
PRIME MODULES 

E. H. FELLER AND E. W. SWOKOWSKI 

Introduction. Characterizations for prime and semi-prime rings satisfying 
the right quotient conditions (see § 1) have been determined by A. W. Goldie 
in (4 and 5). A ring R is prime if and only if the right annihilator of every 
non-zero right ideal is zero. A natural generalization leads one to consider 
right i^-modules having the properties that the annihilator in R of every 
non-zero submodule is zero and regular elements in R annihilate no non-zero 
elements of the module. This is the motivation for the definition of prime 
module in § 1. 

By employing some ideas of R. E. Johnson together with those of Goldie, 
along with some innovations, we are able to generalize Goldie's work (4) to 
modules and add some new results. Specifically, Theorem (3.2) gives an ex
ternal characterization for a prime i?-module M in terms of a completely 
reducible module containing M. It is interesting to note that in (3.2), although 
right quotient conditions are assumed in Rf it is unnecessary to assume a 
maximum condition for the submodules of M. An internal type of structure 
for prime modules (hence prime rings) is also obtained in §3. It is shown 
that if R satisfies the right quotient conditions, then an i^-module M is No-
etherian and prime if and only if M is a subdirect sum of uniform Noetherian 
prime jR-modules. 

In (4.4) wé characterize the uniform prime modules as those prime modules 
for which the ring of endomorphisms of the injective envelope is a division 
ring. For a prime module M over a prime ring R satisfying the right quotient 
conditions, we know, by (4), that R C Dm a total matrix ring over a division 
ring D. We obtain D in (4.8) using a uniform prime i?-module as given by 
the structure theorem (3.3). This is not a uniform submodule of M as in 
Goldie's work, but a module of the form M/J, where J is P\-irreducible. 

It is also shown, in § 4, that every prime jR-modùle M contains a uniform 
^-module N, where B is a prime ring containing R and where N over B has 
the double centralizer property. This provides the result that every prime ring 
R with right quotient conditions is contained in a prime ring B, where B is 
the ring of endomorphisms of a module over an integral domain and where 
B and R have the same right quotient ring. 

In § 5 we consider a finitely generated module M over a right and left 
Ore domain A. By taking M as a module over Hom4 (M, M) we obtain a 
non-trivial example of a uniform prime module. 
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In the final section we give a matrix representation for prime rings of the 
type discussed in § 5. 

1. Conventions and definitions. Throughout this paper all i^-modules 
will be right P-modules. In addition, R will always denote a ring that satisfies 
the right quotient conditions of (4 and 5). These are: 

(i) every direct sum of non-zero right ideals of R has a finite number of 
terms ; 

(ii) the ascending chain condition holds for the annihilator right ideals of R. 
Let A and B be rings and let M be an {A, J3)-bimodule, i.e. a left A -module 

and a right ^-module. We shall adopt the following notation for the various 
annihilators to be considered. If X, F, and Z are subsets of A, M, and B 
respectively, then 

XT = [m G M\ xm = 0 for all x Ç l | , 

F = {b G B\yb = 0 for ail y G F}, 

and Zl = {m e M\mz = 0 for ail z G Z}. 

For Z Ç B we shall use subscripts to denote annihilators of Z in the ring B. 
Thus 

Zr = {b G B\ zb = 0 for ail z G Z) 

and Zx = {b G B\ bz = 0 for ail z G Z}. 

If M and N are i^-modules, then M is an essential extension of N if iV Ç M 
and if TV P\ P ^ 0 for every non-zero submodule P oî M.li M is an essential 
extension of N, we write N Cl' M and call N a /arg^ submodule of M. We 
shall also speak of large right ideals of R by considering R as a right module 
over itself. 

It will be convenient to use the following system when dealing with endo-
morphisms. If M is an P-module and H = Homfî (Af, M"), then M will be 
considered as a left iiZ-module (more specifically, M is an (H, jR)-bimodule) 
where, as usual, for h G H and m G M, hm denotes the image of m under h. 
Again, writing the elements of K = Homff (M, M) as right operators, M 
becomes a right iT-module. If Mr = 0, then the usual correspondence yields 
an embedding of R in K and we may assume, in this case, that R C K. 

If M \s an P-module, then 

M± = {x e M\xr Q' R} 

is a submodule called the singular submodule of Af. Similarly, 

i?A = {a G 2?|a r C' j?} 

is a two-sided ideal in i? called the singular ideal of R. 
As in (12), call an P-module torsion-free if, whenever xc = 0 for x G AT 

and c regular in P , then x = 0. 
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The prime rings of (4) pro vide the following natural extension for a defi
nition of prime modules. 

(1.1) Definition. An i?-module M is prime if Nr = 0 for every non-zero 
submodule N of M and if one of the following equivalent conditions is satis
fied: 

(i) M* = 0; 
(i') M is torsion-free. 

In order to show the equivalence of (i) and (i') one can proceed as follows. 
Let J be a non-zero right ideal in R (in general we shall exclude from our 
discussion the trivial cases M — 0 or R — 0). Since Mr = 0, M J is a non
zero submodule of M. From (MJ)Jr = 0, we have JT C (MJ)r = 0, whence 
R is a prime ring. Then by (5, 3.9), an element x of M belongs to M* if and 
only if xr contains a regular element of R. Thus MA = 0 if and only if M is 
torsion-free. 

This discussion gives us 

(1.2.) PROPOSITION. If M is an R-module such that Nr = 0 for every non
zero submodule N, then R is a prime ring. 

Let M be a torsion-free i?-module where R is a prime ring and let N be 
a non-zero submodule of M. Since Nr is a two-sided ideal of R, Nr = 0; for 
otherwise by (5, 3.9) Nr contains a regular element c, contradicting the fact 
that M is torsion-free. This proves 

(1.3) PROPOSITION. If M is an R-module and R is a prime ring, then M is 
prime if and only if either M is torsion-free or MA = 0. 

I t is clear that the prime rings of (4), when considered as right modules 
over themselves, are prime modules. Obviously, a prime jR-module is faithful 
and every submodule of a prime i^-module is a prime i^-module. 

It should be noted that different definitions for the term ''prime module" 
occur elsewhere in the literature. Our definition most closely resembles that 
given by R. E. Johnson in (9, p. 353), where a right ^-module M is called 
prime provided Nr = 0 for every non-zero submodule N. A somewhat different 
definition is stated in (10), where a right ^-module M is designated as prime 
if and only if whenever xJ = 0 for x G M and J an ideal in B such that 
Ji = 0, then x — 0. Evidently, if M is prime in the sense of (9) or (1.1), then 
it is also prime according to (10). The converse is false, as may be seen by 
the following example. 

Example. A ring B is termed N-local if the elements not in the nil-radical 
N are the units of B. When B satisfies the maximum condition for right ideals, 
N is nilpotent. Let M be a unitary right ^-module, where B is an iV-local 
ring satisfying the maximum condition for right ideals and where N ^ 0. 
Let J be an ideal in B for which Ji = 0 and suppose xJ = 0 for some x Ç M. 
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If / C N, then, since Nn = 0 and Nn~l ^ 0 for some positive integer n, we 
have Nn~lJ = 0 contrary to Jt = 0. Thus / is not contained in N and there 
exists a 6 J such that a Q N. Since B is iV-local, a is a unit in B. Then from 
xa = 0 we have x = 0, which proves that M is prime in the sense of (10). 
On the other hand, M is not prime according to (9) since B is not a prime 
ring. 

2. Submodules of prime modules . If M is a prime i^-module, then as 
in (10. 6.4) and (6, 3.8) each submodule N of M has a unique maximal 
essential extension cl N in M given by 

cl N = {x G M\xl Q N for some large right ideal I ol R}. 

By (5, 3.9), a right ideal of P is large if and only if it contains a regular 
element. I t follows that x G cl N if and only if xc G N for some regular 
c £ R. 

Similarly, each right ideal J in R has a unique maximal essential extension 
in R. 

(2.1) LEMMA. Let M be a prime R-module and let N be a proper submodule 
of M. Then M/N is a prime R-module if and only if cl N = N. 

Proof. From the remarks above, x G cl N if and only if (x + N)c is zero 
in M/N for some regular c Ç R. Consequently, if x Ç cl N and M/N is prime 
(hence torsion-free by (1.3)), then x £ N and we have cl N C iV, whence 
cl TV = iV. 

Conversely, if cl iV = N and (x + N)c Ç iV for some regular c £ R, then 
x G TV so that M/iV is a prime i?-module. 

(2.2) THEOREM. Let M le a prime R-module and suppose N is an (^-irre
ducible submodule of M which is not large. Then M/N is a prime module. 

Proof. Let P be a non-zero submodule of M such that N C\ P = 0 . Then 
we have N C cl N C\ (N 0 P). On the other hand, let x = n + p G cl N H 
(N ® P), where n £ N, p £ P. Since w + /> 6 cl N, there is a regular element 
c in R such that (n + p)c £ N. Hence pc £ N (^ P = 0 and since I f is 
torsion-free, p = 0. Thus x Ç iV, and we have proved that iV = cl N O 
(iV 0 P) . Since iV is H-irreducible, iV = cl N and by (2.1), M/iV is a prime 
module. 

(2.3) LEMMA. If M is a prime R-module, then for every x G M, cl (xr) = xr 

in R. 

Proof. We know that xr C cl (xr). Let a Ç cl (xr). Then ac G x r for some 
regular c Ç R. Therefore xac = 0 and since M is torsion-free, xa — 0. Hence 
a G x r and the lemma is proved. 

A submodule U of M is uniform iî U 9e 0 and every pair of non-zero sub-
modules of U has non-zero intersection. Similarly one defines uniform right 
ideal of R. 
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The proof of the following theorem is patterned after that given for rings 
in (6, p. 68). 

(2.4) THEOREM. Let M be a right R-module such that MA = 0. If J is a 
uniform right ideal in R, then 

J1 = {x G M\xr DJ * 0}. 

Proof. Let N = {x G M\ xr Pi / ^ 0}. Take x G N, j G / , and let K be 
any non-zero right ideal in R. If jK = 0, then xjK = 0 and hence K C (ff/)r. 
Thus (xj)r Pi i£ ^ 0. On the other hand, if jK ^ 0, then (xr C\J) C\jK^Q 
since / is uniform. Therefore K contains an element k such that jk ^ 0 and 
xjk = 0 and again we have (xj)r C\ K ^ 0. This proves that xj G MA for 
all x G N,j G / , and hence NJ Q M±. Since M* = 0, we have N Q JK The 
proof that J1 Q N is direct. 

3. Internal and external characterizations of prime modules. If M 
is a prime J?-module, then R is a prime ring with right quotient conditions 
and by Goldie's Theorem R has a right quotient ring S that is a simple ring 
with minimum condition (the term right (left) quotient ring, whenever it is 
used in this paper, refers to the classical quotient rings described in (4, p. 
604)). As in (12, p. 134), the mapping m —» m ® 1, m G M, is an ^-isomor
phism of M into the tensor product M ® R S, every element of MS has the 
form mc~l Avhere m G M and c is regular in R, and M ®RS ~ MS under 
the correspondence m 0 5 —> ras, 5 G 5. As usual, we consider M as a sub-
module of ilfS and identify m ^ M wTith ml. In similar fashion if N is a 
submodule of M, we have 

NQN®RS^NS = [ne-1] n G iV, c regular in 2?}. 

Every i^-module M has a unique (up to isomorphism) maximal essential 
extension M that is simultaneously the unique minimal injective extension 
of M. We call M the injective envelope of M. In our case we have 

(3.1) THEOREM. If M is a prime R-module, then the injective envelope M of 
M is MS, where S is the right quotient ring of R. 

Proof. If x = me1 G MS, then xc = m G M, which implies that MS is an 
essential extension of M. 

Suppose M CI M', where M' is any essential extension of M. If x is any 
non-zero element of M', there exists b G R such that 0 9^ xb G M. Let 
J = {a G R\ xa G -M}. Using the method of proof given in (6, p. 63) one can 
show that / is a large right ideal in R and therefore J contains a regular 
element c. Thus xc — m G M and x = me1 G .MS. Then MS is the maximal 
essential extension M of ikT. 

The following theorem gives a characterization for prime i?-modules. 
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(3.2) THEOREM. An R-module M is prime if and only if M is contained in a 
completely reducible unitary right S-module where S is a simple ring with mini
mum condition for right ideals and a right quotient ring for R. 

Proof. If M is prime, then by our previous discussion and (8, p. 47), the 
right S-module MS fulfils the conditions stated in the theorem. 

Conversely, suppose M is contained in a unitary right S-module M' having 
the indicated properties. From (4 and 5), R is a prime ring with right quotient 
conditions. Let xc = 0, where x 6 M and c is regular in R. Then c~l exists 
in S and we have x = xl — {xc)c~l — 0. Hence M is torsion-free over R 
and, by (1.3), M is prime. 

The preceding result may be interpreted as an "external" characterization 
of prime modules. If M is Noetherian, in the sense that the submodules 
satisfy the maximum condition, an "internal" type structure for prime modules 
can be obtained. 

We employ the notion of irredundant subdirect sum as given by Levy (13, 
p. 65). As pointed out in (13), a module M is an irredundant subdirect sum 
of modules \Ma) if and only if there exists a set of submodules \Pa) of M 
such that Ma 9É M/Pa, H « P a = 0, and, for each 0, C\a^Pa s* 0. We shall 
use this criterion to establish 

(3.3) THEOREM. An R-module M is a Noetherian prime R-module if and 
only if M is a finite irredundant subdirect sum of uniform Noetherian prime 
R-modules. 

Proof. If M satisfies the maximum condition for submodules, we can write 
0 = Ni r\ . . . r\ Nt, where each Ni is an P\-irreducible submodule of M and 
where, for each k, P\z>^ iV* ^ 0. Setting Mi = M/Nu M is an irredundant 
subdirect sum of the M{. If t = 1, then M = Mi and M is uniform. If t > 1, 
then the Nt are not large and by (2.2) each M/Nt is a prime module. I t 
follows readily that each M/Nt is uniform and Noetherian. 

Conversely, suppose that M is an irredundant subdirect sum of uniform 
prime Noetherian i?-modules Mi, . . . , Mt. Then there exist submodules 
Pi, . . . ,Ptoî M such that, for all i, Mt ^ M/Pit r\tPt = 0, and, for each 
k, n^Pi^O. 

If t = 1 the result is trivial. If t > 1, then the Pt are proper submodules 
and, from (2.1), cl Pt = Pt for each i. Let xa = 0, where x Ç M and a is 
regular in R. Then xa G Pi for all i and we have x G cl Pi = Pi, 1 < i < t. 
Therefore x f n ^ P j = 0 and M is torsion-free and prime. 

The fact that M is Noetherian follows from a result of Grundy (7, p. 242). 

4. Endomorphism rings of uniform modules . 

4a. A characterization of uniform prime modules. We begin with the 
following general result. 
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(4.1.) PROPOSITION. Let B be a ring that has a right quotient ring Q(B). If 
N is a right Q(B)-module, then 

Horn, (N, N) = HomQiB)(N, N). 

Proof. Obviously HornQ{B)(N, N) C HornB(N, N). If h 6 HomB(N, N), 
then for x G M and a, b G B with b regular we have 

(hx)(ab~1) = (h{xab-lb))b~l = {hxab~l)bb~l = h(xab~l). 

Thus h G HomQ(B)(iV, iV) and we have equality. 

(4.2.) COROLLARY. The module N is an infective B-module if and only if N 
is an infective Q(B) -module. 

Now suppose i f is a prime i?-module and let 5 be the right quotient ring 
of R. Since MS is the injective envelope of M and MA = 0, then by (10, 
§ 7) each h G UomR(M, M) has a unique extension h* 6 UomR(MS, MS). 
We may, therefore, assume that 

HomB(M, M) C Homa(ikfS, MS). 

Indeed by (12, 1.6), h* is given by 

h*(mc~l) = Qi(m))crl 

for all m Ç M, c regular in R. 

(4.3) THEOREM. Let U be a uniform submodule of a prime R-module M. Then 
Hom#(£7, U) is an integral domain and HomR(US, US) is a division ring con-
taining HomB(î7, U). 

Proof. If u Ç UA, then the large right ideal uT of R contains a regular 
element and since M is torsion-free, we have u = 0. Thus UA = 0. Moreover, 
since U is uniform, every pair of non-zero submodules of U has non-zero 
intersection. Hence U is an irreducible i?-module in the sense of (11, p. 262). 
Using (11, Theorem 1.7) we have that HomR(Uy U) is an integral domain. 

Since US is the injective envelope of £/, we may write Horne t / , U) Ç 
HomR(US, US). Now the injective envelope of an irreducible module is 
irreducible and, by (11, Theorem 1.7), Hom iB(t/5, US) is a division ring. 

Uniform prime i?-modules may be characterized in the following way. 

(4.4) THEOREM. A prime R-module M is uniform if and only if HomR(M, M) 
is a division ring. 

Proof. The "only if" part was proved above. To prove the converse, suppose 
Ni r\ A7

2 = 0, where N± and N2 are non-zero submodules of M. Let 
N = Ni © N2 and let h be the projection of N on Ni. If h* is the extension 
of h to M, then, since HomR(M, M) is a division ring, (h*)T = 0. This con
tradicts the fact that hN2 = 0. Hence M is uniform. 
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4b. The quotient ring of R. 

(4.5) LEMMA. Let M be a prime R-module and let J be a uniform right ideal 
in R. Then there exists an x G M such that xr P\ J = 0. 

Proof. If xr r\ J 5* 0 for every ^ 1 , then, by (2.4), M J = 0. But this 
contradicts the fact that M is a prime i^-module. 

(4.6) THEOREM. Let M be a prime R-module and let J be a uniform right 
ideal in R. Then there exists an x G M such that I = HomR(xJ, xJ) is a right 
Ore domain. The ring D = HomR(xJS, xJS) is a right quotient division ring 
for I. 

Proof. By (4.5) there is an x Ç M such that xr Pi J = 0. Then xJ ^ 0, 
for otherwise, J C xr, a contradiction. I t then follows that the correspondence 
j-^xjy j 6 7", is an ^-isomorphism of the .R-module J onto the i?-module 
xJ. Consequently, / = HomB(J, / ) and by (4, Theorem 4), / is a right Ore 
domain. From (4, pp. 606-607) we have that JS is a minimal right ideal 
in 5 and H o m ^ / S , JS) is the quotient ring of Hom^J", J). However, the 
S-modules JS and xJS are isomorphic and the last part of the theorem follows 
at once. 

(4.7) COROLLARY. The ring S is isomorphic to a total matrix ring Dn, where 
D = HomR(x JS, xJS). 

Proof. From (4), D = HomB(JS,JS). 

We can also use (4.6) to associate the quotient ring 5 of R with the decom
position of a Noetherian prime i^-module as given in (3.3). Specifically we 
have 

(4.8) THEOREM. Let M be a Noetherian prime R-module. Then M is a sub-
direct sum of uniform Noetherian prime R-modules Mly . . . , Mt and, for each 
i, there exists xt G Mi such that Ii = Hom i î(x1J,x2J) is a right Ore domain 
where J is a uniform right ideal of R. Moreover, if S is the quotient ring of R, 
then S ~Dni where D is the quotient ring of If. 

4c. A prime ring containing R. In the following discussion let xJ, J, 
and D be as in (4.6). Since S satisfies the maximum condition for right ideals, 
JS is finitely generated over S and consequently xJS is a finitely generated 
right 5-module. Then by (1, 58.14 and 59.7), xJS is a finitely generated in
fective left Z>-module and, from (1, 59.6), the pair (J),xJS) has the double 
centralizer property, i.e. S = HornD(xJS, xJS). Since D is a quotient ring 
for i", we may use (4.1) to obtain S ~ YlomI{xJS, xJS). 

If a G Hom7(x/, xJ), define a* by (xjc~l)a* = {{xj)a)c~l for all j £ J and 
c regular in R. It follows directly that a* is single-valued, preserves sums, and 
is an extension of a to xJS. 
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We show that a* is an J-endomorphism of xJS. Let h £• J.: By the remarks 
preceding (4.3), we may identify h with h* £D, where 

h*(xj(rl) = (h(xj))c-\ 
.Then. 

(h^ixjcr1))^ = ((h(xj))<rl)a* = {{h{xj))a)c~\ 

Since a G Hom7(x/, xJ), 

{(h(xj))a)c-i = (h((xj)a))c-1 = h*{{{xj)a)c~l) = ^((xjc^a*). 

Hence a* •.£.HomI(xJS,:xJS). 
One can show that the correspondence a —» a* is an isomorphism of 

Hom7(x/, xJ) into Hom7(x/5, xJS). We may, therefore, write 

R Ç 5 C 5 , 

where J5 = Hom7(x/, xJ). Therefore, 5 is a quotient ring for f> and by (4), 
B is a prime ring with right quotient conditions. This gives us the following 
two theorems. 

(4.9) THEOREM. If M is a prime R-module, then M contains a uniform sub-
module N and R is contained in a prime ring B such that the pair (N, B) has 
the double centralizer property. The submodule N may be chosen to be of the 
form xJ, where x Ç M and J is a uniform right ideal of R. 

(4.10) THEOREM. Every prime ring R with right quotient conditions is con
tained in a prime ring B which has the same quotient ring as R and satisfies 
the following properties: 

(a) B is the ring of endomorphisms of a left module N over an integral domain; 
(b) the pair (N, B) has the double centralizer property. 

We conclude this section by noting that if M is a finitely generated prime 
i^-module and S is the right quotient ring of R, then from (1, §§ 58, 59), MS 
is a finitely generated left i^-module where H = HornR(MS, MS). More
over, H is a self-injective semi-simple ring and HomR(M, M) Ç H. We do 
not know whether H is a quotient ring for HomR(M, M). 

5. An application. Throughout this section M will denote a finitely 
generated torsion-free left A -module, where A is a right and left Ore domain 
with identity and quotient ring Q. In (2) the authors proved that 
R = HomA(ikf, M) is a prime ring with right and left quotient ring of the 
form Qn, a total matrix ring over Q. Indeed, as in (2), we may assume that 
M is contained in the left Q-vector space Q ® A M, and, making the usual 
identifications, we write 

R = HomA(M, M) Ç Home(<2 ®AM,Q®AM) = S ^ Qn 

for some positive integer n. In the following we shall discuss properties of M 
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when considered as an i^-module. Of particular interest is the fact that M 
is a prime i?-module of the type discussed in § 1. This is a consequence of 
(1.3) and 

(5.1) PROPOSITION. The singular submodule MA of the R-module M is zero. 

Proof. If x G M, then the large right ideal xr of R contains a regular ele
ment c. Now c has an inverse in the simple ring S and hence x = 0. 

(5.2) PROPOSITION. The R-module M is uniform. 

Proof. Let x and y be non-zero elements of M. Since S is a dense ring of 
linear transformations acting on Q ®A M, we have xab~l = y for suitable 
a, b £ R, b regular. Then xa = yb ^ 0. Thus the intersection of two non
zero i^-submodules of M is non-zero. 

(5.3) PROPOSITION. The R-module Q ®A M is the infective envelope of the 
R-module M. 

Proof. Let x and y be non-zero elements of Q ®A M and M respectively. 
Then, as in the proof of (5.2), xa = yb ^ 0 for some a, b G i?, which implies 
that Q ®A M is an essential extension of M as an i?-module. Employing (1, 
58.14 and 59.7), we have that Q ®A M is an injective right 5-module and by 
(4.2) Q ®A M is an injective i£-module. Hence Q ®A M is the injective 
envelope of M and 

Homs(Q ®A M, Q®AM) = Hom*(Q ®A M, Q®AM) = Q. 

Since the injective envelope is unique up to isomorphism and since M is 
a prime i^-module, we may write 

Q®AM^M®RS^M®RQn. 

From (4.3) M is a left module over the integral domain C = Hom i e(M, M). 
In addition we may write A C C C Q, where Q is a right quotient ring for 
C. Then i? = Horn c (if, ilf) and the (C, i?)-bimodule I f has the double 
centralizer property on both sides. 

The discussion above gives us a non-trivial example of a uniform prime 
module. Furthermore, if A is commutative and Noetherian, then M is finitely 
generated over the Noetherian ring R. From (3.3), any subdirect sum of such 
modules is again a Noetherian prime module. 

6. Matrix representations. In this section a different characterization 
for Hom^(Af, M), where M is a left A -module of the type discussed in § 5, 
is given. Actually we work in a more general setting and obtain this charac
terization as a special case. 

In the following let A be an arbitrary ring with identity. I t is known that 
if ikf is a finitely generated unitary free left A -module, then HomA(M, M) 
has a faithful representation as Anj a total matrix ring over A. We shall 
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provide a faithful matrix representation for HomA (M, M) in the case where 
M is contained in a free module. Large classes of such modules are given by 
Levy (12) and Gentile (3). Our work is a generalization of that in (8, p. 25), 
where a characterization for HomA (M, M) is obtained in the case where M 
is cyclic. 

Let M be a finitely generated unitary left A -module with generators 
ei, . . . , en. Write E = (#i, . . . , en) and let El denote the corresponding trans
pose. For V = xx ei + . . . + xn en 6 M, xt G A, we write V = XE\ where 
X = (*i, . . . , a»). If S e HomA(M, M), then VO = (XE1)* = Xfl£ ' , where 
Z> Ç 4̂W. Of course, the mapping 0 —» D is not necessarily onto 4̂W, nor is it 
necessarily one-to-one. A matrix D £ An is termed allowable if one of the 
following equivalent conditions is satisfied: 

(i) the mapping <£ : XEl —> XDE1 of M into i f is single-valued ; 
(ii) whenever XE% = 0, then XD£< = 0. 
The set W of allowable matrices forms a ring and to each element of W 

there corresponds an element of HomA(M, M). Let 

T = {D £ W\DEl = 0}. 

Then the correspondence D —» <£, where </> is the mapping defined in (i) above, 
is a homomorphism of W onto HomA (Af, M) with kernel J1. We have proved 

(6.1) THEOREM. Let M be a finitely generated unitary left A-module and let 
E = (ei, . . . , en), where the et generate M. Then HomA(.M, M) ~ W/T, where 
W is the ring of allowable matrices and T = {D Ç W\ DE1 = 0 } . 

Now suppose M is contained in a free left ^4-module N with basis/i, . . . , / * . 
If F = (/i, . . . ,/ fc), then .£' = Q.F' where Ç is an w X ^ matrix with elements 
in A For V = XEl = XQF% we have F0 = XDE1 = XDQF\ The mapping 
0 —•> DQ is a 1-1 mapping of HomA (M, ilf ) onto the set Z of distinct matrices 
of the form DQ, where D is allowable (note that if DQ = BQ. B allowable, 
then D — B G T). If 0i -> DC and 02 -> £(?, then 0X02 -> £>£(?. Define addition 
and multiplication in Z by 

DQ + BQ = (D + B)Q, DQ-BQ = DBQ. 

It is clear that addition is well defined. To see that multiplication is well 
defined, let DQ = D'Q and BQ = B'Q, where D' and B' are allowable. Then, 
for all i, £>* Q = #'< <2 where £,(# '*) is row i of £>(£>')• Thus (Dt - £>',)£«=() 
and, since 5 is allowable, (Z>, - D'JBE1 = 0 for all i. Hence DBE'^D'BE1 

and £>.£() = £>'£() = ZT^'Q. Then Z is a ring isomorphic to HomA(M, M) 
under the correspondence 0 —> Z)Ç. 

This establishes part (a) of the next theorem. The proof of part (b) is 
direct. 

(6.2) THEOREM. Let M be a finitely generated unitary left A-module with 
generators eh . . . , en and suppose M is contained in a free left A-module N 
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with basis fh . . . ,fk. Let E = (eu . . . , en), F — (fi, . . . , /*) , and define Q by 
El = QFK Then 

(a) HomA (M, M) ~ Z, where Z is the ring of matrices of the form DQ, for 
D allowable, and where multiplication and addition in Z are defined by 

DQ-BQ = DBQ, DQ + BQ = (D + B)Q\ 
(b) Horru(M, M) ^ W'/V, where W is the set of D G W such that if 

XQ = 0, then XDQ = 0 and where V is the set of D G W such that 
DQ = 0. 
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