THE ESSENTIAL NORMS OF COMPOSITION OPERATORS ON WEIGHTED DIRICHLET SPACES

YUFEI LI[™], YUFENG LU and TAO YU

(Received 23 August 2017; accepted 7 September 2017; first published online 31 January 2018)

Abstract

Let φ be an analytic self-map of the unit disc. If φ is analytic in a neighbourhood of the closed unit disc, we give a precise formula for the essential norm of the composition operator C_{φ} on the weighted Dirichlet spaces \mathcal{D}_{α} for $\alpha > 0$. We also show that, for a univalent analytic self-map φ of \mathbb{D} , if φ has an angular derivative at some point of $\partial \mathbb{D}$, then the essential norm of C_{φ} on the Dirichlet space is equal to one.

2010 Mathematics subject classification: primary 47B33; secondary 47B30, 47B38.

Keywords and phrases: weighted Dirichlet space, composition operator, generalised Nevanlinna counting function, essential norm, angular derivative.

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} and let $H(\mathbb{D})$ denote the collection of analytic functions on \mathbb{D} . Throughout this paper, φ denotes a nonconstant analytic function on \mathbb{D} , with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Thus φ induces a composition operator C_{φ} on $H(\mathbb{D})$ defined by the equation $C_{\varphi}(f) = f \circ \varphi$ for $f \in H(\mathbb{D})$.

For $\alpha > -1$, the weighted Dirichlet space \mathcal{D}_{α} is defined by

$$\mathcal{D}_{\alpha} = \left\{ f \in H(\mathbb{D}) : ||f||_{\mathcal{D}_{\alpha}}^{2} = |f(0)|^{2} + \int_{\mathbb{D}} |f'(z)|^{2} dA_{\alpha}(z) < \infty \right\},$$

where $dA_{\alpha}(z) = (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$ and dA denotes the normalised area measure on \mathbb{D} . When $\alpha = 0$, we replace the notation \mathcal{D}_0 by \mathcal{D} , which is called the Dirichlet space.

The weighted Bergman spaces A_{α}^2 ($\alpha > -1$) are defined by

$$A_{\alpha}^{2} = \left\{ f \in H(\mathbb{D}) : \ \|f\|_{A_{\alpha}^{2}}^{2} = \int_{\mathbb{D}} |f(z)|^{2} dA_{\alpha}(z) < \infty \right\}.$$

The Hardy space H^2 is defined by

$$H^{2} = \left\{ f \in H(\mathbb{D}) : \|f\|_{H^{2}}^{2} = \sup_{0 < r < 1} \int_{0}^{2\pi} |f(re^{i\theta})|^{2} d\theta / 2\pi < \infty \right\}.$$

It is well known that $\mathcal{D}_1 = H^2$ and $\mathcal{D}_\alpha = A^2_{\alpha-2}$ for $\alpha > 1$.

This research is supported by NSFC grant no. 11671065. The third author is supported by the NSFC grant nos. 11271332 and 11431011.

^{© 2018} Australian Mathematical Publishing Association Inc.

Let X be a Banach space. The essential norm of C_{φ} on X, denoted by $\|C_{\varphi}\|_{e,X}$, is the distance from C_{φ} to the subspace consisting of all compact operators, namely,

$$||C_{\varphi}||_{e,X} = \inf \{||C_{\varphi} - K|| : K \text{ is compact on } X\}.$$

The essential norms of composition operators on \mathcal{D}_{α} were characterised by J. Shapiro [9] in terms of generalised Nevanlinna counting functions. In this paper, Shapiro also gave an exact formula for the essential norm of C_{φ} on H^2 . Cima and Matheson [2] gave another exact formula for the essential norm of C_{φ} on H^2 based on the Aleksandrov measure of φ . Poggi-Corradini [8] considered A_{α}^2 ($\alpha = 0, 1$) and obtained a similar result to the one in [9] for H^2 , using generalised Nevanlinna counting functions and the theory of zero-divisors. In fact, as pointed out by the authors in [1], Shimorin's results on zero-divisors [11–13] mean that Corradini's technique also applies for $-1 < \alpha \le 1$. An exact formula for the essential norm of C_{φ} on \mathcal{D}_{α} is still unknown, except in the cases stated above.

Now let φ be analytic in a neighbourhood of the closed unit disc. Cowen [3, Theorem 2.4] showed that

$$M \le \left\| C_{\varphi} \right\|_{e,H^2}^2 \le 4M.$$

where

$$M = \max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-1} : |\varsigma| = 1\right\}.$$

Furthermore, employing the Aleksandrov measure and the angular derivative of φ (to be defined in the next section), Cima and Matheson [2, page 63] proved that

$$\|C_{\varphi}\|_{e,H^2}^2 = M.$$

The main result of this paper extends the result in [3] to characterise the essential norm of C_{φ} on \mathcal{D}_{α} ($\alpha > 0$), where φ is holomorphic in a neighbourhood of the closed unit disc. We use the angular derivative and generalised Nevanlinna counting functions. Our result is explicit and should be readily applicable.

THEOREM 1.1. Suppose that φ is analytic in a neighbourhood of the closed unit disc and $\alpha > 0$. Then

$$\|C_{\varphi}\|_{e,\mathcal{D}_{\alpha}}^{2} = \max\Big\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma| = 1\Big\}.$$

From the Julia–Carathéodory theorem, we obtain the following result on \mathcal{D} .

THEOREM 1.2. Suppose that φ is univalent and has an angular derivative at some point $\eta \in \partial \mathbb{D}$. Then

$$\|C_{\varphi}\|_{e,\mathcal{D}} = 1.$$

2. Prerequisites

In this section, we collect results that are needed for the proofs of the theorems.

2.1. Generalised Nevanlinna counting functions. The generalised Nevanlinna counting function for φ is defined by

$$N_{\varphi,\gamma}(\omega) = \sum_{z \in \varphi^{-1}(\omega)} (1 - |z|^2)^{\gamma} \text{ for all } \omega \in \mathbb{D}, \ \gamma \ge 0,$$

where $N_{\varphi,\gamma}(\omega) = 0$ if $\omega \notin \varphi(\mathbb{D})$. In particular,

$$N_{\varphi,0}(\omega) = n_{\varphi}(\omega)$$

is called the multiplicity of φ at ω .

2.2. The change of variable formula (see [4, Theorem 2.32]). For any analytic self-map φ of \mathbb{D} and any $f \in \mathcal{D}_{\alpha}$,

$$\begin{split} \|f \circ \varphi\|_{\mathcal{D}_{\alpha}}^{2} &= |f(\varphi(0))|^{2} + \int_{\mathbb{D}} |(f \circ \varphi)'(z)|^{2} dA_{\alpha}(z) \\ &= |f(\varphi(0))|^{2} + (\alpha + 1) \int_{\mathbb{D}} |f'(\omega)|^{2} N_{\varphi,\alpha}(\omega) dA(\omega). \end{split}$$

2.3. The pseudo-hyperbolic disc (see [14, page 61]). For $a \in \mathbb{D}$, define φ_a by

$$\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$$
 for all $z \in \mathbb{D}$.

For 0 < r < 1, the pseudo-hyperbolic disc

$$D(a, r) \stackrel{\text{def}}{=} \{ z \in \mathbb{D} : |\varphi_a(z)| < r \} = \varphi_a(r\mathbb{D})$$

is a Euclidean disc with centre and radius given by

$$C = \frac{1 - r^2}{1 - r^2 |a|^2} a, \quad R = \frac{1 - |a|^2}{1 - r^2 |a|^2} r.$$
 (2.1)

It is easy to check that

$$\varphi_a'(z) = -\frac{1-|a|^2}{(1-\overline{a}z)^2}$$

and

$$1 - |\varphi_a(z)|^2 = \frac{(1 - |a|^2)(1 - |z|^2)}{|1 - \overline{a}z|^2}$$

2.4. Angular derivative (see [4, pages 50–51]). Firstly, recall the notation for nontangential approach regions (see [9, page 383]). For $\eta \in \partial \mathbb{D}$ and $0 < \rho < 1$, let $S_{\rho}(\eta)$ be the convex hull of the disc $\rho \mathbb{D}$ and the point η . For 0 < r < 1, let $S_{\rho,r}(\eta) = S_{\rho}(\eta) \setminus r\mathbb{D}$.

Secondly, if f is a function defined on \mathbb{D} and $\eta \in \partial \mathbb{D}$, then

$$\angle \lim_{z \to \eta} f(z) = L$$

means that $f(z) \to L$ as $z \to \eta$ through any nontangential approach region $S_{\rho}(\eta)$. In this case, we say that *L* is the nontangential limit of *f* at η .

Lastly, φ is said to have an angular derivative at $\eta \in \partial \mathbb{D}$ if there is $\xi \in \partial \mathbb{D}$ so that

$$\angle \lim_{z \to \eta} \frac{\varphi(z) - \xi}{z - \eta}$$

exists. We call the limit the angular derivative of φ at η , and denote it by $\varphi'(\eta)$.

2.5. Julia–Carathéodory Theorem (see [10, page 57] or [4, Theorem 2.44]). Suppose that φ is an analytic self-map of \mathbb{D} and that $\eta \in \partial \mathbb{D}$. Then the following three statements are equivalent:

- (1) $d(\eta) = \liminf_{z \to \eta} (1 |\varphi(z)|)/(1 |z|) < \infty;$
- (2) φ has finite angular derivative $\varphi'(\eta)$ at η ; and
- (3) both φ and φ' have (finite) nontangential limits at η and $|\xi| = 1$, where $\xi = \lim_{r \to 1} \varphi(r\eta)$.

Moreover, when these conditions hold:

(4)
$$d(\eta) > 0$$
 in (1); and

(5) $\varphi'(\eta) = d(\eta)\overline{\eta}\xi$ and $d(\eta) = \angle \lim_{z \to \eta} (1 - |\varphi(z)|)(1 - |z|).$

The next lemma is a geometric consequence of the Julia-Carathéodory theorem.

LEMMA 2.1 [9, Corollary 3.2]. Suppose that φ has an angular derivative at some point $\eta \in \partial \mathbb{D}$ and that ξ is the nontangential limit of φ at η . Then, for each pair σ, ρ with $0 < \sigma < \rho < 1$, there exists t with 0 < t < 1 such that

$$S_{\sigma,t}(\xi) \subseteq \varphi(S_{\rho}(\eta)).$$

Moreover, we deduce the following corollary.

COROLLARY 2.2. Suppose that φ has an angular derivative at some point $\eta \in \partial \mathbb{D}$ and that ξ is the nontangential limit of φ at η . Fix r with 0 < r < 1 and let $\sigma = 2r/(1 + r^2)$. Then, for each ρ with $\sigma < \rho < 1$, there exist t, h with 0 < t, h < 1 such that

$$D(a, r) \subseteq S_{\sigma,t}(\xi) \subseteq \varphi(S_{\rho}(\eta)) \text{ for all } a \in E_h,$$

where $E_h = \{a : \arg a = \arg \xi, h < |a| < 1\}.$

PROOF. Suppose that $\sigma < \rho < 1$. By Lemma 2.1, there exists t with 0 < t < 1 such that

$$S_{\sigma,t}(\xi) \subseteq \varphi(S_{\rho}(\eta)).$$

To finish the proof, it suffices to show that $D(a, r) \subseteq S_{\sigma}(\xi)$ (combining this with the fact that for any $z \in D(a, r)$, z tends to ξ if a is close to ξ). Fix $z \in D(a, r)$. If the straight line in \mathbb{D} through z ends at ξ , making an angle $\theta_z < \pi/2$ with the radius to that point, then

$$\sup_{z \in D(a,r)} \sin(\theta_z) \le \frac{R}{1 - |C|} = \frac{r(1 - |a|^2)}{1 - |a|^2 r^2 - |a| + |a| r^2} = \frac{r(1 + |a|)}{1 + |a| r^2} \le \frac{2r}{1 + r^2} = \sigma,$$

after substituting the values for *C* and *R* given in (2.1). This implies $D(a, r) \subseteq S_{\sigma}(\xi)$ and completes the proof.

LEMMA 2.3. Suppose that $\alpha > 0$ and that φ is analytic in a neighbourhood of the closed unit disc, with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. For $\lambda \in \partial \mathbb{D}$, if $\{\zeta_j\}_{j=1}^n$ is the set of all preimages of φ at λ in the unit circle $\partial \mathbb{D}$, then

$$\angle \lim_{a \to \lambda} \frac{N_{\varphi, \alpha}(a)}{(1 - |a|^2)^{\alpha}} = \sum_{j=1}^n |\varphi'(\zeta_j)|^{-\alpha}.$$

PROOF. Since φ is analytic in a neighbourhood of $\overline{\mathbb{D}}$, $\varphi'(\zeta_j)$ exists, and by the Julia– Carathéodory theorem, $\varphi'(\zeta_j) = d(\zeta_j)\overline{\zeta_j}\lambda \neq 0$ for j = 1, 2, ..., n. Moreover, there exists $\gamma > 1$ such that $\varphi - \lambda$ has no zeros on $\partial(\gamma \mathbb{D})$ and $\{\zeta_j\}_{j=1}^n$ are all the zeros of $\varphi - \lambda$ in $\gamma \mathbb{D}$. Thus we may define

$$\delta = \min_{\omega \in \partial(\gamma \mathbb{D})} |\varphi(\omega) - \lambda| > 0.$$

If $|a - \lambda| < \delta/2$ and $\omega \in \partial(\gamma \mathbb{D})$, then

$$|a - \lambda| < |\varphi(\omega) - \lambda|.$$

By Rouché's Theorem, $\varphi - a$ must have *n* zeros in $\gamma \mathbb{D}$.

Now fix σ , ρ with $0 < \sigma < \rho < 1$ and choose 0 < t < 1 such that the $S_j = S_{\rho,t}(\zeta_j)$ are disjoint for $1 \le j \le n$. By Lemma 2.1, $\bigcap_{j=1}^n \varphi(S_j)$ contains $S_{\sigma,s}(\lambda)$ for some *s* with 0 < s < 1. If we pick *s* sufficiently large so that $|a - \lambda| < \delta/2$ for every $a \in S_{\sigma,s}(\lambda)$, then $\varphi - a$ has exactly *n* zeros in $\gamma \mathbb{D}$. Since $a \in \bigcap_{j=1}^n \varphi(S_j)$, it follows that $\varphi - a$ has exactly *n* zeros in \mathbb{D} .

For $a \in S_{\sigma,s}(\lambda)$ and $1 \le j \le n$, choose the preimage $z^{(j)}(a)$ of a that lies in S_j . Then

$$N_{\varphi,\alpha}(a) = \sum_{j=1}^{n} (1 - |z^{(j)}(a)|^2)^{\alpha}.$$
(2.2)

By the Schwarz lemma [5, Lemma 1.2], for any analytic mapping $\phi : \mathbb{D} \to \mathbb{D}$,

$$\frac{|\phi'(z)|}{1-|\phi(z)|^2} \le \frac{1}{1-|z|^2} \quad \text{for all } z \in \mathbb{D}.$$
(2.3)

This ensures that $z^{(j)}(a) \rightarrow \zeta_j$ through S_j for each j, as $a \rightarrow \lambda$ through $S_{\sigma,s}(\lambda)$. Thus, again by the Julia–Carathéodory theorem,

$$\lim_{a \to \lambda, a \in S_{\sigma,s}(\lambda)} \frac{(1 - |z^{(j)}(a)|^2)^{\alpha}}{(1 - |a|^2)^{\alpha}} = |\varphi'(\zeta_j)|^{-\alpha}.$$

Combining this with (2.2),

$$\angle \lim_{a \to \lambda} \frac{N_{\varphi, \alpha}(a)}{(1 - |a|^2)^{\alpha}} = \sum_{j=1}^n |\varphi'(\zeta_j)|^{-\alpha},$$

which completes the proof.

Note that there exists a sequence $\{a_m\}$ in \mathbb{D} such that $|a_m| \to 1$ and

$$\limsup_{|a| \to 1} \frac{N_{\varphi, \alpha}(a)}{(1 - |a|^2)^{\alpha}} = \lim_{|a_m| \to 1} \frac{N_{\varphi, \alpha}(a_m)}{(1 - |a_m|^2)^{\alpha}}.$$

By selecting an appropriate subsequence, if necessary, we may assume that a_m converges to some point $\xi \in \partial \mathbb{D}$. Thus

$$\limsup_{|a|\to 1} \frac{N_{\varphi,\alpha}(a)}{(1-|a|^2)^{\alpha}} = \lim_{a_m\to\xi} \frac{N_{\varphi,\alpha}(a_m)}{(1-|a_m|^2)^{\alpha}}.$$
(2.4)

This remark leads to the next proposition.

PROPOSITION 2.4. Suppose that $\alpha > 0$ and that φ is analytic in a neighbourhood of the closed unit disc, with $\varphi(\mathbb{D}) \subseteq \mathbb{D}$. Then

$$\lim_{a_m \to \xi} \frac{N_{\varphi,\alpha}(a_m)}{(1-|a_m|^2)^{\alpha}} = \max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma| = 1\right\}.$$
(2.5)

REMARK 2.5. If, for each $\varsigma \in \partial \mathbb{D}$, the preimage of φ at ς does not exist, then we define

$$\max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma|=1\right\}=0.$$

PROOF OF PROPOSITION 2.4.

Case I: φ has no angular derivative at every point η in $\partial \mathbb{D}$. Since φ is analytic in a neighbourhood of the closed unit disc, if there exists $\lambda \in \partial \mathbb{D}$ such that $\varphi(\eta) = \lambda$ for some $\eta \in \partial \mathbb{D}$, then $\varphi'(\eta)$ exists, which is a contradiction. Therefore,

$$\max_{z \in \mathbb{D}} |\varphi(z)| < 1$$

This implies that (2.5) is valid.

Case II: φ has an angular derivative at some point on the unit circle. By Lemma 2.3,

$$\limsup_{|a|\to 1} \frac{N_{\varphi,\alpha}(a)}{(1-|a|^2)^{\alpha}} \ge \max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma|=1\right\} > 0.$$
(2.6)

Conversely, from (2.4) and (2.6),

$$\lim_{a_m \to \xi} \frac{N_{\varphi,\alpha}(a_m)}{(1-|a_m|^2)^{\alpha}} > 0$$

Combining this with the fact that φ is analytic in the neighbourhood of $\overline{\mathbb{D}}$, we can find a sufficiently large M > 0 so that, for m > M, the preimage of φ at a_m exists and ξ is a value of φ at some point in $\partial \mathbb{D}$.

Suppose that $\{\zeta_j\}_{j=1}^n$ is the set of all preimages of φ at ξ in the unit circle. As shown above (see the proof of Lemma 2.3), $\varphi'(\zeta_j) \neq 0$ for j = 1, 2, ..., n and there is a Euclidean disc $B(\xi, \delta)$ such that $\varphi - a$ has at most n zeros in \mathbb{D} for every $a \in B(\xi, \delta) \cap \mathbb{D}$. Recall that φ is analytic in the neighbourhood of $\overline{\mathbb{D}}$, so φ preserves angles at ζ_j for $1 \leq j \leq n$. Hence we can choose $\epsilon > 0$ and define Ω_j (j = 1, 2, ..., n) by

$$\Omega_j = \{ z \in \mathbb{D} : |z - \zeta_j| < \epsilon \}$$

so that:

(1) $\Omega_i \cap \Omega_j = \emptyset$ for $i \neq j$;

- (2) $\varphi(\Omega_j)$ is a simply connected region internally tangential to the circle at ξ for $1 \le j \le n$, and $\Omega = \bigcap_{j=1}^n \varphi(\Omega_j) \ne \emptyset$; and
- (3) $\Omega \subseteq B(\xi, \delta)$.

Fix *j* with $1 \le j \le n$. If there is a subsequence $\{b_s\}$ of $\{a_m\}$ such that, for every *s*, the preimage $z^{(j)}(b_s)$ of b_s lies in Ω_j , then (2.3) ensures that $z^{(j)}(b_s) \to \zeta_j$ through Ω_j as $b_s \to \xi$ through $\varphi(\Omega_j)$. Thus, by the Julia–Carathéodory theorem once more,

$$\lim_{b_s \to \xi} \frac{(1 - |z^{(j)}(b_s)|^2)^{\alpha}}{(1 - |b_s|^2)^{\alpha}} \le \limsup_{z \to \zeta_j} \left(\frac{1 - |z|^2}{1 - |\varphi(z)|^2}\right)^{\alpha} = |\varphi'(\zeta_j)|^{-\alpha}.$$
(2.7)

In what follows, it suffices to show that if there is a subsequence $\{c_s\}$ of $\{a_m\}$ such that $c_s \in \Omega$ for every *s*, then

$$\lim_{c_s \to \xi} \frac{N_{\varphi,\alpha}(c_s)}{(1-|c_s|^2)^{\alpha}} \le \max \Big\{ \sum_{\varphi(e^{i\theta})=\lambda} |\varphi'(e^{i\theta})|^{-\alpha} : |\lambda| = 1 \Big\}.$$

In this case, where $c_s \in \Omega$ for every *s*, choose the preimage $z^{(j)}(c_s)$ of c_s that lies in Ω_j for $1 \le j \le n$. Then

$$N_{\varphi,\alpha}(c_s) = \sum_{j=1}^n (1 - |z^{(j)}(c_s)|^2)^{\alpha}.$$

From (2.7),

$$\lim_{c_s \to \xi} \frac{N_{\varphi,\alpha}(c_s)}{(1-|c_s|^2)^{\alpha}} \le \max\left\{\sum_{\varphi(e^{i\theta})=\lambda} |\varphi'(e^{i\theta})|^{-\alpha} : |\lambda| = 1\right\}.$$
(2.8)

Thus, combining (2.4) and (2.6) with (2.8) completes the proof of the proposition.

The following corollary is a direct consequence of (2.4) and Proposition 2.4.

COROLLARY 2.6. Suppose that $\alpha > 0$ and that φ satisfies the hypotheses of Proposition 2.4. Then

$$\limsup_{|a|\to 1} \frac{N_{\varphi,\alpha}(a)}{(1-|a|^2)^{\alpha}} = \max\Big\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma|=1\Big\}.$$

3. Proof of Theorems 1.1 and 1.2

In what follows, we assume that $\alpha \ge 0$.

3.1. The upper estimate. Suppose K_n takes f to the *n*th partial sum of its Taylor series: that is,

$$(K_n f)(z) = \sum_{j=0}^n a_j z^j$$
 where $f(z) = \sum_{j=0}^\infty a_j z^j \in \mathcal{D}_\alpha$.

Let $R_n = I - K_n$, where *I* is identity operator on \mathcal{D}_{α} . It is clear that K_n is compact on \mathcal{D}_{α} . Hence

$$\|C_{\varphi}\|_{e,\mathcal{D}_{\alpha}} = \|C_{\varphi}(K_n + R_n)\|_{e,\mathcal{D}_{\alpha}} \le \|C_{\varphi}R_n\|.$$
(3.1)

For any $f \in \mathcal{D}_{\alpha}$, it follows from the change of variable formula that

$$\begin{aligned} \|C_{\varphi}R_{n}f\|_{\mathcal{D}_{\alpha}}^{2} &= |R_{n}f(\varphi(0))|^{2} + \int_{\mathbb{D}} |(R_{n}f)'(\varphi(z))|^{2} |\varphi'(z)|^{2} dA_{\alpha}(z) \\ &= |R_{n}f(\varphi(0))|^{2} + (\alpha+1) \int_{\mathbb{D}} |(R_{n}f)'(\omega)|^{2} N_{\varphi,\alpha}(\omega) dA(\omega) \end{aligned}$$

Fix $0 < r_0 < 1$. Then

$$\begin{split} \|C_{\varphi}R_{n}f\|_{\mathcal{D}_{\alpha}}^{2} &= |R_{n}f(\varphi(0))|^{2} + (\alpha+1) \int_{\mathbb{D}\backslash r_{0}\mathbb{D}} |(R_{n}f)'(\omega)|^{2} N_{\varphi,\alpha}(\omega) \, dA(\omega) \\ &+ (\alpha+1) \int_{r_{0}\mathbb{D}} |(R_{n}f)'(\omega)|^{2} N_{\varphi,\alpha}(\omega) \, dA(\omega). \end{split}$$

From [4, pages 133–135],

$$\limsup_{n \to \infty} \sup_{\|f\|_{\mathcal{D}_{\alpha}} \le 1} \left(\int_{r_0 \mathbb{D}} |(R_n f)'(\omega)|^2 N_{\varphi, \alpha}(\omega) \, dA(\omega) + |R_n f(\varphi(0))|^2 \right) = 0.$$

This implies that

$$\begin{split} \limsup_{n \to \infty} \|C_{\varphi} R_n\|^2 &\leq (\alpha + 1) \sup_{\|f\|_{\mathcal{D}_{\alpha}} \leq 1} \int_{\mathbb{D} \setminus r_0 \mathbb{D}} |f'(\omega)|^2 N_{\varphi, \alpha}(\omega) \, dA(\omega) \\ &\leq \sup_{\omega \in \mathbb{D} \setminus r_0 \mathbb{D}} \frac{N_{\varphi, \alpha}(\omega)}{(1 - |\omega|^2)^{\alpha}} \sup_{\|f\|_{\mathcal{D}_{\alpha}} \leq 1} \int_{\mathbb{D} \setminus r_0 \mathbb{D}} |f'(\omega)|^2 \, dA_{\alpha}(\omega) \\ &\leq \sup_{\omega \in \mathbb{D} \setminus r_0 \mathbb{D}} \frac{N_{\varphi, \alpha}(\omega)}{(1 - |\omega|^2)^{\alpha}}. \end{split}$$

Letting $r_0 \rightarrow 1$ and combining (3.1) and the preceding formula,

$$\|C_{\varphi}\|_{e,\mathcal{D}_{\alpha}}^{2} \leq \limsup_{|a| \to 1} \frac{N_{\varphi,\alpha}(a)}{(1-|a|^{2})^{\alpha}}.$$
(3.2)

3.2. The lower estimate. Suppose that $a \in \mathbb{D}$. Let

$$f_a^{\alpha}(z) = (1 - |a|^2)^{1/2\alpha + 1} \int_0^z \frac{d\omega}{(1 - \overline{a}\omega)^{\alpha + 2}} \quad \text{for all } z \in \mathbb{D}.$$

Clearly, $||f_a^{\alpha}||_{\mathcal{D}_a} = 1$ and f_a^{α} converges pointwise to zero on \mathbb{D} as $|a| \to 1$. By [4, Corollary 1.3], f_a^{α} converges to zero weakly on \mathcal{D}_{α} , and hence

$$\lim_{|a|\to 1} \|Kf_a^{\alpha}\|_{\mathcal{D}_{\alpha}} = 0$$

for any compact operator K on \mathcal{D}_{α} . This yields

$$\|C_{\varphi} - K\| \ge \limsup_{|a| \to 1} \|(C_{\varphi} - K)f_a^{\alpha}\|_{\mathcal{D}_{\alpha}} \ge \limsup_{|a| \to 1} \|C_{\varphi}f_a^{\alpha}\|_{\mathcal{D}_{\alpha}},$$

which implies that

$$\|C_{\varphi}\|_{e,\mathcal{D}_{a}} \ge \limsup_{|a| \to 1} \|C_{\varphi}f_{a}^{\alpha}\|_{\mathcal{D}_{a}}.$$
(3.3)

By the change of variable formula,

$$\begin{split} \|C_{\varphi}f_{a}^{\alpha}\|_{\mathcal{D}_{\alpha}}^{2} &= |f_{a}^{\alpha}(\varphi(0))|^{2} + \int_{\mathbb{D}} |(f_{a}\circ\varphi)'(z)|^{2} dA_{\alpha}(z) \\ &= |f_{a}^{\alpha}(\varphi(0))|^{2} + (\alpha+1) \int_{\mathbb{D}} |f_{a}'(\omega)|^{2} N_{\varphi,\alpha}(\omega) dA(\omega) \\ &\geq (\alpha+1) \int_{\mathbb{D}} \frac{(1-|a|^{2})^{\alpha+2}}{|1-\overline{a}\omega|^{2\alpha+4}} N_{\varphi,\alpha}(\omega) dA(\omega) \\ &= (\alpha+1) \int_{\mathbb{D}} \frac{(1-|a|^{2})^{\alpha}}{|1-\overline{a}\omega|^{2\alpha}} |\varphi_{a}'(\omega)|^{2} N_{\varphi,\alpha}(\omega) dA(\omega) \\ &= \int_{\mathbb{D}} \frac{N_{\varphi,\alpha}(\varphi_{a}(z))}{(1-|\varphi_{a}(z)|^{2})^{\alpha}} dA_{\alpha}(z). \end{split}$$
(3.4)

3.3. Proof of Theorem 1.1. Suppose that $\alpha > 0$ and that φ is analytic in a neighbourhood of the closed unit disc. If

$$\max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma|=1\right\}=0,$$

then Theorem 1.1 follows from Corollary 2.6 and (3.2). Thus, in what follows, we assume that

$$\max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma|=1\right\} > 0$$

and choose $\xi_0 \in \partial \mathbb{D}$ such that

$$\sum_{\varphi(e^{i\theta})=\xi_0} |\varphi'(e^{i\theta})|^{-\alpha} = \max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma| = 1\right\}.$$
(3.5)

On the one hand, Corollary 2.6 and (3.2) give

$$\|C_{\varphi}\|_{e,\mathcal{D}_{\alpha}}^{2} \leq \max\Big\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma|=1\Big\}.$$

On the other hand, if we fix *r* with 0 < r < 1, then by (3.4),

$$\|C_{\varphi}f_a^{\alpha}\|_{\mathcal{D}_{\alpha}}^2 \ge \int_{r\mathbb{D}} \frac{N_{\varphi,\alpha}(\varphi_a(z))}{(1-|\varphi_a(z)|^2)^{\alpha}} \, dA_{\alpha}(z). \tag{3.6}$$

Now choose a sequence $\{a_k\} \subseteq \mathbb{D}$ so that $\arg a_k = \arg \xi_0$ and $a_k \to \xi_0$ as $k \to \infty$. By Corollary 2.2 and Lemma 2.3,

$$\lim_{k \to \infty} \frac{N_{\varphi,\alpha}(\varphi_{a_k}(z))}{(1 - |\varphi_{a_k}(z)|^2)^{\alpha}} = \sum_{\varphi(e^{i\theta}) = \xi_0} |\varphi'(e^{i\theta})|^{-\alpha} \quad \text{for all } z \in r\mathbb{D}.$$

[9]

Thus, by the Lebesgue dominated convergence theorem,

$$\lim_{k \to \infty} \int_{r\mathbb{D}} \frac{N_{\varphi,\alpha}(\varphi_{a_k}(z))}{(1 - |\varphi_{a_k}(z)|^2)^{\alpha}} \, dA_{\alpha}(z) = (1 - (1 - r^2)^{\alpha + 1}) \sum_{\varphi(e^{i\theta}) = \xi_0} |\varphi'(e^{i\theta})|^{-\alpha}.$$

Combining this with (3.6),

$$\limsup_{|a|\to 1} \|C_{\varphi} f_a^{\alpha}\|_{\mathcal{D}_{\alpha}}^2 \ge (1-(1-r^2)^{\alpha+1}) \sum_{\varphi(e^{i\theta})=\xi_0} |\varphi'(e^{i\theta})|^{-\alpha}.$$

Let $r \to 1$. By (3.3) and (3.5),

$$\|C_{\varphi}\|_{e,\mathcal{D}_{\alpha}}^{2} \geq \max\left\{\sum_{\varphi(e^{i\theta})=\varsigma} |\varphi'(e^{i\theta})|^{-\alpha} : |\varsigma|=1\right\}.$$

This completes the proof of Theorem 1.1.

3.4. Proof of Theorem 1.2. Since φ is univalent, (3.2) yields

$$\|C_{\varphi}\|_{e,\mathcal{D}}^2 \le 1. \tag{3.7}$$

This result, with a different proof, can also be found in [6, Proposition 2.4].

On the other hand, suppose that φ has an angular derivative at $\eta \in \partial \mathbb{D}$ and that ξ is the nontangential limit of φ at η . Fix *r* with 0 < r < 1. By (3.3) and (3.4),

$$\|C_{\varphi}\|_{e,\mathcal{D}}^{2} \ge \limsup_{|a|\to 1} \int_{r\mathbb{D}} n_{\varphi}(\varphi_{a}(z)) \, dA(z) \ge \limsup_{\arg a = \arg \xi, a \to \xi} \int_{r\mathbb{D}} n_{\varphi}(\varphi_{a}(z)) \, dA(z).$$
(3.8)

By Corollary 2.2, there exists *h* with 0 < h < 1 such that

$$D(a, r) \subseteq \varphi(\mathbb{D})$$
 for all $a \in E_h$,

which implies that

 $n_{\varphi}(\varphi_a(z)) = 1$ for all $z \in r\mathbb{D}$ and $b \in E_h$.

It follows from (3.7) and (3.8) that

$$r^2 \le \|C_{\varphi}\|_{e,\mathcal{D}}^2 \le 1.$$

Letting $r \rightarrow 1$ gives

$$||C_{\varphi}||_{e,\mathcal{D}} = 1,$$

which completes the proof.

In [7, Theorem 5.3], MacCluer and Shapiro showed that if C_{φ} is bounded on \mathcal{D}_{γ} for some γ with $-1 < \gamma < 0$, then C_{φ} is compact on \mathcal{D} if and only if φ does not have an angular derivative at any point of $\partial \mathbb{D}$. Hence, by Theorem 1.2, we have this corollary.

COROLLARY 3.1. Suppose that φ is univalent and that C_{φ} is bounded on \mathcal{D}_{γ} for some γ with $-1 < \gamma < 0$. Then C_{φ} is not compact on \mathcal{D} if and only if

$$\|C_{\varphi}\|_{e,\mathcal{D}} = 1.$$

[10]

[11]

Acknowledgement

The authors gratefully acknowledge the referee, whose advice and comments considerably improved the original version of this paper.

References

- [1] B. Carswell and C. Hammond, 'Composition operators with maximal norm on weighted Bergman spaces', *Proc. Amer. Math. Soc.* **134** (2006), 2599–2605.
- [2] J. A. Cima and A. L. Matheson, 'Essential norms of composition operators and Aleksandrov measures', *Pacific J. Math.* 179 (1997), 59–64.
- [3] C. C. Cowen, 'Composition operators on H²', J. Operator Theory 9 (1983), 77–106.
- [4] C. C. Cowen and B. D. MacCluer, *Composition Operators on Spaces of Analytic Functions* (CRC Press, Boca Raton, 1995).
- [5] J. B. Garnett, Bounded Analytic Functions (Springer, New York, 2007).
- [6] C. Hammond, 'The norm of a composition operator with linear symbol acting on the Dirichlet space', *J. Math. Anal. Appl.* **303** (2005), 499–508.
- [7] B. D. MacCluer and J. H. Shapiro, 'Angular derivative and compact composition operators on the Hardy and Bergman spaces', *Canad. J. Math.* 38 (1986), 878–906.
- [8] P. Poggi-Corradini, *The Essential Norm of Composition Operators Revisited*, Contemporary Mathematics, 213 (American Mathematical Society, Providence, RI, 1998), 167–173.
- [9] J. H. Shapiro, 'The essential norm of a composition operator', Ann. of Math. (2) 125(2) (1987), 375–404.
- [10] J. H. Shapiro, Composition Operators and Classical Function Theory (Springer, New York, 1993).
- S. Shimorin, 'Factorization of analytic functions in weighted Bergman spaces', St. Petersburg Math. J. 5 (1994), 1005–1022.
- [12] S. Shimorin, 'On a family of conformally invariant operators', St. Petersburg Math. J. 7 (1996), 287–306.
- [13] S. Shimorin, 'The green function for the weighted biharmonic operator $\Delta(1 |z|^2)^{-\alpha}\Delta$, and factorization of analytic functions', *J. Math. Sci.* 87 (1997), 3912–3924.
- [14] K. Zhu, Operator Theory in Function Spaces, 2nd edn (American Mathematical Society, Providence, RI, 2007).

YUFEI LI, Department of Mathematical Sciences, Dalian University of Technology, Liaoning, Dalian, 116024, PR China e-mail: liyf495@mail.dlut.edu.cn

YUFENG LU, Department of Mathematical Sciences, Dalian University of Technology, Liaoning, Dalian, 116024, PR China e-mail: lyfdlut@dlut.edu.cn

TAO YU, Department of Mathematical Sciences, Dalian University of Technology, Liaoning, Dalian, 116024, PR China e-mail: tyu@dlut.edu.cn