
ANZIAM J. 57(2016), 269–279
doi:10.1017/S1446181115000267

AN ANALYTICAL SOLUTION FOR
PARISIAN UP-AND-IN CALLS

NHAT-TAN LE) 1, XIAOPING LU1 and SONG-PING ZHU1

(Received 27 November, 2014; accepted 29 May, 2015; first published online 27 January 2016)

Abstract

We derive an analytical solution for the value of Parisian up-and-in calls by using the
“moving window” technique for pricing European-style Parisian up-and-out calls. Our
pricing formula can be applied to both European-style and American-style Parisian up-
and-in calls, due to the fact that with an “in” barrier, the option holder cannot do or
decide on anything before the option is activated, and once the option is activated it is
just a plain vanilla call, which could be of American style or European style.

2010 Mathematics subject classification: primary 91G20; secondary 91G80, 62P05.
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solutions, coupled integral equations.

1. Introduction

Barrier options are cheaper alternatives to vanilla options for hedging and speculating,
but the “one-touch” knock-in or knock-out feature is prone to market manipulations.
To eliminate these manipulations, Parisian options are introduced, while the
underlying asset price has to continually stay above or below the asset barrier for
a prescribed amount of time before the knock-out or knock-in feature is activated.
However, the introduction of the “time barrier” turns the option valuation into a three-
dimensional problem, which is more complicated to solve. This is especially true in the
case of American-style Parisian knock-out options, since the corresponding optimal
exercise boundary is a three-dimensional surface.

Fortunately, this difficulty disappears in the valuation of American-style Parisian
knock-in options. In fact, by definition, before the knock-in feature is activated, the
option holder cannot do anything regardless of the exercise style of the option and,
once the “knock-in” feature is activated, the value of the Parisian option takes on
the value of the embedded American-style vanilla option. Therefore, the solution
procedure for the valuation of an American-style Parisian knock-in option and that of
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its European-style counterpart should be very similar. The only difference is that upon
activation the former becomes an American-style vanilla option, and the latter becomes
a European-style vanilla option. Thus, the technique proposed by Zhu and Chen [13]
for their solution of European-style Parisian up-and-out calls could be applied to find
analytical solutions for both American-style and European-style Parisian knock-in
options. Recently, this technique was used to find a simple analytical solution for
Parisian down-and-in calls [15]. The current paper aims to apply the same technique
again for the derivation of an analytical solution for Parisian up-and-in calls.

The paper is organized as follows. In Section 2, we introduce the partial differential
equation (PDE) systems governing the price of a Parisian up-and-in call. The solution
procedure is presented in Section 3, while Section 4 provides a numerical example to
illustrate the implementation of our formulas. The paper ends with some concluding
remarks in Section 5.

2. Formulation

By definition, a Parisian up-and-in call is knocked in and becomes the embedded
vanilla call, which could be of American or European style, if the underlying asset
price continually stays above the barrier S̄ for a prescribed time period J̄. Otherwise,
the Parisian up-and-in call expires worthless.

For some extreme values of S̄ and J̄, we observe that a Parisian up-and-in call
becomes worthless, or degenerates to either a one-touch barrier option or a vanilla
option. For other nondegenerate cases, the price of a Parisian up-and-in call depends
on the underlying asset price S , the current time t and the barrier time J, in addition to
other parameters such as the volatility rate σ, the risk-free interest rate r and the expiry
time T .

We now assume that the underlying asset price S with a continuous dividend yield
D follows a lognormal Brownian motion governed by

dS = (r − D)S dt + σS dZ,

where Z is a standard Brownian motion.
Based on financial arguments similar to those of Zhu and Chen [13], the pricing

domains of those nondegenerate cases can be elegantly reduced to the regions

I: {0 ≤ S ≤ S̄ , 0 ≤ t ≤ T − J̄, J = 0},
II: {S̄ ≤ S <∞, J ≤ t ≤ J + T − J̄, 0 ≤ J ≤ J̄}.

Let V1(S , t) and V2(S , t, J) denote the option prices in the regions I and II, respectively.
Following the arguments of Haber et al. [5] and Zhu and Chen [13], we show that V1

and V2 should satisfy the following two PDE systems A1 and A2 defined in region I
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and region II, respectively:

A1 =



∂V1

∂t
+ LV1 = 0,

V1(S ,T − J̄) = 0,
V1(0, t) = 0,
V1(S̄ , t) = V2(S̄ , t, 0),

A2 =



∂V2

∂t
+
∂V2

∂J
+ LV2 = 0,

V2(S , t, J̄) = C(S , t),
V2(S , t, J) v S as S → +∞,

V2(S̄ , t, J) = V2(S̄ , t, 0),

(2.1)

with the connectivity condition

∂V1

∂S
(S̄ , t) =

∂V2

∂S
(S̄ , t, 0). (2.2)

Here, C = CA (the embedded American-style vanilla option price) if the Parisian option
is of American style, or C = CE (the embedded European-style vanilla option price) if
the Parisian option is of European style, and the operator L is defined as

L =
σ2S 2

2
∂2

∂S 2 + (r − D)S
∂

∂S
− rI, (2.3)

with I being the identity operator.
First, we point out that the option will expire worthless if the asset price still remains

below or at the asset barrier when t reaches T − J̄, because there is not enough time
left for J to reach J̄. Therefore, V1(S , t) = 0 for all t ≥ T − J̄ and S ≤ S̄ . This fact
explains the “terminal condition” inA1 at t = T − J̄. Secondly, the terminal condition,
with respect to J, in A2 corresponds to the “knock-in” feature that the option price is
equal to that of the embedded call, denoted by CA(S , t) or CE(S , t), at the time t the
option is activated. Thirdly, we have the inhomogeneous boundary condition in A2

when S approaches infinity, because, in this case, the knock-in feature will be surely
triggered and thereby the knock-in option price would be the same as its embedded
option price, which is equivalent to the asset price S . Finally, the last equation in A2

holds only for 0 ≤ J < J̄, that is, before the knock-in feature is triggered.
The above two PDE systems (2.1) resemble those of Zhu and Chen [13], so their

“moving window” technique can be adopted to obtain the solution for our problem. In
the next section, we shall discuss the solution procedure.

3. Solution procedure

Following the method of Zhu and Chen [13], the three-dimensional system in
(2.1) and (2.2) can be reduced to a two-dimensional system by replacing the sum of
the partial derivatives of V2, that is, ∂V2/∂t + ∂V2/∂J, with its directional derivative√

2(∂V2/∂l) in the direction of (
√

2,
√

2). After a further change of variable by
l =
√

2l′,A1 andA2 in (2.1) and (2.2) are transformed toA3 andA4, respectively, as
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follows:

A3 =



∂V1

∂t
+ LV1 = 0,

V1(S ,T − J̄) = 0,
V1(0, t) = 0,
V1(S̄ , t) = W(t),

A4 =



∂V2

∂l′
+ LV2 = 0,

V2(S , J̄; t) = C(S , t + J̄),
V2(S , l′; t) v S as S → +∞,

V2(S̄ , l′; t) = W(t + l′),

(3.1)

with the connectivity condition

∂V1

∂S
(S̄ , t) =

∂V2

∂S
(S̄ , 0; t). (3.2)

Here,A3 is defined on t ∈ [0,T − J̄], S ∈ [0, S̄ ];A4 is defined on l′ ∈ [0, J̄], S ∈ [S̄ ,∞),
with the parameter t ∈ [0, T − J̄]. The unknown function W(t) = V2(S̄ , 0; t), which
provides the coupling betweenA3 andA4, needs to be solved as part of the solution.

To solve the newly established pricing systems (3.1) and (3.2) effectively, we shall
first nondimensionalize all variables by introducing the following variables:

x = ln
S
S̄
, τ = (T − J̄ − t)

σ2

2
, l̃ =

σ2

2
(J̄ − l′), J̄′ =

σ2 J̄
2
,

T ′ =
σ2T

2
, W ′(τ) =

W(t)
S̄

, V ′1(x, τ) =
V1(S , t)

S̄
,

V ′2(x, l̃; τ) =
V2(S , l′; t)

S̄
, C′(x, τ) =

C(S , t + J̄)
S̄

.

(3.3)

With all primes and tildes dropped from now on, A3 and A4 in (3.1) and (3.2) are
transformed to B1 and B2, respectively,

B1 =



∂V1

∂τ
= KV1,

V1(x, 0) = 0,
lim

x→−∞
V1(x, τ) = 0,

V1(0, τ) = W(τ),

B2 =



∂V2

∂l
= KV2,

V2(x, 0; τ) = C(x, τ),
V2(x, l; τ) v ex as x→ +∞,

V2(0, l; τ) = W(τ − J̄ + l),

(3.4)

with the connectivity condition

∂V1

∂x
(0, τ) =

∂V2

∂x
(0, J̄; τ). (3.5)

Here,B1 is defined on τ ∈ [0,T − J̄], x ∈ (−∞,0]; B2 is defined on l ∈ [0, J̄], x ∈ [0,∞),
with the parameter τ ∈ [0,T − J̄]. The operator K is defined as

K =
∂2

∂x2 + k
∂

∂x
− γI, (3.6)

with γ = 2r/σ2, q = 2D/σ2 and k = γ − q − 1. Note that S , C, W, V1 and V2 are
nondimensionalized by S̄ here. As a result, the x-domains in B1 and B2 are semi-
infinite.
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By applying the Laplace transform technique, the solution of B1 is obtained as

V1(x, τ) =

∫ τ

0
W(s)g1(x, τ − s) ds for all x ≤ 0, (3.7)

where

g1(x, τ) = −
x

2
√
πτ3/2

eαx+βτ−(x2/4τ), α = −
k
2
, β = −

k2

4
− γ. (3.8)

Since the PDE in B2 is linear, its solution can be found by superposition of the
solutions of the following two systems:

B3 =



∂V2

∂l
= KV2,

V2(x, 0; τ) = 0,
lim

x→+∞
V2(x, l; τ) = 0,

V2(0, l; τ) = W(τ − J̄ + l),

B4 =



∂V2

∂l
= KV2,

V2(x, 0; τ) = C(x, τ),
V2(x, l; τ) v ex as x→ +∞,

V2(0, l; τ) = 0.

Since system B3 is very similar to B1, its solution is

V (1)
2 (x, l; τ) =

∫ l

0
W(τ − J̄ + s)g2(x, l − s) ds for all x ≤ 0,

where g2(x, l) = −g1(x, l), with g1 being defined in (3.8).
By using the variable transform V2(x, l; τ) = eαx+βτu(x, l; τ) (with α, β as in (3.8)),

B4 can be transformed to a standard heat problem on a semi-infinite domain, whose
solution can be found in [6]. As a result, the solution for B4 can be obtained as

V (2)
2 (x, l; τ) =

∫ +∞

0

1

2
√
πl

eα(x−z)+βl[e−(x−z)2/4l − e−(x+z)2/4l]C(z, τ) dz

and, for B2 in (3.4), as

V2(x, l; τ) = V (1)
2 (x, l; τ) + V (2)

2 (x, l; τ). (3.9)

Applying the connectivity condition (3.5) to (3.7) and (3.9), we obtain an integral
equation governing W(τ):∫ τ

0
W(s)

∂g1

∂x
(x, τ − s) ds

∣∣∣∣∣
x=0

=
∂V (2)

2

∂x
(x, J̄; τ)

∣∣∣∣∣
x=0

+

∫ J̄

0
W(τ − J̄ + s)

∂g2

∂x
(x, J̄ − s) ds

∣∣∣∣∣
x=0
, (3.10)

where
∂V (2)

2

∂x
(x, J̄; τ)

∣∣∣∣∣
x=0

=

∫ +∞

0

zC(z, τ)

2
√
πJ̄3

e−αz+βJ̄−z2/4J̄ dz.
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Now, a simple coordinate transform, ξ = τ − J̄ + s, in the last integral on the right-hand
side of equation (3.10) yields∫ τ

0
W(s)

∂g1

∂x
(x, τ − s) ds

∣∣∣∣∣
x=0

=
∂V (2)

2

∂x
(x, J̄; τ)

∣∣∣∣∣
x=0

+

∫ τ

τ−J̄
W(ξ)

∂g2

∂x
(x, τ − ξ) dξ

∣∣∣∣∣
x=0
.

(3.11)
We observe that the left-hand side of (3.11) contains W(s) for s ∈ [0, τ], while its right-
hand-side integral involves W(ξ) for ξ ∈ [τ − J̄, τ], which coincides with the projection
of the “slide” (a plane is of 45◦ angle to both of the plane t = 0 and J = 0) passing
through (S̄ , τ, 0) on the plane J = 0. As in [13], we also name such a projection a
“window”.

We now solve the integral equation (3.11) for τ ∈ [0, J̄] to obtain W1(τ), which is
the value of W in the first window. Note that W(ξ) = 0 for all ξ ∈ [−J̄, 0], because
V1(S , t) = 0 for all t ≥ T − J̄, S ≤ S̄ (as already explained in Section 2). Therefore, for
τ ∈ [0, J̄], equation (3.11) reduces to∫ τ

0
W1(s)

(
∂g1

∂x
−
∂g2

∂x

)
(x, τ − s) ds

∣∣∣∣∣
x=0

=
∂V (2)

2

∂x
(x, J̄; τ)

∣∣∣∣∣
x=0
. (3.12)

Clearly, the left-hand side of the last equation is a convolution integral involving the
unknown function W1. Taking the Laplace transform of equation (3.12) with respect
to τ yields

L[W1(τ)]L
[(
∂g1

∂x
−
∂g2

∂x

)
(x, τ)

]∣∣∣∣∣
x=0

= L

[∂V (2)
2

∂x
(x, J̄; τ)

]∣∣∣∣∣
x=0
,

where L

[(
∂g1

∂x
−
∂g2

∂x

)
(x, τ)

]∣∣∣∣∣
x=0

= 2
√

p − β,

with p being the Laplace parameter [13]. Thus,

L[W1(τ)] =
1

2
√

p − β
L

[∂V (2)
2

∂x
(x, J̄; τ)

]∣∣∣∣∣
x=0
. (3.13)

Taking the inverse Laplace transform on both sides of (3.13) yields

W1(τ) =

∫ τ

0

∂V (2)
2

∂x
(x, J̄; s)

∣∣∣∣∣
x=0

eβ(τ−s)

2
√
π(τ − s)

ds

=

∫ +∞

0

ze−αz+βJ̄−z2/4J̄

4πJ̄3/2

∫ τ

0

C(z, s)eβ(τ−s)

√
τ − s

ds dz.

Similar to the case of Zhu and Chen [13], for a state point (S , τ, J), one can evaluate
W forwards, window by window, until the value at the required time τ is found. In
fact, assuming that Wn is known for n ≥ 1, we can then calculate the option price V1
or V2 in the nth window from the formula (3.7) or (3.9), respectively. However, the
determination of Wn+1, assuming that Wn is known for n ≥ 1, is slightly different from
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that of W1. The two-dimensional coupled PDE systems governing the option price in
the (n + 1)th window are expressed as

C1 =



∂V1

∂t
+ LV1 = 0,

V1(S ,T − (n + 1)J̄) = S̄ fn
(
ln

S
S̄

)
,

V1(0, t) = 0,
V1(S̄ , t) = W(t),

C2 =



∂V2

∂l′
+ LV2 = 0,

V2(S , J̄; t) = C(S , t + J̄),
V2(S , l′; t) v S as S → +∞,

V2(S̄ , l′; t) = W(t + l′),

(3.14)
with the connectivity condition

∂V1

∂S
(S̄ , t) =

∂V2

∂S
(S̄ , 0; t), (3.15)

where

fn(x) =

n∑
i=1

∫ iJ̄

(i−1)J̄
Wi(s)g1(x, nJ̄ − s) ds. (3.16)

Here, C1 is defined on t ∈ [T − (n + 2)J̄, T − (n + 1)J̄], S ∈ [0, S̄ ]; C2 is defined on
l′ ∈ [0, J̄], S ∈ [S̄ ,∞), the parameter t ∈ [T − (n + 2)J̄,T − (n + 1)J̄]; the operator L is
defined in (2.3).

Note that the system (3.14) and (3.15) are very similar to (3.1) and (3.2),
respectively, except for the inhomogeneous initial condition in C1; S̄ fn(ln (S/S̄ )) > 0
for all S < S̄ . To nondimensionalize the systems (3.14) and (3.15), we use the
same variables introduced in (3.3), except that τ and W ′(τ) are replaced by τ̃ =

(T − (n + 1)J̄ − t)σ2/2 = τ − nJ̄′ and U(τ̃), respectively. Dropping all primes from
now on, C1 and C2 in (3.14) and (3.15) are transformed to C3 and C4, respectively,
as follows:

C3 =



∂V1

∂τ̃
= KV1,

V1(x, 0) = fn(x),
lim

x→−∞
V1(x, τ̃) = 0,

V1(0, τ̃) = U(τ̃),

C4 =



∂V2

∂l
= KV2,

V2(x, 0; τ̃) = C(x, τ̃),
V2(x, l; τ̃) v ex as x→ +∞,

V2(0, l; τ̃) = U(τ̃ − J̄ + l),

with the connectivity condition

∂V1

∂x
(0, τ̃) =

∂V2

∂x
(0, J̄; τ̃),

where fn(x) is defined in (3.16); C3 is defined on τ̃ ∈ [0, J̄], x ∈ (−∞, 0]; C4 is defined
on l ∈ [0, J̄], x ∈ [0,∞) with parameter τ̃ ∈ [0, J̄]; the operator K is defined in (3.6).

The inhomogeneous initial condition of C3 makes its solution procedure more
complicated than that of B1. The solution for C3 can be found by splitting the
linear problem into two sub-problems: one with homogeneous boundary conditions
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but a nonzero initial condition and the other with a zero initial condition but an
inhomogeneous boundary condition at x = 0. The first can be transformed to a standard
heat problem on a semi-infinite domain, which has a standard solution [6], while the
solution of the second problem can be obtained by applying the Laplace transform
technique, as we did to solveB1. Without going through the lengthy derivation process,
the solution of C3 is

V1(x, τ̃) = G(x, τ̃) +

∫ τ̃

0
U(s)g1(x, τ̃ − s) ds,

where

G(x, τ̃) =

∫ 0

−∞

1

2
√
πτ̃

eα(x−z)+βτ̃[e−(x−z)2/4τ̃ − e−(x+z)2/4τ̃] fn(z) dz.

Consequently, the corresponding integral equation governing U(τ̃) is

∂G
∂x

(x, τ̃)
∣∣∣∣∣
x=0

+

∫ τ̃

0
U(s)

∂g1

∂x
(x, τ̃ − s) ds

∣∣∣∣∣
x=0

=
∂V (2)

2

∂x
(x, J̄; τ̃)

∣∣∣∣∣
x=0

+

∫ J̄

0
U(τ̃ − J̄ + s)

∂g2

∂x
(x, J̄ − s) ds

∣∣∣∣∣
x=0
. (3.17)

Now, taking a simple coordinate transform, ξ = τ̃ − J̄ + s, in the integral on the right-
hand side of the above equation yields

∂G
∂x

(x, τ̃)
∣∣∣∣∣
x=0

+

∫ τ̃

0
U(s)

∂g1

∂x
(x, τ̃ − s) ds

∣∣∣∣∣
x=0

=
∂V (2)

2

∂x
(x, J̄; τ̃)

∣∣∣∣∣
x=0

+

∫ τ̃

τ̃−J̄
U(ξ)

∂g2

∂x
(x, τ̃ − ξ) dξ

∣∣∣∣∣
x=0
. (3.18)

Let U0(ξ) = Wn(ξ + nJ̄) for all ξ ∈ [−J̄, 0]; then (3.18) reduces to∫ τ̃

0
U(s)

(
∂g1

∂x
−
∂g2

∂x

)
(x, τ̃ − s) ds

∣∣∣∣∣
x=0

=
∂V (2)

2

∂x
(x, J̄; τ̃)

∣∣∣∣∣
x=0

+

∫ 0

τ̃−J̄
U0(ξ)

∂g2

∂x
(x, τ̃ − ξ) dξ

∣∣∣∣∣
x=0
−
∂G
∂x

(x, τ̃)
∣∣∣∣∣
x=0

(3.19)

and, taking the Laplace transform on both sides of (3.19) with respect to τ̃,

L[U(τ̃)]L
[(
∂g1

∂x
−
∂g2

∂x

)
(x, τ̃)

]∣∣∣∣∣
x=0

= L

[∂V (2)
2

∂x
(x, J̄; τ̃)

]∣∣∣∣∣
x=0
− L

[
∂G
∂x

(x, τ̃)
]∣∣∣∣∣

x=0

+L

[∫ 0

τ̃−J̄
U0(ξ)

∂g2

∂x
(x, τ̃ − ξ) dξ

]∣∣∣∣∣
x=0
.

Therefore,

L[U(τ̃)] =
1

2
√

p − β

(
L

[∂V (2)
2

∂x
(x, J̄; τ̃)

]
+L

[∫ 0

τ̃−J̄
U0(ξ)

∂g2

∂x
(x, τ̃ − ξ) dξ

]
− L

[
∂G
∂x

(x, τ̃)
])∣∣∣∣∣

x=0
. (3.20)
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By taking the inverse Laplace transform on both sides of (3.20), we can obtain the
solution of equation (3.17) as follows:

U(τ̃) =

∫ 0

−∞

e−αz+βτ̃

2
√
πτ̃

e−z2/4τ̃ fn(z) dz −
eβJ̄

2π
√

J̄

∫ τ̃

0

eβ(τ̃−s)

√
τ̃ − s

U0(s − J̄) ds

+
U0(0)

2
eβτ̃ +

∫ +∞

0

z
4πJ̄3/2

e−(z2/4J̄)+βJ̄−αz
∫ τ̃

0

C(z, s)
√
τ̃ − s

eβ(τ̃−s) ds dz

−
1
π

∫ τ̃

0

eβ(τ̃−s)

√
τ̃ − s

∫ √
J̄

√
s

eβt2
[(−β)U0(s − t2) + U′0(s − t2)] dt ds,

where U0(τ̃) = Wn(τ̃ + nJ̄) for all τ̃ ∈ [−J̄, 0].
Note that the inverse Laplace transform of the first term on the right-hand side of

(3.20) is the same as that in the calculation of W1, while the inverse Laplace transforms
of the last two terms on the right-hand side of (3.20) are also carried out analytically;
the detailed calculation can be found in Appendices A and B in [13].

Consequently, for τ ∈ [nJ̄, (n + 1)J̄], n ≥ 1,

Wn+1(τ) =

∫ 0

−∞

e−αz+β(τ−nJ̄)

2
√
π(τ − nJ̄)

e−z2/4(τ−nJ̄) fn(z) dz −
eβJ̄

2π
√

J̄

∫ τ

nJ̄

eβ(τ−s)

√
τ − s

Wn(s − J̄) ds

+
Wn(nJ̄)

2
eβ(τ−nJ̄) +

∫ +∞

0

z
4πJ̄3/2

e(−z2/4J̄)+βJ̄−αz
∫ τ

nJ̄

C(z, s)
√
τ − s

eβ(τ−s) ds dz

−
1
π

∫ τ

nJ̄

eβ(τ−s)

√
τ − s

∫ √
J̄

√
s−nJ̄

eβt2
[(−β)Wn(s − t2) + W ′

n(s − t2)] dt ds.

Thus, we have obtained an analytical formula for Parisian up-and-in calls. This
formula can be used for the valuation of American-style and European-style Parisian
up-and-in calls, once C is substituted by CA and CE in the above formulas of V1,V2

and W, respectively. It should not be too difficult to calculate CA or CE , because the
valuations of European-style vanilla options and American-style vanilla options have
been thoroughly studied in the literature [1–4, 7–12, 14].

4. Numerical example and discussion

In this section, we provide an example of pricing an American-style Parisian up-
and-in call. This example illustrates the implementation of our analytical solution as
well as reveals some interesting features of a Parisian up-and-in call.

Note that the calculation procedure for an American-style Parisian up-and-in call
option is similar to that for a European-style Parisian up-and-out call as presented by
Zhu and Chen [13], except that we have replaced the values of the vanilla European
option by the numerical values of its American counterpart, which are obtained by
using the highly efficient integral equation method [8]. Once the value of the embedded
vanilla American option is determined, the integrals in our analytical formula are
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Figure 1. Price of an American-style up-and-in call with parameters E = 10, T − t = 0.8, S̄ = 18, J̄ = 0.2,
σ = 0.3, r = 0.05, D = 0.1 (colour available online).

computed by using quadrature rules, such as Gauss–Laguerre, Gauss–Legendre or
Gauss–Jacobi rules, in a very similar way as that done by Zhu and Chen [13].

Figure 1 compares the values of an American-style Parisian up-and-in call for
various J values with the value of its embedded vanilla American call. The parameters
used in our calculations are E = 10, T − t = 0.8, S̄ = 18, J̄ = 0.2, σ = 0.3, r = 0.05,
D = 0.1. As can be seen clearly from the figure, the value of the Parisian option is
always less than that of its embedded vanilla option. This makes sense financially
as a holder of the Parisian up-and-in call has to wait until the knock-in feature is
activated to obtain the same exercise right as the holder of the embedded vanilla
option. This waiting period, with the risk that the “knock in” may never occur, would
definitely devalue the Parisian up-and-in call in comparison with its embedded vanilla
counterpart.

Figure 1 also reveals some interesting properties of a Parisian up-and-in call with
respect to changes in S and J. Observe that when J is fixed, the Parisian call price
is an increasing function of asset price. In fact, when the asset price increases, the
knock-in feature is more likely to be activated and thus the value of the Parisian call
increases and finally approaches the value of its embedded vanilla option. Similarly,
with a fixed value of S , the knock-in feature is more likely to be activated when J gets
closer to J̄. As a result, the Parisian option price increases when J increases.

5. Conclusion

In this paper, we have derived a simple analytical formula for Parisian up-and-in
calls by using the technique proposed by Zhu and Chen [13]. Unlike “knock-out”
cases, the evaluation of American-style Parisian up-and-in calls is very similar to that
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of its European counterpart, and both can be handled with the same solution procedure.
As a result, we have obtained a pricing formula that can be used to evaluate both
American-style and European-style Parisian up-and-in calls. We have also provided
an example to illustrate the implementation of our analytical solution as well as to
reveal some interesting features of a Parisian up-and-in call.
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