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Abstract.—Records of abnormal fossil arthropods present important insight into how extinct forms responded to trau-
matic damage and developmental complications. Trilobites, bearing biomineralized dorsal exoskeletons, have arguably
the most well-documented record of abnormalities spanning the Cambrian through the end-Permian. As such, new
records of malformed, often injured, trilobites are occasionally identified. To further expand the documentation of abnor-
mal specimens, we describe malformed specimens of Lyriaspis sigillum Whitehouse, 1939, Zacanthoides sp. indet.,
Asaphiscus wheeleri Meek, 1873, Elrathia kingii (Meek, 1870), and Ogygiocarella debuchii (Brongniart, 1822) from
lower Paleozoic deposits. In considering these forms, we propose that they illustrate examples of injuries, and that the
majority of these injuries reflect failed predation. We also considered the origin of injuries impacting singular segments,
suggesting that these could reflect predation, self-induced damage, or intraspecific interactions during soft-shelled stages.
Continued examination of lower Paleozoic trilobite injuries will further the understanding of how trilobites functioned as
prey and elucidate how disparate trilobite groups recovered from failed attacks.

Introduction

Abnormal trilobites represent a primary means of understanding
how a group of wholly extinct euarthropods responded to, and
recovered from, injuries and developmental or genetic malfunc-
tions (Owen, 1985; Babcock, 1993, 2007; Bicknell and Pates,
2020). The historical record of abnormal trilobites extends
back to the middle nineteenth century (Portlock, 1845) with
more detailed documentation arising during the later twentieth
century (see Bergstrom and Levi-Setti, 1978; Snajdr, 1978a,
1979, 1985; Rudkin, 1979, 1985; Conway Morris and Jenkins,
1985; Owen, 1985; Babcock and Robison, 1989; Babcock,
1993). In the last decade alone, a marked surge in publications
documenting these abnormal specimens has occurred. The
majority of these works have considered abnormal specimens
in the context of trilobite paleobiology and paleoecosystems
(Budil et al., 2010; Zamora et al., 2011; Fatka et al., 2015,
2021; Cheng et al., 2019; Bicknell and Pates, 2020; Bicknell
and Smith, 2021; Bicknell et al., 2021b; Foster, 2021; Zong,
2021a, b). Population-based data have been presented to explore
injury patterns and lateralization in the trilobite fossil record
(Pates et al., 2017; Bicknell et al., 2019; Pates and Bicknell,
2019). Finally, limited publications have collated these observa-
tions to understand patterns of predation across the Paleozoic
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(Bicknell and Paterson, 2018; Vinn, 2018; Klompmaker et al.,
2019). To further the examination of abnormal trilobites, and
bolster evidence that is useful for large meta-analyses, we pre-
sent seven new examples of abnormal specimens: one
Lyriaspis sigillum Whitehouse, 1939 from the Wuliuan of Aus-
tralia; one Zacanthoides sp. indet. (of Walcott, 1888) from the
Wauliuan of the USA; two Asaphiscus wheeleri Meek, 1873,
and two Elrathia kingii (Meek, 1870) from the Drumian of
the USA; and one Ogygiocarella debuchii (Brongniart, 1822)
from the Darriwilian of Wales.

Geological context

The Lyriaspis sigillum specimen (AM F33980 and AM F34209)
was collected from the Beetle Creek Formation, Georgina Basin
at the type section (proximal to the Templeton River head-
waters), Mt. Isa, western Queensland, Australia. There the unit
consists of 15 m of siliceous shale, fine sandstone, thin calcar-
eous beds, and chert horizons that were likely deposited below
a storm wave base, at the oceanward shelf edge of a large epeiric
sea (Fleming, 1977; Kruse, 2002). This portion of the formation
is occasionally referred to as the ‘Lower Siltstone Member’
(Russell, 1967), or the ‘undifferentiated Beetle Creek Forma-
tion’ (sensu Dunster et al., 2007). At the type locality, the unit
unconformably overlies the Proterozoic rocks of the basin and
is overlain by the Wuliuan-aged Inca Formation (Southgate
and Shergold, 1991; Dunster et al., 2007). Presence of the
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trilobite species Deiradonyx sp. aff. D. collabrevis Opik, 1982
(likely D. collabrevis) suggests placement in the Pentagnostus
praecurrens Biozone—the latter taxon co-occurs with the
eponym in the ‘White Shale’ member of the Coonigan Forma-
tion, Gnalta Shelf, western New South Wales (originally
described as P. veles Opik, 1979, later synonymized by Laurie,
1988). Further support comes from close faunal ties to the
Jigaimara Formation (Laurie, 2006b), Arafura Basin, Northern
Territory and the lithological correlations to the lower Arthur
Creek Formation, southeastern Georgina Basin (Laurie, 2004,
2006a; Dunster et al., 2007). The Australian Pentagnostus prae-
currens Zone sits within early Templetonian Stage, equivalent
to the Wuliuan Stage (Sundberg et al., 2016, Peng et al., 2020
and references therein).

The Zacanthoides sp. indet. specimen (FHPR 17618) was
collected from the Half Moon Mine locality, Chisholm Forma-
tion, Lincoln County, eastern Nevada. The Chisholm Formation
there consists of 17-35 m of tan to gray to light reddish calcar-
eous shale with some thin (0.05-3 m) interbedded carbonates
(Sundberg, 2011). It is a relatively thin, slope-forming unit over-
lying the Lyndon Limestone and underlying the Highland Peak
Formation. The examined specimen co-occured with trilobite
genera, e.g., Amecephalus Walcott, 1924, Athabaskia Ray-
mond, 1928, and Glossopleura Poulsen, 1927; echinoderms
(Gogia Walcott, 1917); and the edrioasteroid Totiglobus Bell
and Sprinkle, 1978 (Sundberg, 2011; Foster and Gaines,
2016). This fauna indicates that, at the Half Moon Mine, the
Chisholm Formation is from the Glossopleura walcotti and
Pentagnostus praecurrens biozones of the Wuliuan Stage
(Sundberg, 2011; Peng et al., 2020).

The Asaphiscus wheeleri and Elrathia kingii specimens
were collected from the Wheeler Formation, Millard County,
western Utah, USA. The A. wheeleri (FHPR 16702, MWC
9973) and one E. kingii (MWC 9972) are from the House
Range (Wheeler Amphitheater site), whereas another E. kingii
(FHPR 16640) is from the Wheeler Formation in the Drum
Mountains. The Wheeler Formation is up to 277 m of gray to
olive to pinkish calcareous shale (Hintze and Davis, 2002,
2003). The formation overlies the Swasey Limestone and under-
lies the Marjum Formation in the House Range and the Pierson
Cove Formation (a carbonate-rich, Marjum Formation equiva-
lent) in the Drum Mountains. Restriction of the Wheeler Forma-
tion to the House Range and Drum Mountains reflects infilling
of the middle Cambrian House Range Embayment—a fault-
bounded, deep-water bathymetric feature of the Laurentian
shelf that was surrounded on three sides by shallow carbonate
belt deposits (Rees, 1986; Foster and Gaines, 2016). The deeper-
water setting of the Wheeler Formation within the embayment
allowed preservation of articulated trilobites and soft-bodied
taxa (Robison et al., 2015). The examined specimens from the
House Range are from the upper Wheeler Formation, and the
Drum Mountains specimen is also from the upper portion of
the same formation, ~7 m below the Pierson Cove Formation.
This places the material in the Bolaspidella and Ptychagnostus
atavus biozones of the Drumian Stage (Babcock et al., 2007;
Peng et al., 2020).

The Ogygiocarella debuchii specimen (AM F128230) ori-
ginated from a Llanfawr quarry near the township of Llandrin-
dod Wells, central Wales, UK. These quarries are known for
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complete O. debuchii specimens, as well as other well-preserved
trilobites (Hughes, 1969, 1971, 1979; Owens, 1981, 2002; Shel-
don, 1987a). The specimen was from the lower Llanfawr Mud-
stones (Sheldon, 1987b; Owens, 2002) of the Builth Inlier. The
Llanfawr Mudstones layer is relatively thick (> 200 m at some
localities) and dominated by fine mudstone and siltstone that
were deposited in relatively quiet, middle to outer shelf depths
(Fortey and Owens, 1987; Owens, 2002). Ogygiocarella debu-
chii ranges through the entire formation, between the upper
Didymograptus murchisonii and lower Nemagraptus gracilis
biozones. However, the specimens reported here are likely
from the regional Llandeilian Stage (Hustedograptus? teretius-
culus Biozone) (Sheldon, 1987b), correlating with the upper
Middle Ordovician, Darriwilian (Bettley et al., 2001; Cooper
and Sadler, 2012; Bicknell et al., 2021b).

Materials and methods

Trilobite specimens within the AM, FHPR, and MWC were
reviewed for abnormalities by RDCB and JRF. A total of seven
specimens were identified. Specimens were coated in magnesium
oxide and photographed under low angle LED light with a Canon
EOS 5DS (AM specimens) or a Canon EOS 5D Mark IV (FHPR
and MWC specimens). All measurements of specimens were
made using ImagelJ (Schneider et al., 2012).

Repositories and institutional abbreviations.—AM = Australian
Museum, Sydney, New South Wales, Australia; FHPR = Utah
Field House of Natural History State Park Museum, Vernal,
Utah, USA; MWC = Museums of Western Colorado, Dinosaur
Journey Museum, Fruita, Colorado, USA.

Results

The Lyriaspis sigillum specimen is articulated internal (AM
F34209) and external (AM F33980) molds, and AM F33980
is more complete (Fig. 1). The specimen has a U-shaped
indentation on the left thoracic pleural lobe (Fig. 1.1, 1.2). The
indentation impacts thoracic segments 3—0, truncates pleurae
by 1 mm, and is 2.6 mm long. The abnormality margin is cica-
trized and thoracic segments 4 and 5 are pinched distally
(Fig. 1.1, 1.4).

The Zacanthoides sp. indet. specimen is a partial internal
mold showing the anterior right cephalic and thoracic regions
(FHPR 17618; Fig. 2.3, 2.4). The first thoracic pleural spine
of the specimen has been truncated by 1.3 mm (Fig. 2.3, 2.4).
The spine also has a U-shaped indentation with a reduced, pos-
teriorly directed spine (Fig. 2.4). This reduced section likely
records abnormal regrowth of the segment through subsequent
molting events.

Two abnormal Asaphiscus wheeleri specimens were consid-
ered. The first specimen is a complete internal mold (MWC 9973;
Fig. 3.1-3.3). MWC 9973 has two abnormalities on the left thor-
acic pleural lobe. The anterior abnormality truncates the thoracic
pleurae 14 by ~1.5 mm when compared to the right pleural lobe
and shows an L-shaped morphology (sensu Bicknell and Pates,
2020). This region shows evidence of possible regrowth of the
anteriormost pleurae. Further, the fourth thoracic pleura has a
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Figure 1. Malformed Lyriaspis sigillum Whitehouse, 1939, Beetle Creek Formation (Miaolingian, Wuliuan): (1,2) AM F34209: (1) complete specimen; (2) detail
of abnormality in box in (1) showing U-shaped injury; (3, 4) AM F33980: (3) complete specimen; (4) detail of abnormality in box in (3) showing injury. All speci-
mens coated. All images converted to grayscale.
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Figure 2. Malformed Ogygiocarella debuchii (Brongniart, 1822) and Zacanthoides sp. indet. (of Walcott, 1888): (1, 2) Ogygiocarella debuchii from the Llanfawr
Mudstones (Middle Ordovician, Darriwilian), AM F128230: (1) complete specimen; (2) detail of abnormality in box in (1) showing W-shaped indentation on the left
side of the pygidium; (3, 4) Zacanthoides sp. indet. from the Half Moon Mine, Chisholm Formation (Miaolingian, Wuliuan), FHPR 17618: (3) complete specimen;
(4) detail of abnormality in box in (3) showing abnormally developed pleural spine (white arrow). All specimens coated. All images converted to grayscale.
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Figure 3. Malformed Asaphiscus wheeleri Meek, 1873, House Range, Wheeler Formation (Miaolingian, Drumian): (1-3) MWC 9973: (1) complete specimen; (2)
detail of abnormality in box in (1) showing L-shaped injury and pinched pleural region (black arrow); (3) detail of abnormality in box in (1) showing U-shaped injury;

(4, 5) FHPR 16702: (4) complete specimen; (5) detail of abnormality in box in (4) showing SSI (white arrow). All specimens coated. All images converted to
grayscale.
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Figure4. Malformed Elrathia kingii (Meek, 1870), Wheeler Formation (Miaolingian, Drumian): (1, 2) MWC 9972, House Range outcrop: (1) complete specimen;
(2) detail of abnormality in box in (1) showing large W-shaped indentation; (3, 4) FHPR 16640, Drum Mountains outcrop: (3) complete specimen; (4) detail of
abnormality in box in (3) showing V-shaped indentation (dotted white line, white arrow). All specimens coated. All images converted to grayscale.

pinched region (Fig. 3.2). The posterior abnormality is a
U-shaped indentation that impacts thoracic pleurae 7-9 and the
anteriormost pygidium. The edge of this indentation shows
marked cicatrization (Fig. 3.3) and truncates pleurae by 2.5 mm.
The second specimen is an internal mold with a damaged ceph-
alon (FHPR 16702; Fig. 3.4, 3.5). The specimen has a single

https://doi.org/10.1017/jpa.2022.14 Published online by Cambridge University Press

segment injury (SSI) on the eighth pleura on the right pleural
lobe. This truncates the pleural spine by 1.7 mm.

Two abnormal Elrathia kingii specimens were identified.
The first specimen is a complete internal mold (MWC 9972;
Fig. 4.1, 4.2). MWC 9972 has a large W-shaped indentation
on the left thoracic pleural lobe impacting thoracic pleurae
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1-7. The indentation extends up to 4.3 mm into the specimen
and shows evidence of cicatrization (Fig. 4.2). The second spe-
cimen is an internal mold and likely represents a molt (Daley and
Drage, 2016; Drage et al., 2018; Drage, 2019) (FHPR 16640;
Fig. 4.3, 4.4). The specimen has a V-shaped indentation with
limited cicatrization that impacts thoracic pleurae 7 and 8 on
the right pleural lobe (Fig. 4.4). This indentation truncates
pleurae by 4.6 mm.

The Ogygiocarella debuchii specimen is an articulated
internal mold (AM F128230; Fig. 2.1, 2.2). The specimen has
a large W-shaped indentation on the left side of the pygidium
that extends across ~75% of the pygidium (Fig. 2.1, 2.2). The
malformation is 17.1 mm long and the margin shows extensive
fusion of the damaged pygidium. This results in an inflated pygi-
dial border relative to other exoskeletal regions (Fig. 2.2).

Discussion

The abnormal trilobites documented here show evidence of
removal of exoskeletal sections. Furthermore, no specimens
have abnormal growths indicative of genetic malformations
(Owen, 1980, 1985; Babcock, 1993; Bicknell and Smith,
2021) or circular/ovate structures indicative of pathologies
(§najdr, 1978b; Babcock, 1993; De Beats et al., 2021). These
specimens therefore show examples of injuries (Owen, 1985;
Babcock, 1993; Pates et al., 2017; Bicknell et al., 2021b) that
occurred through failed predation, a molting complication, or
some other traumatic injury. Trilobites with overdeveloped thor-
acic spines, e.g., Nevadia weeksi (Walcott, 1910), likely experi-
enced molting complications and would have damaged the
hypertrophied spines (Conway Morris and Jenkins, 1985; Bick-
nell et al., 2022). The examined specimens lack these morpholo-
gies. Furthermore, L-, U-, V-, and W-shaped indentations are
commonly attributed to failed predation (§najdr, 1981, 1985;
Owen, 1985; Babcock, 1993, 2007; Fatka et al., 2009, 2015;
Pates et al., 2017; Bicknell and Holland, 2020). As such, the
indentations likely record failed predation.

Explanations for SSIs are therefore worth considering. When
SSIs are observed with larger injuries on the opposing side (Con-
way Morris and Jenkins, 1985; Nedin, 1999; Bicknell et al.,
2022), they likely reflect a bilateral predatory attack. When SSIs
are not identified with larger injuries, further explanation is
needed. It seems unlikely that predators large enough to consume
trilobites would damage only one segment (Babcock, 1993).
However, smaller predators could have removed a single section
while a trilobite was in a soft-shelled stage. Failed predation as an
explanation for unpaired SSIs is therefore plausible. An SSI could
occur during enrollment—if an individual enrolled too quickly or
on an abnormal angle, a segment could be nicked. Furthermore,
intraspecific competition during feeding or seeking communal
shelter during the postecdysal, soft-shell phase could have
resulted in minor damage. As such, consideration of broader
paleoecology is needed when proposing explanations for SSIs.

The injured Lyriaspis sigillum documented here represents
the first record of a malformed trilobite from the Beetle Creek
Formation and the second example of predation from the deposit
(see Jones and McKenzie, 1980). The degree of exoskeletal
warping around the injury in AM F34209/F33980 indicates
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that the specimen was damaged during a soft-shelled phase
and also suggests that durophages were present in the Beetle
Creek Formation biota. One of the co-occurring Xystridura
spp. (four are currently known from the unit) is a possible injury-
maker, given the size of the genus (Opik, 1975). Appendage data
is unknown for Xystridura ()pik, 1975; however, it was likely
comparable to other predatory artiopodans and used gnathobasic
spines on walking legs to masticate prey (Zacai et al., 2016;
Bicknell et al., 2018, 2021a). Alternatively, large, nonbiominer-
alized artiopodans with gnathobasic spines might have produced
the injury and the lack of soft-bodied preservation in the Beetle
Creek Formation precludes the identification of these forms.
Regardless, the rarity of injured L. sigillum reflects either an
occasional diet of smaller trilobites, or the complete consump-
tion of prey. Shelly coprolites from equivalent Xystridura-
bearing units (e.g., the Giles Creek Dolostone in the neighboring
Amadeus Basin, Northern Territory) would support the second
theory (unpublished data, Smith, 2022).

Prior to documentation of the injured Asaphiscus wheeleri
specimen considered here, only malformed Asaphiscus wheeleri
pygidia were known (Vorwald, 1984; Babcock, 1993; Bicknell
and Paterson, 2018). The addition of thoracic injuries illustrates
that Asaphiscus wheeleri was subject to more substantial preda-
tion than previously thought. Previous records of predation
within the Wheeler Formation have been assigned to the activ-
ities of priapulid worms (Conway Morris and Robison, 1986),
radiodonts (Babcock, 1993), and artiopodans with gnathobasic
spines on walking legs (Bicknell and Pates, 2020). However,
biomechanical and functional morphological evidence suggest
that the last group were the most effective at breaking exoskele-
tons (Bruton, 1981; Stein, 2013; Zacai et al., 2016; Bicknell
et al., 2018, 2021a; Holmes et al., 2020). Further examination
of the morphology and predatory ability of other possible preda-
tors from these sites is needed to present more complete paleo-
ecological reconstructions and aid in understanding the role of
predation during the earliest marine ecosystems.
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