THE ESSENTIAL NORMS OF COMPOSITION OPERATORS ON WEIGHTED DIRICHLET SPACES

YUFEI LI ${ }^{\boxtimes}$, YUFENG LU and TAO YU

(Received 23 August 2017; accepted 7 September 2017; first published online 31 January 2018)

Abstract

Let φ be an analytic self-map of the unit disc. If φ is analytic in a neighbourhood of the closed unit disc, we give a precise formula for the essential norm of the composition operator C_{φ} on the weighted Dirichlet spaces \mathcal{D}_{α} for $\alpha>0$. We also show that, for a univalent analytic self-map φ of \mathbb{D}, if φ has an angular derivative at some point of $\partial \mathbb{D}$, then the essential norm of C_{φ} on the Dirichlet space is equal to one.

2010 Mathematics subject classification: primary 47B33; secondary 47B30, 47B38.
Keywords and phrases: weighted Dirichlet space, composition operator, generalised Nevanlinna counting function, essential norm, angular derivative.

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} and let $H(\mathbb{D})$ denote the collection of analytic functions on \mathbb{D}. Throughout this paper, φ denotes a nonconstant analytic function on \mathbb{D}, with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Thus φ induces a composition operator C_{φ} on $H(\mathbb{D})$ defined by the equation $C_{\varphi}(f)=f \circ \varphi$ for $f \in H(\mathbb{D})$.

For $\alpha>-1$, the weighted Dirichlet space \mathcal{D}_{α} is defined by

$$
\mathcal{D}_{\alpha}=\left\{f \in H(\mathbb{D}):\|f\|_{\mathcal{D}_{\alpha}}^{2}=|f(0)|^{2}+\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A_{\alpha}(z)<\infty\right\},
$$

where $d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)$ and $d A$ denotes the normalised area measure on \mathbb{D}. When $\alpha=0$, we replace the notation \mathcal{D}_{0} by \mathcal{D}, which is called the Dirichlet space.

The weighted Bergman spaces $A_{\alpha}^{2}(\alpha>-1)$ are defined by

$$
A_{\alpha}^{2}=\left\{f \in H(\mathbb{D}):\|f\|_{A_{\alpha}^{2}}^{2}=\int_{\mathbb{D}}|f(z)|^{2} d A_{\alpha}(z)<\infty\right\} .
$$

The Hardy space H^{2} is defined by

$$
H^{2}=\left\{f \in H(\mathbb{D}):\|f\|_{H^{2}}^{2}=\sup _{0<r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta / 2 \pi<\infty\right\}
$$

It is well known that $\mathcal{D}_{1}=H^{2}$ and $\mathcal{D}_{\alpha}=A_{\alpha-2}^{2}$ for $\alpha>1$.

[^0]© 2018 Australian Mathematical Publishing Association Inc.

Let X be a Banach space. The essential norm of C_{φ} on X, denoted by $\left\|C_{\varphi}\right\|_{e, X}$, is the distance from C_{φ} to the subspace consisting of all compact operators, namely,

$$
\left\|C_{\varphi}\right\|_{e, X}=\inf \left\{\left\|C_{\varphi}-K\right\|: K \text { is compact on } X\right\}
$$

The essential norms of composition operators on \mathcal{D}_{α} were characterised by J . Shapiro [9] in terms of generalised Nevanlinna counting functions. In this paper, Shapiro also gave an exact formula for the essential norm of C_{φ} on H^{2}. Cima and Matheson [2] gave another exact formula for the essential norm of C_{φ} on H^{2} based on the Aleksandrov measure of φ. Poggi-Corradini [8] considered $A_{\alpha}^{2}(\alpha=0,1)$ and obtained a similar result to the one in [9] for H^{2}, using generalised Nevanlinna counting functions and the theory of zero-divisors. In fact, as pointed out by the authors in [1], Shimorin's results on zero-divisors [11-13] mean that Corradini's technique also applies for $-1<\alpha \leq 1$. An exact formula for the essential norm of C_{φ} on \mathcal{D}_{α} is still unknown, except in the cases stated above.

Now let φ be analytic in a neighbourhood of the closed unit disc. Cowen [3, Theorem 2.4] showed that

$$
M \leq\left\|C_{\varphi}\right\|_{e, H^{2}}^{2} \leq 4 M
$$

where

$$
M=\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-1}:|\varsigma|=1\right\} .
$$

Furthermore, employing the Aleksandrov measure and the angular derivative of φ (to be defined in the next section), Cima and Matheson [2, page 63] proved that

$$
\left\|C_{\varphi}\right\|_{e, H^{2}}^{2}=M .
$$

The main result of this paper extends the result in [3] to characterise the essential norm of C_{φ} on $\mathcal{D}_{\alpha}(\alpha>0)$, where φ is holomorphic in a neighbourhood of the closed unit disc. We use the angular derivative and generalised Nevanlinna counting functions. Our result is explicit and should be readily applicable.

Theorem 1.1. Suppose that φ is analytic in a neighbourhood of the closed unit disc and $\alpha>0$. Then

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{D}_{\alpha}}^{2}=\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\zeta|=1\right\} .
$$

From the Julia-Carathéodory theorem, we obtain the following result on \mathcal{D}.
Theorem 1.2. Suppose that φ is univalent and has an angular derivative at some point $\eta \in \partial \mathbb{D}$. Then

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{D}}=1
$$

2. Prerequisites

In this section, we collect results that are needed for the proofs of the theorems.
2.1. Generalised Nevanlinna counting functions. The generalised Nevanlinna counting function for φ is defined by

$$
N_{\varphi, \gamma}(\omega)=\sum_{z \in \varphi^{-1}(\omega)}\left(1-|z|^{2}\right)^{\gamma} \quad \text { for all } \omega \in \mathbb{D}, \gamma \geq 0,
$$

where $N_{\varphi, \gamma}(\omega)=0$ if $\omega \notin \varphi(\mathbb{D})$. In particular,

$$
N_{\varphi, 0}(\omega)=n_{\varphi}(\omega)
$$

is called the multiplicity of φ at ω.
2.2. The change of variable formula (see [4, Theorem 2.32]). For any analytic self-map φ of \mathbb{D} and any $f \in \mathcal{D}_{\alpha}$,

$$
\begin{aligned}
\|f \circ \varphi\|_{\mathcal{D}_{\alpha}}^{2} & =|f(\varphi(0))|^{2}+\int_{\mathbb{D}}\left|(f \circ \varphi)^{\prime}(z)\right|^{2} d A_{\alpha}(z) \\
& =|f(\varphi(0))|^{2}+(\alpha+1) \int_{\mathbb{D}}\left|f^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega)
\end{aligned}
$$

2.3. The pseudo-hyperbolic disc (see [14, page 61]). For $a \in \mathbb{D}$, define φ_{a} by

$$
\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z} \quad \text { for all } z \in \mathbb{D} .
$$

For $0<r<1$, the pseudo-hyperbolic disc

$$
D(a, r) \stackrel{\text { def }}{=}\left\{z \in \mathbb{D}:\left|\varphi_{a}(z)\right|<r\right\}=\varphi_{a}(r \mathbb{D})
$$

is a Euclidean disc with centre and radius given by

$$
\begin{equation*}
C=\frac{1-r^{2}}{1-r^{2}|a|^{2}} a, \quad R=\frac{1-|a|^{2}}{1-r^{2}|a|^{2}} r . \tag{2.1}
\end{equation*}
$$

It is easy to check that

$$
\varphi_{a}^{\prime}(z)=-\frac{1-|a|^{2}}{(1-\bar{a} z)^{2}}
$$

and

$$
1-\left|\varphi_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\bar{a} z|^{2}}
$$

2.4. Angular derivative (see [4, pages 50-51]). Firstly, recall the notation for nontangential approach regions (see [9, page 383]). For $\eta \in \partial \mathbb{D}$ and $0<\rho<1$, let $S_{\rho}(\eta)$ be the convex hull of the disc $\rho \mathbb{D}$ and the point η. For $0<r<1$, let $S_{\rho, r}(\eta)=S_{\rho}(\eta) \backslash r \mathbb{D}$.

Secondly, if f is a function defined on \mathbb{D} and $\eta \in \partial \mathbb{D}$, then

$$
\angle \lim _{z \rightarrow \eta} f(z)=L
$$

means that $f(z) \rightarrow L$ as $z \rightarrow \eta$ through any nontangential approach region $S_{\rho}(\eta)$. In this case, we say that L is the nontangential limit of f at η.

Lastly, φ is said to have an angular derivative at $\eta \in \partial \mathbb{D}$ if there is $\xi \in \partial \mathbb{D}$ so that

$$
\angle \lim _{z \rightarrow \eta} \frac{\varphi(z)-\xi}{z-\eta}
$$

exists. We call the limit the angular derivative of φ at η, and denote it by $\varphi^{\prime}(\eta)$.
2.5. Julia-Carathéodory Theorem (see [10, page 57] or [4, Theorem 2.44]). Suppose that φ is an analytic self-map of \mathbb{D} and that $\eta \in \partial \mathbb{D}$. Then the following three statements are equivalent:
(1) $\quad d(\eta)=\liminf _{z \rightarrow \eta}(1-|\varphi(z)|) /(1-|z|)<\infty$;
(2) φ has finite angular derivative $\varphi^{\prime}(\eta)$ at η; and
(3) both φ and φ^{\prime} have (finite) nontangential limits at η and $|\xi|=1$, where $\xi=$ $\lim _{r \rightarrow 1} \varphi(r \eta)$.

Moreover, when these conditions hold:

$$
\begin{align*}
& d(\eta)>0 \text { in }(1) ; \text { and } \tag{4}\\
& \varphi^{\prime}(\eta)=d(\eta) \bar{\eta} \xi \text { and } d(\eta)=\angle \lim _{z \rightarrow \eta}(1-|\varphi(z)|)(1-|z|) .
\end{align*}
$$

The next lemma is a geometric consequence of the Julia-Carathéodory theorem.
Lemma 2.1 [9, Corollary 3.2]. Suppose that φ has an angular derivative at some point $\eta \in \partial \mathbb{D}$ and that ξ is the nontangential limit of φ at η. Then, for each pair σ, ρ with $0<\sigma<\rho<1$, there exists t with $0<t<1$ such that

$$
S_{\sigma, t}(\xi) \subseteq \varphi\left(S_{\rho}(\eta)\right)
$$

Moreover, we deduce the following corollary.
Corollary 2.2. Suppose that φ has an angular derivative at some point $\eta \in \partial \mathbb{D}$ and that ξ is the nontangential limit of φ at η. Fix r with $0<r<1$ and let $\sigma=2 r /\left(1+r^{2}\right)$. Then, for each ρ with $\sigma<\rho<1$, there exist t, h with $0<t, h<1$ such that

$$
D(a, r) \subseteq S_{\sigma, t}(\xi) \subseteq \varphi\left(S_{\rho}(\eta)\right) \quad \text { for all } a \in E_{h}
$$

where $E_{h}=\{a: \arg a=\arg \xi, h<|a|<1\}$.
Proof. Suppose that $\sigma<\rho<1$. By Lemma 2.1, there exists t with $0<t<1$ such that

$$
S_{\sigma, t}(\xi) \subseteq \varphi\left(S_{\rho}(\eta)\right)
$$

To finish the proof, it suffices to show that $D(a, r) \subseteq S_{\sigma}(\xi)$ (combining this with the fact that for any $z \in D(a, r), z$ tends to ξ if a is close to $\xi)$. Fix $z \in D(a, r)$. If the straight line in \mathbb{D} through z ends at ξ, making an angle $\theta_{z}<\pi / 2$ with the radius to that point, then

$$
\sup _{z \in D(a, r)} \sin \left(\theta_{z}\right) \leq \frac{R}{1-|C|}=\frac{r\left(1-|a|^{2}\right)}{1-|a|^{2} r^{2}-|a|+|a| r^{2}}=\frac{r(1+|a|)}{1+|a| r^{2}} \leq \frac{2 r}{1+r^{2}}=\sigma
$$

after substituting the values for C and R given in (2.1). This implies $D(a, r) \subseteq S_{\sigma}(\xi)$ and completes the proof.

Lemma 2.3. Suppose that $\alpha>0$ and that φ is analytic in a neighbourhood of the closed unit disc, with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. For $\lambda \in \partial \mathbb{D}$, if $\left\{\zeta_{j}\right\}_{j=1}^{n}$ is the set of all preimages of φ at λ in the unit circle $\partial \mathbb{D}$, then

$$
\angle \lim _{a \rightarrow \lambda} \frac{N_{\varphi, \alpha}(a)}{\left(1-|a|^{2}\right)^{\alpha}}=\sum_{j=1}^{n}\left|\varphi^{\prime}\left(\zeta_{j}\right)\right|^{-\alpha} .
$$

Proof. Since φ is analytic in a neighbourhood of $\overline{\mathbb{D}}, \varphi^{\prime}\left(\zeta_{j}\right)$ exists, and by the JuliaCarathéodory theorem, $\varphi^{\prime}\left(\zeta_{j}\right)=d\left(\zeta_{j}\right) \overline{\zeta_{j}} \lambda \neq 0$ for $j=1,2, \ldots, n$. Moreover, there exists $\gamma>1$ such that $\varphi-\lambda$ has no zeros on $\partial(\gamma \mathbb{D})$ and $\left\{\zeta_{j}\right\}_{j=1}^{n}$ are all the zeros of $\varphi-\lambda$ in $\gamma \mathbb{D}$. Thus we may define

$$
\delta=\min _{\omega \in \partial(\gamma \mathbb{D})}|\varphi(\omega)-\lambda|>0
$$

If $|a-\lambda|<\delta / 2$ and $\omega \in \partial(\gamma \mathbb{D})$, then

$$
|a-\lambda|<|\varphi(\omega)-\lambda| .
$$

By Rouché's Theorem, $\varphi-a$ must have n zeros in $\gamma \mathbb{D}$.
Now fix σ, ρ with $0<\sigma<\rho<1$ and choose $0<t<1$ such that the $S_{j}=S_{\rho, t}\left(\zeta_{j}\right)$ are disjoint for $1 \leq j \leq n$. By Lemma $2.1, \bigcap_{j=1}^{n} \varphi\left(S_{j}\right)$ contains $S_{\sigma, s}(\lambda)$ for some s with $0<s<1$. If we pick s sufficiently large so that $|a-\lambda|<\delta / 2$ for every $a \in S_{\sigma, s}(\lambda)$, then $\varphi-a$ has exactly n zeros in $\gamma \mathbb{D}$. Since $a \in \bigcap_{j=1}^{n} \varphi\left(S_{j}\right)$, it follows that $\varphi-a$ has exactly n zeros in \mathbb{D}.

For $a \in S_{\sigma, s}(\lambda)$ and $1 \leq j \leq n$, choose the preimage $z^{(j)}(a)$ of a that lies in S_{j}. Then

$$
\begin{equation*}
N_{\varphi, \alpha}(a)=\sum_{j=1}^{n}\left(1-\left|z^{(j)}(a)\right|^{2}\right)^{\alpha} \tag{2.2}
\end{equation*}
$$

By the Schwarz lemma [5, Lemma 1.2], for any analytic mapping $\phi: \mathbb{D} \rightarrow \mathbb{D}$,

$$
\begin{equation*}
\frac{\left|\phi^{\prime}(z)\right|}{1-|\phi(z)|^{2}} \leq \frac{1}{1-|z|^{2}} \quad \text { for all } z \in \mathbb{D} \tag{2.3}
\end{equation*}
$$

This ensures that $z^{(j)}(a) \rightarrow \zeta_{j}$ through S_{j} for each j, as $a \rightarrow \lambda$ through $S_{\sigma, s}(\lambda)$. Thus, again by the Julia-Carathéodory theorem,

$$
\lim _{a \rightarrow \lambda, a \in S_{\sigma, s}(\lambda)} \frac{\left(1-\left|z^{(j)}(a)\right|^{2}\right)^{\alpha}}{\left(1-|a|^{2}\right)^{\alpha}}=\left|\varphi^{\prime}\left(\zeta_{j}\right)\right|^{-\alpha} .
$$

Combining this with (2.2),

$$
\angle \lim _{a \rightarrow \lambda} \frac{N_{\varphi, \alpha}(a)}{\left(1-|a|^{2}\right)^{\alpha}}=\sum_{j=1}^{n}\left|\varphi^{\prime}\left(\zeta_{j}\right)\right|^{-\alpha},
$$

which completes the proof.
Note that there exists a sequence $\left\{a_{m}\right\}$ in \mathbb{D} such that $\left|a_{m}\right| \rightarrow 1$ and

$$
\limsup _{|a| \rightarrow 1} \frac{N_{\varphi, \alpha}(a)}{\left(1-|a|^{2}\right)^{\alpha}}=\lim _{\left|a_{m}\right| \rightarrow 1} \frac{N_{\varphi, \alpha}\left(a_{m}\right)}{\left(1-\left|a_{m}\right|^{2}\right)^{\alpha}}
$$

By selecting an appropriate subsequence, if necessary, we may assume that a_{m} converges to some point $\xi \in \partial \mathbb{D}$. Thus

$$
\begin{equation*}
\underset{|a| \rightarrow 1}{\limsup } \frac{N_{\varphi, \alpha}(a)}{\left(1-|a|^{2}\right)^{\alpha}}=\lim _{a_{m} \rightarrow \xi} \frac{N_{\varphi, \alpha}\left(a_{m}\right)}{\left(1-\left|a_{m}\right|^{2}\right)^{\alpha}} . \tag{2.4}
\end{equation*}
$$

This remark leads to the next proposition.

Proposition 2.4. Suppose that $\alpha>0$ and that φ is analytic in a neighbourhood of the closed unit disc, with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Then

$$
\begin{equation*}
\lim _{a_{m} \rightarrow \xi} \frac{N_{\varphi, \alpha}\left(a_{m}\right)}{\left(1-\left|a_{m}\right|^{2}\right)^{\alpha}}=\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\} . \tag{2.5}
\end{equation*}
$$

Remark 2.5. If, for each $\varsigma \in \partial \mathbb{D}$, the preimage of φ at ς does not exist, then we define

$$
\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\}=0 .
$$

Proof of Proposition 2.4.
Case I: $\quad \varphi$ has no angular derivative at every point η in $\partial \mathbb{D}$. Since φ is analytic in a neighbourhood of the closed unit disc, if there exists $\lambda \in \partial \mathbb{D}$ such that $\varphi(\eta)=\lambda$ for some $\eta \in \partial \mathbb{D}$, then $\varphi^{\prime}(\eta)$ exists, which is a contradiction. Therefore,

$$
\max _{z \in \mathbb{D}}|\varphi(z)|<1
$$

This implies that (2.5) is valid.
Case II: φ has an angular derivative at some point on the unit circle. By Lemma 2.3,

$$
\begin{equation*}
\limsup _{|a| \rightarrow 1} \frac{N_{\varphi, \alpha}(a)}{\left(1-|a|^{2}\right)^{\alpha}} \geq \max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\}>0 . \tag{2.6}
\end{equation*}
$$

Conversely, from (2.4) and (2.6),

$$
\lim _{a_{m} \rightarrow \xi} \frac{N_{\varphi, \alpha}\left(a_{m}\right)}{\left(1-\left|a_{m}\right|^{2}\right)^{\alpha}}>0
$$

Combining this with the fact that φ is analytic in the neighbourhood of $\overline{\mathbb{D}}$, we can find a sufficiently large $M>0$ so that, for $m>M$, the preimage of φ at a_{m} exists and ξ is a value of φ at some point in $\partial \mathbb{D}$.

Suppose that $\left\{\zeta_{j}\right\}_{j=1}^{n}$ is the set of all preimages of φ at ξ in the unit circle. As shown above (see the proof of Lemma 2.3), $\varphi^{\prime}\left(\zeta_{j}\right) \neq 0$ for $j=1,2, \ldots, n$ and there is a Euclidean disc $B(\xi, \delta)$ such that $\varphi-a$ has at most n zeros in \mathbb{D} for every $a \in B(\xi, \delta) \cap \mathbb{D}$. Recall that φ is analytic in the neighbourhood of $\overline{\mathbb{D}}$, so φ preserves angles at ζ_{j} for $1 \leq j \leq n$. Hence we can choose $\epsilon>0$ and define $\Omega_{j}(j=1,2, \ldots, n)$ by

$$
\Omega_{j}=\left\{z \in \mathbb{D}:\left|z-\zeta_{j}\right|<\epsilon\right\}
$$

so that:
(1) $\Omega_{i} \cap \Omega_{j}=\emptyset$ for $i \neq j$;
(2) $\varphi\left(\Omega_{j}\right)$ is a simply connected region internally tangential to the circle at ξ for $1 \leq j \leq n$, and $\Omega=\bigcap_{j=1}^{n} \varphi\left(\Omega_{j}\right) \neq \emptyset$; and
(3) $\Omega \subseteq B(\xi, \delta)$.

Fix j with $1 \leq j \leq n$. If there is a subsequence $\left\{b_{s}\right\}$ of $\left\{a_{m}\right\}$ such that, for every s, the preimage $z^{(j)}\left(b_{s}\right)$ of b_{s} lies in Ω_{j}, then (2.3) ensures that $z^{(j)}\left(b_{s}\right) \rightarrow \zeta_{j}$ through Ω_{j} as $b_{s} \rightarrow \xi$ through $\varphi\left(\Omega_{j}\right)$. Thus, by the Julia-Carathéodory theorem once more,

$$
\begin{equation*}
\lim _{b_{s} \rightarrow \xi} \frac{\left(1-\left|z^{(j)}\left(b_{s}\right)\right|^{2}\right)^{\alpha}}{\left(1-\left|b_{s}\right|^{2}\right)^{\alpha}} \leq \limsup _{z \rightarrow \zeta_{j}}\left(\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}}\right)^{\alpha}=\left|\varphi^{\prime}\left(\zeta_{j}\right)\right|^{-\alpha} . \tag{2.7}
\end{equation*}
$$

In what follows, it suffices to show that if there is a subsequence $\left\{c_{s}\right\}$ of $\left\{a_{m}\right\}$ such that $c_{s} \in \Omega$ for every s, then

$$
\lim _{c_{s} \rightarrow \xi} \frac{N_{\varphi, \alpha}\left(c_{s}\right)}{\left(1-\left|c_{s}\right|^{2}\right)^{\alpha}} \leq \max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\lambda}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\lambda|=1\right\} .
$$

In this case, where $c_{s} \in \Omega$ for every s, choose the preimage $z^{(j)}\left(c_{s}\right)$ of c_{s} that lies in Ω_{j} for $1 \leq j \leq n$. Then

$$
N_{\varphi, \alpha}\left(c_{s}\right)=\sum_{j=1}^{n}\left(1-\left|z^{(j)}\left(c_{s}\right)\right|^{2}\right)^{\alpha} .
$$

From (2.7),

$$
\begin{equation*}
\lim _{c_{s} \rightarrow \xi} \frac{N_{\varphi, \alpha}\left(c_{s}\right)}{\left(1-\left|c_{s}\right|^{2}\right)^{\alpha}} \leq \max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\lambda}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\lambda|=1\right\} . \tag{2.8}
\end{equation*}
$$

Thus, combining (2.4) and (2.6) with (2.8) completes the proof of the proposition.
The following corollary is a direct consequence of (2.4) and Proposition 2.4.
Corollary 2.6. Suppose that $\alpha>0$ and that φ satisfies the hypotheses of Proposition 2.4. Then

$$
\limsup _{|a| \rightarrow 1} \frac{N_{\varphi, \alpha}(a)}{\left(1-|a|^{2}\right)^{\alpha}}=\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\} .
$$

3. Proof of Theorems 1.1 and 1.2

In what follows, we assume that $\alpha \geq 0$.
3.1. The upper estimate. Suppose K_{n} takes f to the nth partial sum of its Taylor series: that is,

$$
\left(K_{n} f\right)(z)=\sum_{j=0}^{n} a_{j} z^{j} \quad \text { where } f(z)=\sum_{j=0}^{\infty} a_{j} z^{j} \in \mathcal{D}_{\alpha} .
$$

Let $R_{n}=I-K_{n}$, where I is identity operator on \mathcal{D}_{α}. It is clear that K_{n} is compact on \mathcal{D}_{α}. Hence

$$
\begin{equation*}
\left\|C_{\varphi}\right\|_{e, \mathcal{D}_{\alpha}}=\left\|C_{\varphi}\left(K_{n}+R_{n}\right)\right\|_{e, \mathcal{D}_{\alpha}} \leq\left\|C_{\varphi} R_{n}\right\| . \tag{3.1}
\end{equation*}
$$

For any $f \in \mathcal{D}_{\alpha}$, it follows from the change of variable formula that

$$
\begin{aligned}
\left\|C_{\varphi} R_{n} f\right\|_{\mathcal{D}_{\alpha}}^{2} & =\left|R_{n} f(\varphi(0))\right|^{2}+\int_{\mathbb{D}}\left|\left(R_{n} f\right)^{\prime}(\varphi(z))\right|^{2}\left|\varphi^{\prime}(z)\right|^{2} d A_{\alpha}(z) \\
& =\left|R_{n} f(\varphi(0))\right|^{2}+(\alpha+1) \int_{\mathbb{D}}\left|\left(R_{n} f\right)^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega)
\end{aligned}
$$

Fix $0<r_{0}<1$. Then

$$
\begin{gathered}
\left\|C_{\varphi} R_{n} f\right\|_{\mathcal{D}_{\alpha}}^{2}=\left|R_{n} f(\varphi(0))\right|^{2}+(\alpha+1) \int_{\mathbb{D} \backslash r_{0} \mathbb{D}}\left|\left(R_{n} f\right)^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega) \\
+(\alpha+1) \int_{r_{0} \mathbb{D}}\left|\left(R_{n} f\right)^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega) .
\end{gathered}
$$

From [4, pages 133-135],

$$
\limsup _{n \rightarrow \infty} \sup _{\|f\|_{D_{\alpha} \leq 1}}\left(\int_{r_{0} \mathbb{D}}\left|\left(R_{n} f\right)^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega)+\left|R_{n} f(\varphi(0))\right|^{2}\right)=0
$$

This implies that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|C_{\varphi} R_{n}\right\|^{2} & \leq(\alpha+1) \sup _{\|f\|_{D_{\alpha}} \leq 1} \int_{\mathbb{D} \backslash r_{0} \mathbb{D}}\left|f^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega) \\
& \leq \sup _{\omega \in \mathbb{D} \backslash r_{0}, \mathbb{D}} \frac{N_{\varphi, \alpha}(\omega)}{\left(1-|\omega|^{2}\right)^{\alpha}} \sup _{\|f\|_{D_{\alpha}} \leq 1} \int_{\mathbb{D} \backslash r_{0} \mathbb{D}}\left|f^{\prime}(\omega)\right|^{2} d A_{\alpha}(\omega) \\
& \leq \sup _{\omega \in \mathbb{D} \backslash r_{0} \mathbb{D}} \frac{N_{\varphi, \alpha}(\omega)}{\left(1-|\omega|^{2}\right)^{\alpha}} .
\end{aligned}
$$

Letting $r_{0} \rightarrow 1$ and combining (3.1) and the preceding formula,

$$
\begin{equation*}
\left\|C_{\varphi}\right\|_{e, \mathcal{D}_{\alpha}}^{2} \leq \limsup \frac{N_{\varphi, \alpha}(a)}{|a| \rightarrow 1} . \tag{3.2}
\end{equation*}
$$

3.2. The lower estimate. Suppose that $a \in \mathbb{D}$. Let

$$
f_{a}^{\alpha}(z)=\left(1-|a|^{2}\right)^{1 / 2 \alpha+1} \int_{0}^{z} \frac{d \omega}{(1-\bar{a} \omega)^{\alpha+2}} \quad \text { for all } z \in \mathbb{D}
$$

Clearly, $\left\|f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}}=1$ and f_{a}^{α} converges pointwise to zero on \mathbb{D} as $|a| \rightarrow 1$. By [4, Corollary 1.3], f_{a}^{α} converges to zero weakly on \mathcal{D}_{α}, and hence

$$
\lim _{|a| \rightarrow 1}\left\|K f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}}=0
$$

for any compact operator K on \mathcal{D}_{α}. This yields

$$
\left\|C_{\varphi}-K\right\| \geq \underset{|a| \rightarrow 1}{\limsup }\left\|\left(C_{\varphi}-K\right) f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}} \geq \limsup _{|a| \rightarrow 1}\left\|C_{\varphi} f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}}
$$

which implies that

$$
\begin{equation*}
\left\|C_{\varphi}\right\|_{e, \mathcal{D}_{\alpha}} \geq \underset{|a| \rightarrow 1}{\lim \sup }\left\|C_{\varphi} f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}} . \tag{3.3}
\end{equation*}
$$

By the change of variable formula,

$$
\begin{align*}
\left\|C_{\varphi} f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}}^{2} & =\left|f_{a}^{\alpha}(\varphi(0))\right|^{2}+\int_{\mathbb{D}}\left|\left(f_{a} \circ \varphi\right)^{\prime}(z)\right|^{2} d A_{\alpha}(z) \\
& =\left|f_{a}^{\alpha}(\varphi(0))\right|^{2}+(\alpha+1) \int_{\mathbb{D}}\left|f_{a}^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega) \\
& \geq(\alpha+1) \int_{\mathbb{D}} \frac{\left(1-|a|^{2}\right)^{\alpha+2}}{|1-\bar{a} \omega|^{2 \alpha+4}} N_{\varphi, \alpha}(\omega) d A(\omega) \\
& =(\alpha+1) \int_{\mathbb{D}} \frac{\left(1-|a|^{2}\right)^{\alpha}}{|1-\bar{a} \omega|^{2 \alpha}}\left|\varphi_{a}^{\prime}(\omega)\right|^{2} N_{\varphi, \alpha}(\omega) d A(\omega) \\
& =\int_{\mathbb{D}} \frac{N_{\varphi, \alpha}\left(\varphi_{a}(z)\right)}{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\alpha}} d A_{\alpha}(z) . \tag{3.4}
\end{align*}
$$

3.3. Proof of Theorem 1.1. Suppose that $\alpha>0$ and that φ is analytic in a neighbourhood of the closed unit disc. If

$$
\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\}=0
$$

then Theorem 1.1 follows from Corollary 2.6 and (3.2). Thus, in what follows, we assume that

$$
\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\}>0
$$

and choose $\xi_{0} \in \partial \mathbb{D}$ such that

$$
\begin{equation*}
\sum_{\varphi\left(e^{i \theta}\right)=\xi_{0}}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}=\max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\} . \tag{3.5}
\end{equation*}
$$

On the one hand, Corollary 2.6 and (3.2) give

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{D}_{\alpha}}^{2} \leq \max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\varsigma|=1\right\} .
$$

On the other hand, if we fix r with $0<r<1$, then by (3.4),

$$
\begin{equation*}
\left\|C_{\varphi} f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}}^{2} \geq \int_{r \mathbb{D}} \frac{N_{\varphi, \alpha}\left(\varphi_{a}(z)\right)}{\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{\alpha}} d A_{\alpha}(z) \tag{3.6}
\end{equation*}
$$

Now choose a sequence $\left\{a_{k}\right\} \subseteq \mathbb{D}$ so that $\arg a_{k}=\arg \xi_{0}$ and $a_{k} \rightarrow \xi_{0}$ as $k \rightarrow \infty$. By Corollary 2.2 and Lemma 2.3,

$$
\lim _{k \rightarrow \infty} \frac{N_{\varphi, \alpha}\left(\varphi_{a_{k}}(z)\right)}{\left(1-\left|\varphi_{a_{k}}(z)\right|^{2}\right)^{\alpha}}=\sum_{\varphi\left(e^{i \theta}\right)=\xi_{0}}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha} \quad \text { for all } z \in r \mathbb{D} .
$$

Thus, by the Lebesgue dominated convergence theorem,

$$
\lim _{k \rightarrow \infty} \int_{r \mathbb{D}} \frac{N_{\varphi, \alpha}\left(\varphi_{a_{k}}(z)\right)}{\left(1-\left|\varphi_{a_{k}}(z)\right|^{2}\right)^{\alpha}} d A_{\alpha}(z)=\left(1-\left(1-r^{2}\right)^{\alpha+1}\right) \sum_{\varphi\left(e^{i \theta}\right)=\xi_{0}}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha} .
$$

Combining this with (3.6),

$$
\underset{|a| \rightarrow 1}{\limsup }\left\|C_{\varphi} f_{a}^{\alpha}\right\|_{\mathcal{D}_{\alpha}}^{2} \geq\left(1-\left(1-r^{2}\right)^{\alpha+1}\right) \sum_{\varphi\left(e^{i \theta}\right)=\xi_{0}}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha} .
$$

Let $r \rightarrow 1$. By (3.3) and (3.5),

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{D}_{\alpha}}^{2} \geq \max \left\{\sum_{\varphi\left(e^{i \theta}\right)=\varsigma}\left|\varphi^{\prime}\left(e^{i \theta}\right)\right|^{-\alpha}:|\zeta|=1\right\} .
$$

This completes the proof of Theorem 1.1.
3.4. Proof of Theorem 1.2. Since φ is univalent, (3.2) yields

$$
\begin{equation*}
\left\|C_{\varphi}\right\|_{e, \mathcal{D}}^{2} \leq 1 . \tag{3.7}
\end{equation*}
$$

This result, with a different proof, can also be found in [6, Proposition 2.4].
On the other hand, suppose that φ has an angular derivative at $\eta \in \partial \mathbb{D}$ and that ξ is the nontangential limit of φ at η. Fix r with $0<r<1$. By (3.3) and (3.4),

$$
\begin{equation*}
\left\|C_{\varphi}\right\|_{e, \mathcal{D}}^{2} \geq \limsup _{|a| \rightarrow 1} \int_{r \mathbb{D}} n_{\varphi}\left(\varphi_{a}(z)\right) d A(z) \geq \limsup _{\arg a=\arg \xi, a \rightarrow \xi} \int_{r \mathbb{D}} n_{\varphi}\left(\varphi_{a}(z)\right) d A(z) . \tag{3.8}
\end{equation*}
$$

By Corollary 2.2, there exists h with $0<h<1$ such that

$$
D(a, r) \subseteq \varphi(\mathbb{D}) \quad \text { for all } a \in E_{h}
$$

which implies that

$$
n_{\varphi}\left(\varphi_{a}(z)\right)=1 \quad \text { for all } z \in r \mathbb{D} \text { and } b \in E_{h} .
$$

It follows from (3.7) and (3.8) that

$$
r^{2} \leq\left\|C_{\varphi}\right\|_{e, \mathcal{D}}^{2} \leq 1
$$

Letting $r \rightarrow 1$ gives

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{D}}=1,
$$

which completes the proof.
In [7, Theorem 5.3], MacCluer and Shapiro showed that if C_{φ} is bounded on \mathcal{D}_{γ} for some γ with $-1<\gamma<0$, then C_{φ} is compact on \mathcal{D} if and only if φ does not have an angular derivative at any point of $\partial \mathbb{D}$. Hence, by Theorem 1.2 , we have this corollary.
Corollary 3.1. Suppose that φ is univalent and that C_{φ} is bounded on \mathcal{D}_{γ} for some γ with $-1<\gamma<0$. Then C_{φ} is not compact on \mathcal{D} if and only if

$$
\left\|C_{\varphi}\right\|_{e, \mathcal{D}}=1 .
$$

Acknowledgement

The authors gratefully acknowledge the referee, whose advice and comments considerably improved the original version of this paper.

References

[1] B. Carswell and C. Hammond, 'Composition operators with maximal norm on weighted Bergman spaces', Proc. Amer. Math. Soc. 134 (2006), 2599-2605.
[2] J. A. Cima and A. L. Matheson, 'Essential norms of composition operators and Aleksandrov measures', Pacific J. Math. 179 (1997), 59-64.
[3] C. C. Cowen, 'Composition operators on H^{2}, J. Operator Theory 9 (1983), 77-106.
[4] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions (CRC Press, Boca Raton, 1995).
[5] J. B. Garnett, Bounded Analytic Functions (Springer, New York, 2007).
[6] C. Hammond, 'The norm of a composition operator with linear symbol acting on the Dirichlet space', J. Math. Anal. Appl. 303 (2005), 499-508.
[7] B. D. MacCluer and J. H. Shapiro, 'Angular derivative and compact composition operators on the Hardy and Bergman spaces', Canad. J. Math. 38 (1986), 878-906.
[8] P. Poggi-Corradini, The Essential Norm of Composition Operators Revisited, Contemporary Mathematics, 213 (American Mathematical Society, Providence, RI, 1998), 167-173.
[9] J. H. Shapiro, 'The essential norm of a composition operator', Ann. of Math. (2) 125(2) (1987), 375-404.
[10] J. H. Shapiro, Composition Operators and Classical Function Theory (Springer, New York, 1993).
[11] S. Shimorin, 'Factorization of analytic functions in weighted Bergman spaces', St. Petersburg Math. J. 5 (1994), 1005-1022.
[12] S. Shimorin, 'On a family of conformally invariant operators', St. Petersburg Math. J. 7 (1996), 287-306.
[13] S. Shimorin, 'The green function for the weighted biharmonic operator $\Delta\left(1-|z|^{2}\right)^{-\alpha} \Delta$, and factorization of analytic functions', J. Math. Sci. 87 (1997), 3912-3924.
[14] K. Zhu, Operator Theory in Function Spaces, 2nd edn (American Mathematical Society, Providence, RI, 2007).

YUFEI LI, Department of Mathematical Sciences, Dalian University of Technology, Liaoning,
Dalian, 116024, PR China
e-mail: liyf495@mail.dlut.edu.cn
YUFENG LU, Department of Mathematical Sciences, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
e-mail: lyfdlut@dlut.edu.cn
TAO YU, Department of Mathematical Sciences, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
e-mail: tyu@dlut.edu.cn

[^0]: This research is supported by NSFC grant no. 11671065. The third author is supported by the NSFC grant nos. 11271332 and 11431011.

