves on R𝑑 endowed with the convolution. This bridge allows transferring Corollary
3.12 to the setting of persistence and to prove that there cannot exist any nontrivial 𝑑𝐼 -continuous
additive invariants of persistence modules. By getting into the persistent world, we are able to apply
Lesnick’s universality theorem, that allows removing any occurrence of the interleaving distance in the
statements. We end the section by applying our results to several common TDA construction.

4.1. Persistence and sheaves

For a general introduction to multiparameter persistence, we refer the reader to [11]. Let 𝑑 ≥ 0. We
equip R𝑑 with the partial order ≤, defined by (𝑥1, . . . , 𝑥𝑑) ≤ (𝑦1, . . . , 𝑦𝑑) iff 𝑥𝑖 ≤ 𝑦𝑖 for all i. We denote
(R𝑑 , ≤) for the associated poset category. The category of persistence modules with d-parameters,
denoted by Persk(R

𝑑), is the category of functors (R𝑑 , ≤) −→ Mod(k) and natural transformations.
Persistence modules are usually compared using the interleaving distance, which is defined as follows.

Let 𝜀 ≥ 0 and 𝑀 ∈ Persk (R
𝑑). The 𝜀-shift of M is the persistence module 𝑀 [𝜀] defined, for 𝑥 ≤ 𝑦 ∈ R𝑑 ,

by

𝑀 [𝜀] (𝑥) = 𝑀 (𝑥 + (𝜀, . . . , 𝜀)), 𝑀 [𝜀] (𝑥 ≤ 𝑦) = 𝑀 (𝑥 + (𝜀, . . . , 𝜀) ≤ 𝑦 + (𝜀, . . . , 𝜀)).

This objectwise construction readily extends to an additive exact autoequivalence ·[𝜀] : Persk(R
𝑑) →

Persk (R
𝑑). The collection of linear maps (𝑀 (𝑥 ≤ 𝑥 + (𝜀, . . . , 𝜀)))𝑥∈R𝑑 induces a natural transformation

𝑀 −→ 𝑀 [𝜀], denoted 𝜏𝑀𝜀 . An 𝜀-interleaving between two persistence modules M and N in Persk(R
𝑑)

is the data of two morphisms 𝑓 : 𝑀 −→ 𝑁 [𝜀] and 𝑔 : 𝑁 −→ 𝑀 [𝜀] such that 𝑔[𝜀] ◦ 𝑓 = 𝜏𝑀2𝜀 and
𝑓 [𝜀] ◦ 𝑔 = 𝜏𝑁2𝜀 . If there exists an 𝜀-interleaving between M and N, we say that they are 𝜀-interleaved
and write 𝑀 ∼𝜀 𝑁 .

Definition 4.1. The interleaving distance between the persistence modules M and N in Persk (R
𝑑) is the

possibly infinite quantity

𝑑𝐼 (𝑀, 𝑁) := inf{𝜀 ≥ 0 | 𝑀 ∼𝜀 𝑁}.

Remark 4.2.
1. The interleaving distance is an extended-pseudo metric on the class of objects of Persk(R

𝑑).
2. By exactness of the 𝜀-shift functor, the interleaving distance readily extends to the bounded derived

category of persistence modules D𝑏 (Persk(R
𝑑)) (see [7]). In the following, we will still denote it by

𝑑𝐼 .

We now introduce the 𝛾-topology after Kashiwara–Schapira [25, Section 3.5], as an intermediate
between the Euclidean topology and the downset (or Alexandrov) topology. Let 𝛾 = (R≥0)

𝑑 . An open
set 𝑈 ⊂ R𝑑 is 𝛾-open if it satisfies 𝑈 + 𝛾 = 𝑈. The set of 𝛾-open subsets of R𝑑 indeed forms a topology
of R𝑑 , named the 𝛾-topology. We denote the associated topological space by R𝑑𝛾 . The identity map
𝜑𝛾 : R𝑑 −→ R𝑑𝛾 , 𝑥 ↦→ 𝑥, is continuous, and induces an adjunction

𝜑−1
𝛾 : D𝑏 (kR𝑑𝛾 ) D𝑏 (kR𝑑 ) : R𝜑𝛾∗.

Following [7, Section 4.2], it is possible to define an interleaving distance on D𝑏 (kR𝑑𝛾 ), that we
write 𝑑

𝛾
𝐼 . Also, we endow R𝑑 with the norm ‖ · ‖∞ defined by ‖𝑥‖∞ := max𝑖 |𝑥𝑖 | and denote by 𝑑𝐶 the

associated convolution distance on D𝑏 (kR𝑑 ).
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Theorem 4.3 [8]. For all 𝐹, 𝐺 ∈ D𝑏 (kR𝑑 ), and 𝐻, 𝐼 ∈ D𝑏 (kR𝑑𝛾 ) one has

1. 𝑑
𝛾
𝐼 (R𝜑𝛾∗𝐹,R𝜑𝛾∗𝐺) ≤ 𝑑𝐶 (𝐹, 𝐺);

2. 𝑑𝐶 (𝜑
−1
𝛾 𝐻, 𝜑−1

𝛾 𝐼) = 𝑑
𝛾
𝐼 (𝐻, 𝐼).

Moreover, in [7], the authors introduce a pair of adjoint functors

𝛼−1 : D𝑏 (Persk(R
𝑑)) D𝑏 (kR𝑑𝛾 ) : R𝛼∗

and prove the following.

Theorem 4.4 [7]. For all 𝐻, 𝐼 ∈ D𝑏 (kR𝑑𝛾 ), and 𝑀, 𝑁 ∈ D𝑏 (Persk (R
𝑑)), one has

1. 𝑑𝐼 (R𝛼∗𝐻,R𝛼∗𝐼) = 𝑑
𝛾
𝐼 (𝐻, 𝐼);

2. 𝑑
𝛾
𝐼 (𝛼

−1𝑀, 𝛼−1𝑁) = 𝑑𝐼 (𝑀, 𝑁).

Combining the above results, we obtain the following adjunction:

(𝛼 ◦ 𝜑𝛾)
−1 : (D𝑏 (Persk (R

𝑑)), 𝑑𝐼 ) (D𝑏 (kR𝑑 ), 𝑑𝐶 ) : R(𝛼 ◦ 𝜑𝛾)∗,

where the left adjoint functor is objectwise distance preserving, and the right adjoint is objectwise
1-Lipschitz.

We will also need the following lemma, that was not included in [7].

Lemma 4.5. Let 𝑀 ∈ D𝑏 (Persk (R
𝑑)), then 𝑑𝐼 (𝑀,R𝛼∗𝛼

−1𝑀) = 0.

Proof. By [7, Fact 2.10] and [7, Proposition 2.11-(i)], one has

𝛼−1 ◦ R𝛼∗ � idD𝑏 (k
R𝑑𝛾

) .

Therefore, for any 𝑀 ∈ D𝑏 (Persk (R
𝑑)), by Theorem 4.4-(1), one has

𝑑𝐼 (𝑀,R𝛼∗𝛼
−1𝑀) = 𝑑

𝛾
𝐼 (𝛼

−1𝑀, 𝛼−1(R𝛼∗𝛼
−1𝑀))

= 𝑑
𝛾
𝐼 (𝛼

−1𝑀, (𝛼−1R𝛼∗)𝛼
−1𝑀))

= 𝑑
𝛾
𝐼 (𝛼

−1𝑀, 𝛼−1𝑀)

= 0. �

Definition 4.6. A persistence module 𝑀 ∈ D𝑏 (Persk (R
𝑑)) is constructible if (𝛼◦𝜑𝛾)−1𝑀 ∈ D𝑏

R𝑐 (kR𝑑 ).

Remark 4.7. Constructibility is a rather mild finiteness condition. Indeed, standard finiteness conditions
of persistence modules such as being finitely presented or finitely subanalytically encoded both imply
constructibility (see [33]). Providing an convenient definition of constructibility for persistence modules
is an open and important research direction [32, 33, 44], which is outside the scope of this paper. That
is why, we simply pull back the consctructibility definition from sheaves to persistence modules.

We denote by D𝑏
R𝑐 (Persk (R

𝑑)) the full subcategory of D𝑏 (Persk (R
𝑑)) whose objects are constructible

persistence modules. Also, we denote Persk,R𝑐 (R
𝑑) the intersection D𝑏

R𝑐 (Persk (R
𝑑)) ∩ Persk (R

𝑑).

Proposition 4.8. The category D𝑏
R𝑐 (Persk (R

𝑑)) is a triangulated subcategory of D𝑏 (Persk (R
𝑑)).

Proof. This is a direct consequence of D𝑏
R𝑐 (kR𝑑 ) being a triangulated category and (𝛼 ◦ 𝜑𝛾)

−1 being a
triangulated functor. �

Definition 4.9. A constructible persistence module 𝑀 ∈ D𝑏 (Persk(R
𝑑)) is compactly generated if there

exists 𝐹 ∈ D𝑏
R𝑐 (kR𝑑 ) compactly supported such that 𝑀 � R(𝛼 ◦ 𝜑𝛾)∗𝐹.
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4.2. nonexistence of additive stable invariants of persistence modules

In this section, we identify K0 (D𝑏
R𝑐 (kR𝑑 )) with CF(R𝑑), according to the sheaf-function correspondence

(Theorem 2.6). Since D𝑏
R𝑐 (Persk (R

𝑑)) is triangulated, its Grothendieck group is well defined. We let 𝜅
be the map ob(D𝑏

R𝑐 (Persk (R
𝑑))) −→ K0(D𝑏

R𝑐 (Persk(R
𝑑))) sending a constructible persistence module

to its K0-class.

Definition 4.10. A pseudo-extended metric 𝛿 on K0 (D𝑏
R𝑐 (Persk (R

𝑑))) is said to be 𝑑𝐼 -dominated if for
all cohomologically bounded sequences (𝑀𝑛) ∈ D𝑏

R𝑐 (Persk (R
𝑑)) of compactly generated persistence

modules, and 𝑀 ∈ D𝑏
R𝑐 (Persk (R

𝑑)) compactly generated, one has

𝑑𝐼 (𝑀, 𝑀𝑛) −→
𝑛−→+∞

0 =⇒ 𝛿(𝜅(𝑀), 𝜅(𝑀𝑛)) −→
𝑛−→+∞

0.

Any triangulated functor 𝑇 : 𝒞 −→ 𝒞′ between triangulated categories, induces a group morphism
K0 (𝒞) −→ K0(𝒞

′), that, for simplicity, we keep denoting by T. Given 𝛿 a pseudo-extended metric on
K0 (D𝑏

R𝑐 (Persk (R
𝑑))), we let 𝛿∗ be the pseudo-extended metric defined on CF(R𝑑) by

𝛿∗(𝜑, 𝜓) := 𝛿(R(𝛼 ◦ 𝜑𝛾)∗𝜑,R(𝛼 ◦ 𝜑𝛾)∗𝜓).

Proposition 4.11. The pseudo-extended metric 𝛿 on K0 (D𝑏
R𝑐 (Persk (R

𝑑))) is 𝑑𝐼 -dominated if and only
if 𝛿∗ is 𝑑𝐶 -dominated.

Proof. Assume that 𝛿 is 𝑑𝐼 dominated. Let (𝐹𝑛) and F be compactly supported in D𝑏
R𝑐 (kR𝑑 ) such that,

(𝐹𝑛) is cohomologically bounded, and

𝑑𝐶 (𝐹, 𝐹𝑛) −→
𝑛−→+∞

0.

Thus, by Theorems 4.3 and 4.4,

𝑑𝐼 (R(𝛼 ◦ 𝜑𝛾)∗𝐹,R(𝛼 ◦ 𝜑𝛾)∗𝐹𝑛) −→
𝑛−→+∞

0.

The functor R(𝛼 ◦ 𝜑𝛾)∗ has finite cohomological dimension [7, Proposition 3.11], thus, the sequence
(R(𝛼 ◦ 𝜑𝛾)∗𝐹𝑛) is cohomologically bounded and compactly generated by definition. Since 𝛿 is 𝑑𝐼 -
dominated, we deduce that

𝛿(𝜅(R(𝛼 ◦ 𝜑𝛾)∗𝐹), 𝜅(R(𝛼 ◦ 𝜑𝛾)∗𝐹𝑛)) = 𝛿(R(𝛼 ◦ 𝜑𝛾)∗𝜒(𝐹),R(𝛼 ◦ 𝜑𝛾)∗𝜒(𝐹𝑛))

= 𝛿∗(𝜒(𝐹), 𝜒(𝐹𝑛)) −→
𝑛−→+∞

0.

Therefore, 𝛿∗ is 𝑑𝐶 -dominated. The proof of the converse works similarly. �

Corollary 4.12. Let 𝛿 be a 𝑑𝐼 -dominated pseudo-extended metric on K0(D𝑏
R𝑐 (Persk(R

𝑑))). Then for all
𝑀, 𝑁 ∈ D𝑏

R𝑐 (Persk (R
𝑑)) compactly generated such that 𝑑𝐼 (𝑀, 𝑁) < +∞, one has 𝛿(𝜅(𝑀), 𝜅(𝑁)) = 0.

Proof. According to Theorem 4.3, one has 𝑑𝐼 (𝑀, 𝑁) = 𝑑𝐶 ((𝛼 ◦ 𝜑𝛾)
−1𝑀, (𝛼 ◦ 𝜑𝛾)

−1𝑁) < +∞. Also,
since 𝛿 is 𝑑𝐼 -dominated, 𝛿∗ is 𝑑𝐶 -dominated. Therefore, by Corollary 3.12,

𝛿∗(𝜒((𝛼 ◦ 𝜑𝛾)
−1𝑀), 𝜒((𝛼 ◦ 𝜑𝛾)

−1𝑁)) (4.1)
= 𝛿(𝜅(R(𝛼 ◦ 𝜑𝛾)∗(𝛼 ◦ 𝜑𝛾)

−1𝑀), 𝜅(R(𝛼 ◦ 𝜑𝛾)∗(𝛼 ◦ 𝜑𝛾)
−1𝑁)) (4.2)

= 0. (4.3)

Note that, by [27, Corollary 1.6], R𝜑𝛾∗ ◦ 𝜑
−1
𝛾 � idD𝑏 (kV𝛾 ) . Therefore,

R(𝛼 ◦ 𝜑𝛾)∗(𝛼 ◦ 𝜑𝛾)
−1𝑀 � R𝛼∗𝛼

−1𝑀.
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By Lemma 4.5, 𝑑𝐼 (𝑀,R𝛼∗𝛼
−1𝑀) = 0. Since 𝛿 is 𝑑𝐼 -dominated, 𝛿(𝜅(𝑀), 𝜅(R𝛼∗𝛼

−1𝑀)) = 0.
Similarly, 𝛿(𝜅(𝑁), 𝜅(R𝛼∗𝛼

−1𝑀)) = 0. From Equation (4.3), we deduce that

𝛿(𝜅(𝑀), 𝜅(𝑁))

≤ 𝛿(𝜅(𝑀), 𝜅(R𝛼∗𝛼
−1𝑀)) + 𝛿(𝜅(R𝛼∗𝛼

−1𝑀), 𝜅(R𝛼∗𝛼
−1𝑁))

+ 𝛿(𝜅(R𝛼∗𝛼
−1𝑁), 𝜅(𝑁))

= 0 + 0 + 0. �

Let (𝐺, +) be an abelian group, endowed with a pseudo-extended metric 𝛿. We think of G as a group
of invariants of persistence modules and of 𝛿 as a way of measuring dissimilarity between invariants.

Definition 4.13. Let 𝒞 be a triangulated category. A map 𝜆 : ob(𝒞) −→ 𝐺 is said to be additive with
respect to exact triangles if for all exact triangles 𝑋 −→ 𝑌 −→ 𝑍

+1
−→ in𝒞, one has, 𝜆(𝑌 ) = 𝜆(𝑋)+𝜆(𝑍).

Similarly, given 𝒜 an abelian category, a map 𝜆 : ob(𝒜) −→ 𝐺 is said to be additive with respect
to short exact sequences if for all short exact sequences 0 −→ 𝑋 −→ 𝑌 −→ 𝑍 −→ 0 in 𝒜, one has
𝜆(𝑌 ) = 𝜆(𝑋) + 𝜆(𝑍).

Theorem 4.14. Let 𝜆 : ob(D𝑏
R𝑐 (Persk (R

𝑑))) −→ 𝐺 be an additive map with respect to exact triangles
such that for all cohomologically bounded sequence (𝑀𝑛), and M, compactly generated constructible
persistence modules in D𝑏

R𝑐 (Persk (R
𝑑)),

𝑑𝐼 (𝑀, 𝑀𝑛) −→
𝑛−→+∞

0 =⇒ 𝛿(𝜆(𝑀), 𝜆(𝑀𝑛)) −→
𝑛−→+∞

0.

Then for all compactly generated constructible persistence modules 𝑀, 𝑁 ∈ D𝑏
R𝑐 (Persk(R

𝑑)):

𝑑𝐼 (𝑀, 𝑁) < +∞ =⇒ 𝛿(𝜆(𝑀), 𝜆(𝑁)) = 0.

Proof. By the universal property of the Grothendieck group, there exists a unique group morphism
Φ : K0(D𝑏

R𝑐 (Persk(R
𝑑))) −→ 𝐺 such that the following diagram of maps

ob(D𝑏
R𝑐 (Persk(R

𝑑)))
𝜆 ��

𝜅
�����

����
����

����
𝐺

K0(D𝑏
R𝑐 (Persk(R

𝑑)))

Φ

���������������

is commutative. For 𝜑, 𝜓 ∈ K0 (D𝑏
R𝑐 (Persk (R

𝑑))), define 𝛿−1 (𝜑, 𝜓) := 𝛿(Φ(𝜑),Φ(𝜓)). It is a pseudo-
extended metric on K0(D𝑏

R𝑐 (Persk(R
𝑑))). Moreover, 𝛿−1 is 𝑑𝐼 -dominated by commutativity of the above

diagram. Therefore, by Corollary 4.12, for all 𝑀, 𝑁 ∈ D𝑏
R𝑐 (Persk (R

𝑑)) compactly generated such that
𝑑𝐼 (𝑀, 𝑁) < +∞, one has:

𝛿−1(𝜅(𝑀), 𝜅(𝑁)) = 𝛿(Φ(𝜅(𝑀)),Φ(𝜅(𝑁))) = 𝛿(𝜆(𝑀), 𝜆(𝑁)) = 0. �

Theorem 4.15. Let 𝜆 : ob(Persk,R𝑐 (R
𝑑)) −→ 𝐺 be an additive map with respect to short exact

sequences such that for all (𝑁𝑛) and N, compactly generated constructible persistence modules in
Persk,R𝑐 (R

𝑑),

𝑑𝐼 (𝑁, 𝑁𝑛) −→
𝑛−→+∞

0 =⇒ 𝛿(𝜆(𝑁), 𝜆(𝑁𝑛)) −→
𝑛−→+∞

0.

Also, assume that the sum map 𝐺 × 𝐺 −→ 𝐺 and the symmetric map 𝐺 −→ 𝐺 are continuous with
respect to 𝛿. Then, for all compactly generated constructible persistence modules 𝑀, 𝑁 ∈ Persk,R𝑐 (R

𝑑),

𝑑𝐼 (𝑀, 𝑁) < +∞ =⇒ 𝛿(𝜆(𝑀), 𝜆(𝑁)) = 0.
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Proof. Let𝜆 be as in the statement of the theorem. We extend it as a map𝜆 : ob(D𝑏
R𝑐 (Persk (R

𝑑))) −→ 𝐺,
by 𝜆(𝑀) :=

∑
𝑖 (−1)𝑖𝜆(H𝑖 (𝑀)) (the sum is always finite by boundedness assumption, hence well defined

in G). One checks easily that 𝜆 is additive with respect to exact triangles. Moreover, since the 𝜀-shift
functor is exact, the cohomological functors H𝑖 preserve interleavings. Therefore, for (𝑁𝑛) and N
compactly generated persistence modules in D𝑏

R𝑐 (Persk (R
𝑑)), if 𝑑𝐼 (𝑁, 𝑁𝑛) −→

𝑛−→+∞
0, then for all 𝑖 ∈ Z,

𝑑𝐼 (H𝑖 (𝑁),H𝑖 (𝑁𝑛)) −→
𝑛−→+∞

0. Therefore, by assumptions,

𝛿(𝜆(H𝑖 (𝑁)), 𝜆(H𝑖 (𝑁𝑛))) −→
𝑛−→+∞

0, forall 𝑖 ∈ Z.

Assume in addition that (𝑁𝑛) is cohomologically bounded, that is, there exists 𝐶 ∈ Z≥0 such that for all
𝑛 ≥ 0, H𝑖 (𝑁𝑛) � 0 whenever |𝑖 | > 𝐶. We also assume without loss of generality that H𝑖 (𝑁) � 0 for all
|𝑖 | > 𝐶. Therefore, 𝜆(𝑁) =

∑𝐶
𝑖=−𝐶 (−1)𝑖𝜆(H𝑖 (𝑁)), and for all 𝑛 ≥ 0, 𝜆(𝑁𝑛) =

∑𝐶
𝑖=−𝐶 (−1)𝑖𝜆(H𝑖 (𝑁𝑛)).

By continuity of the group operations with respect to 𝛿, one has

𝛿(𝜆(𝑁), 𝜆(𝑁𝑛)) −→
𝑛−→+∞

0.

Therefore, 𝜆 satisfies the hypothesis of Theorem 4.14, and we can conclude for all compactly
generated persistence modules 𝑀, 𝑁 ∈ Persk,R𝑐 (R

𝑑), if 𝑑𝐼 (𝑀, 𝑁) < +∞, then

𝛿(𝜆(𝑀), 𝜆(𝑁)) = 𝛿(𝜆(𝑀), 𝜆(𝑁)) = 0. �

Our effort to formulate the consequences of our main result in a purely persistent and nonderived
setting, allows using the universality result proved by Lesnick in [30, Corollary 5.6], that we recall
here. Given 𝑓 : 𝑋 −→ R𝑑 , its sublevelsets filtration is the functor S ( 𝑓 ) : (R𝑑 , ≤) −→ Top defined by
S ( 𝑓 ) (𝑥) := 𝑓 −1{𝑠 ∈ R𝑑 | 𝑠 ≤ 𝑥}, and its i-th persistence module is the functorS𝑖 ( 𝑓 ) := H𝑖 (−; k)◦S ( 𝑓 ),
with H𝑖 (−; k) the i-th singular homology with coefficients in k functor.

For 𝑓 : 𝑋 −→ R𝑑 and 𝑔 : 𝑋 −→ R𝑑 two continuous maps of topological space, one sets

𝑑∞( 𝑓 , 𝑔) := inf
ℎ:𝑋 ∼

−→𝑌
sup
𝑥∈𝑋

‖ 𝑓 (𝑥) − 𝑔 ◦ ℎ(𝑥)‖∞,

where h ranges over all homeomorphisms from X to Y.
Recall that a field k is said to be prime if it does not contain any proper subfields; therefore, if k = Q

or F𝑝 , for p a prime number.

Theorem 4.16 [30]. Let k be a prime field and d be a pseudo-extended metric on ob(Persk (R
𝑑)) such

that for all maps of topological spaces 𝑓 : 𝑋 −→ R𝑑 and 𝑔 : 𝑌 −→ R𝑑 , one has

𝑑 (S𝑖 ( 𝑓 ),S𝑖 (𝑔)) ≤ 𝑑∞( 𝑓 , 𝑔).

Then 𝑑 ≤ 𝑑𝐼 .

Note that Lesnick’s proof relies on the existence of geometric lift for interleavings of persistence
modules [30, Proposition 5.8], which holds without any assumption on the persistence modules. There-
fore, Theorem 4.16 restricts to constructible persistence modules in the following way.

Theorem 4.17 (Universality, constructible version). Let k be a prime field and d be a pseudo-extended
metric on ob(Persk,R𝑐 (R

𝑑)) such that for all maps of topological spaces 𝑓 : 𝑋 −→ R𝑑 and 𝑔 : 𝑌 −→ R𝑑

such that S𝑖 ( 𝑓 ) and S𝑖 (𝑔) are constructible, one has

𝑑 (S𝑖 ( 𝑓 ),S𝑖 (𝑔)) ≤ 𝑑∞( 𝑓 , 𝑔).

Then 𝑑 ≤ 𝑑𝐼 .

Combining Lesnick’s universality theorem with our Theorem 4.15, we obtain the following corollary.
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Corollary 4.18. Let 𝜆 : ob(Persk,R𝑐 (R
𝑑)) −→ 𝐺 be an additive map with respect to short exact

sequences such that for all maps of topological spaces 𝑓 : 𝑋 −→ R𝑑 and 𝑔 : 𝑌 −→ R𝑑 such that S𝑖 ( 𝑓 )
and S𝑖 (𝑔) are constructible, one has

𝛿(𝜆(S𝑖 ( 𝑓 )), 𝜆(S𝑖 (𝑔))) ≤ 𝑑∞( 𝑓 , 𝑔).

Also, assume that the operations of G are continuous with respect to 𝛿. Then for all compactly
generated persistence modules 𝑀, 𝑁 ∈ Persk,R𝑐 (R

𝑑), one has

𝑑𝐼 (𝑀, 𝑁) < +∞ =⇒ 𝛿(𝜆(𝑀), 𝜆(𝑁)) = 0.

4.3. Examples

In this section, we apply our results to well-known constructions that are common to TDA. We still
denote by V a finite-dimensional real vector space endowed with a norm ‖ · ‖.

4.3.1. Radon transforms
Radon transforms are a general class of transformations on constructible functions, for which there
exists a well-formulated criterion of invertibility [38]. The ECT is a particular instance of invertible
Radon transform, which has found numerous applications [4, 42, 20, 18].

Let X and Y be two real analytic manifolds, and let 𝑆 ⊂ 𝑋 ×𝑌 be a locally closed subanalytic subset.
Let 𝑞1 and 𝑞2 be the first and second projection defined on 𝑋 × 𝑌 . We shall assume the following
hypothesis:

𝑞2 isproperontheclosureof 𝑆 in 𝑋 × 𝑌 . (4.4)

Definition 4.19. The Radon transform associated to S, is the group homomorphism ℛ𝑆 : CF(𝑋) −→
CF(𝑌 ) defined by

ℛ𝑆 (𝜑) := 𝑞2∗ [(𝜑 ◦ 𝑞1) · 1𝑆] .

Remark 4.20. When 𝑋 = V, 𝑌 = S∗ × R, and 𝑆𝐸𝐶𝑇 = {(𝑣, (𝜉, 𝑡)) ∈ 𝑋 × 𝑌 | 𝜉 (𝑣) ≤ 𝑡}, the transform
ℛ𝑆𝐸𝐶𝑇 is the usual ECT. We have denoted S∗ the unit dual sphere of V∗.

Proposition 4.21. Let 𝑋 = V, and Y be real analytic manifold, and let 𝑆 ⊂ 𝑋 ×𝑌 satisfying hypothesis
(4.4). Let 𝛿 be a pseudo-extended distance on CF(𝑌 ) such that 𝛿 ◦ (ℛ𝑆 ×ℛ𝑆) is 𝑑𝐶 -dominated. Then
for all 𝜑, 𝜓 ∈ CF(V) with compact support such that

∫
𝜑d𝜒 =

∫
𝜓d𝜒, one has

𝛿(ℛ𝑆 (𝜑),ℛ𝑆 (𝜓)) = 0.

Proof. This is a straightforward consequence of Theorem 3.11. �

4.3.2. Amplitudes
In [22], the authors introduce the notion of amplitude on an abelian category 𝒜, as a notion of
measurement of the size of objects of 𝒜, compatible with exact sequences.

Definition 4.22. Let 𝒜 be an abelian category. An amplitude on 𝒜 is a class function 𝜆 : ob(𝒜) −→
[0, +∞] satisfying 𝜆(0) = 0, and for all short exact sequence 0 −→ 𝐴 −→ 𝐵 −→ 𝐶 −→ 0

1. 𝜆(𝐴) ≤ 𝜆(𝐵);
2. 𝜆(𝐶) ≤ 𝜆(𝐵);
3. 𝜆(𝐵) ≤ 𝜆(𝐴) + 𝜆(𝐶).

The amplitude 𝜆 will be said to be additive if (3) is an equality.
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Proposition 4.23. Let 𝜆 be an additive amplitude on Persk,R𝑐 (R
𝑑), such that for all (𝑀𝑛) and M

compactly generated in Persk,R𝑐 (R
𝑑), one has

𝑑𝐼 (𝑀𝑛, 𝑀) −→
𝑛−→+∞

0 =⇒ |𝜆(𝑀𝑛) − 𝜆(𝑀) | −→
𝑛−→+∞

0.

Then for all compactly generated persistence module 𝑀, 𝑁 ∈ Persk,R𝑐 (R
𝑑) such that 𝑑𝐼 (𝑀, 𝑁) <

+∞, one has 𝜆(𝑀) = 𝜆(𝑁).

Proof. We apply Theorem 4.15 to the additive amplitude 𝜆, where 𝐺 = (R, +) is endowed with the
standard metric. Thus, for all 𝑀, 𝑁 ∈ Persk,R𝑐 (R

𝑑) compactly generated, |𝜆(𝑀) − 𝜆(𝑁) | = 0. �

Corollary 4.24. Assume that k is a prime field, and let 𝜆 : ob(Persk,R𝑐 (R
𝑑)) −→ [0, +∞] be an

additive amplitude on persistence modules such that for all maps of topological spaces 𝑓 : 𝑋 −→ R𝑑

and 𝑔 : 𝑌 −→ R𝑑 , and all 𝑖 ∈ Z≥0, if S𝑖 ( 𝑓 ) and S𝑖 (𝑔) are constructible, then

|𝜆(S𝑖 ( 𝑓 )) − 𝜆(S𝑖 (𝑔)) | ≤ 𝑑∞( 𝑓 , 𝑔).

Then for all compactly generated and constructible 𝑀, 𝑁 ∈ Persk,R𝑐 (R
𝑑), one has

𝑑𝐼 (𝑀, 𝑁) < +∞ =⇒ 𝜆(𝑀) = 𝜆(𝑁).

4.3.3. Additive vectorizations
It is well known that persistence modules endowed with the interleaving distance do not embed isomet-
rically into any Hilbert space [34, Theorem 4.3]. Nevertheless, since most machine learning techniques
take as input elements of a vector space, it is a very common strategy to define a so-called vectoriza-
tion of persistence modules, that is, a map Φ : ob(Persk,R𝑐 (R

𝑑)) −→ W, where W is a real vector
space, usually endowed with a norm ‖ · ‖. To name a few, see for instance persistence landscapes [13],
persistent images [1] or multiparameter persistence landscapes [43].

Proposition 4.25. Let Φ : ob(Persk,R𝑐 (R
𝑑)) −→ (W, ‖ · ‖) be an additive vectorization of persistence

modules satisfying for all (𝑀𝑛) and M in Persk,R𝑐 (R
𝑑):

𝑑𝐼 (𝑀𝑛, 𝑀) −→
𝑛−→+∞

0 =⇒ ‖Φ(𝑀𝑛) −Φ(𝑀)‖ −→
𝑛−→+∞

0.

Then for all compactly generated and constructible persistence modules 𝑀, 𝑁 ∈ Persk (R
𝑑), if

𝑑𝐼 (𝑀, 𝑁) < +∞, then Φ(𝑀) = Φ(𝑁).

Proof. The proof is similar to Proposition 4.23. �

Corollary 4.26. Assume that k is a prime field, and let Φ : ob(Persk,R𝑐 (R
𝑑)) −→ (W, ‖ · ‖) be an

additive vectorization of persistence modules such that for all maps of topological spaces 𝑓 : 𝑋 −→ R𝑑

and 𝑔 : 𝑌 −→ R𝑑 , and all 𝑖 ∈ Z≥0 such that S𝑖 ( 𝑓 ) and S𝑖 (𝑔) are constructible and compactly generated,
one has

‖Φ(S𝑖 ( 𝑓 )) −Φ(S𝑖 (𝑔))‖ ≤ 𝑑∞( 𝑓 , 𝑔).

Then for all compactly generated and constructible persistence modules 𝑀, 𝑁 ∈ Persk (R
𝑑), if

𝑑𝐼 (𝑀, 𝑁) < +∞, then Φ(𝑀) = Φ(𝑁).

Remark 4.27. The construction ‖Φ(·)‖, where Φ is an additive vectorization of persistence modules,
provides a very general mean of defining not necessarily additive amplitudes of persistence modules.
One interpretation of Proposition 4.25 and Corollary 4.26 is that such amplitudes can never be reasonably
controlled, either by the interleaving distance 𝑑𝐼 on persistence modules nor by the infinite distance 𝑑∞
on functions.
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5. Discussion and further work

Our main results Theorem 3.11 and Corollary 3.12 show that any distance on the group of constructible
that can be controlled by the convolution distance – in the sense of domination – vanishes as soon as
two compactly supported constructible functions 𝜑, 𝜓 have the same Euler integral, a condition that is
satisfied whenever there exists two sheaves 𝐹, 𝐺 ∈ D𝑏

R𝑐 (kV) satisfying 𝑑𝐶 (𝐹, 𝐺) < +∞ and such that
𝜑 = 𝜒(𝐹) and 𝜓 = 𝜒(𝐺). The convolution distance is usually interpreted as a ℓ∞ type metric, because
of the form of stability (Theorem 2.17) it satisfies. Our results therefore give a strong negative incentive
on the possibility of a obtaining a ℓ∞-control of the pushforward operation on constructible functions.

In terms of TDA, our result shows that additive invariants of persistence modules cannot be stable
with respect to the interleaving distance. Therefore, in order to obtain well-behaved invariants, it is
necessary to either loosen the additivity assumption or to consider stability with respect to other type
of distances. These are both active fields of research [14, 41, 12], for which we hope that the present
article will highlight the importance.

Schapira recently introduced the concept of constructible functions up to infinity [40], that allows
one to define Euler integration of constructible functions without compact support. We conjecture that
Theorem 3.11 holds when replacing with compact support by constructible up to infinity, though we do
not know how to adapt our 𝜀-flag technique to this setting.
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