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Abstract

Let ϕ be an analytic self-map of the unit disc. If ϕ is analytic in a neighbourhood of the closed unit disc,
we give a precise formula for the essential norm of the composition operator Cϕ on the weighted Dirichlet
spaces Dα for α > 0. We also show that, for a univalent analytic self-map ϕ of D, if ϕ has an angular
derivative at some point of ∂D, then the essential norm of Cϕ on the Dirichlet space is equal to one.
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1. Introduction
Let D be the open unit disc in the complex plane C and let H(D) denote the collection
of analytic functions on D. Throughout this paper, ϕ denotes a nonconstant analytic
function on D, with ϕ(D) ⊆ D. Thus ϕ induces a composition operator Cϕ on H(D)
defined by the equation Cϕ( f ) = f ◦ ϕ for f ∈ H(D).

For α > −1, the weighted Dirichlet spaceDα is defined by

Dα =

{
f ∈ H(D) : ‖ f ‖2Dα

= | f (0)|2 +

∫
D

| f ′(z)|2 dAα(z) <∞
}
,

where dAα(z) = (α + 1)(1 − |z|2)α dA(z) and dA denotes the normalised area measure
on D. When α = 0, we replace the notation D0 by D, which is called the Dirichlet
space.

The weighted Bergman spaces A2
α (α > −1) are defined by

A2
α =

{
f ∈ H(D) : ‖ f ‖2A2

α
=

∫
D

| f (z)|2 dAα(z) <∞
}
.

The Hardy space H2 is defined by

H2 =

{
f ∈ H(D) : ‖ f ‖2H2 = sup

0<r<1

∫ 2π

0
| f (reiθ)|2 dθ/2π <∞

}
.

It is well known thatD1 = H2 andDα = A2
α−2 for α > 1.
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Let X be a Banach space. The essential norm of Cϕ on X, denoted by ‖Cϕ‖e,X , is the
distance from Cϕ to the subspace consisting of all compact operators, namely,

‖Cϕ‖e,X = inf
{
‖Cϕ − K‖ : K is compact on X

}
.

The essential norms of composition operators on Dα were characterised by J.
Shapiro [9] in terms of generalised Nevanlinna counting functions. In this paper,
Shapiro also gave an exact formula for the essential norm of Cϕ on H2. Cima and
Matheson [2] gave another exact formula for the essential norm of Cϕ on H2 based
on the Aleksandrov measure of ϕ. Poggi-Corradini [8] considered A2

α (α = 0, 1)
and obtained a similar result to the one in [9] for H2, using generalised Nevanlinna
counting functions and the theory of zero-divisors. In fact, as pointed out by the
authors in [1], Shimorin’s results on zero-divisors [11–13] mean that Corradini’s
technique also applies for −1 < α ≤ 1. An exact formula for the essential norm of
Cϕ onDα is still unknown, except in the cases stated above.

Now let ϕ be analytic in a neighbourhood of the closed unit disc. Cowen [3,
Theorem 2.4] showed that

M ≤ ‖Cϕ‖
2
e,H2 ≤ 4M,

where
M = max

{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−1 : |ς| = 1
}
.

Furthermore, employing the Aleksandrov measure and the angular derivative of ϕ (to
be defined in the next section), Cima and Matheson [2, page 63] proved that

‖Cϕ‖
2
e,H2 = M.

The main result of this paper extends the result in [3] to characterise the essential
norm of Cϕ on Dα (α > 0), where ϕ is holomorphic in a neighbourhood of the
closed unit disc. We use the angular derivative and generalised Nevanlinna counting
functions. Our result is explicit and should be readily applicable.

Theorem 1.1. Suppose that ϕ is analytic in a neighbourhood of the closed unit disc
and α > 0. Then

‖Cϕ‖
2
e,Dα

= max
{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
.

From the Julia–Carathéodory theorem, we obtain the following result onD.

Theorem 1.2. Suppose that ϕ is univalent and has an angular derivative at some point
η ∈ ∂D. Then

‖Cϕ‖e,D = 1.

2. Prerequisites

In this section, we collect results that are needed for the proofs of the theorems.
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2.1. Generalised Nevanlinna counting functions. The generalised Nevanlinna
counting function for ϕ is defined by

Nϕ,γ(ω) =
∑

z∈ϕ−1(ω)

(1 − |z|2)γ for all ω ∈ D, γ ≥ 0,

where Nϕ,γ(ω) = 0 if ω < ϕ(D). In particular,

Nϕ,0(ω) = nϕ(ω)

is called the multiplicity of ϕ at ω.

2.2. The change of variable formula (see [4, Theorem 2.32]). For any analytic
self-map ϕ of D and any f ∈ Dα,

‖ f ◦ ϕ‖2Dα
= | f (ϕ(0))|2 +

∫
D

|( f ◦ ϕ)′(z)|2 dAα(z)

= | f (ϕ(0))|2 + (α + 1)
∫
D

| f ′(ω)|2Nϕ,α(ω) dA(ω).

2.3. The pseudo-hyperbolic disc (see [14, page 61]). For a ∈ D, define ϕa by

ϕa(z) =
a − z
1 − az

for all z ∈ D.

For 0 < r < 1, the pseudo-hyperbolic disc

D(a, r) def
= {z ∈ D : |ϕa(z)| < r} = ϕa(rD)

is a Euclidean disc with centre and radius given by

C =
1 − r2

1 − r2|a|2
a, R =

1 − |a|2

1 − r2|a|2
r. (2.1)

It is easy to check that

ϕ′a(z) = −
1 − |a|2

(1 − az)2

and

1 − |ϕa(z)|2 =
(1 − |a|2)(1 − |z|2)
|1 − az|2

.

2.4. Angular derivative (see [4, pages 50–51]). Firstly, recall the notation for
nontangential approach regions (see [9, page 383]). For η ∈ ∂D and 0 < ρ < 1, let S ρ(η)
be the convex hull of the disc ρD and the point η. For 0 < r < 1, let S ρ,r(η) = S ρ(η) \ rD.

Secondly, if f is a function defined on D and η ∈ ∂D, then

∠ lim
z→η

f (z) = L

means that f (z)→ L as z→ η through any nontangential approach region S ρ(η). In
this case, we say that L is the nontangential limit of f at η.

Lastly, ϕ is said to have an angular derivative at η ∈ ∂D if there is ξ ∈ ∂D so that

∠ lim
z→η

ϕ(z) − ξ
z − η

exists. We call the limit the angular derivative of ϕ at η, and denote it by ϕ′(η).
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2.5. Julia–Carathéodory Theorem (see [10, page 57] or [4, Theorem 2.44]).
Suppose that ϕ is an analytic self-map of D and that η ∈ ∂D. Then the following
three statements are equivalent:

(1) d(η) = lim infz→η(1 − |ϕ(z)|)/(1 − |z|) <∞;
(2) ϕ has finite angular derivative ϕ′(η) at η; and
(3) both ϕ and ϕ′ have (finite) nontangential limits at η and |ξ| = 1, where ξ =

limr→1 ϕ(rη).

Moreover, when these conditions hold:

(4) d(η) > 0 in (1); and
(5) ϕ′(η) = d(η)ηξ and d(η) = ∠ limz→η(1 − |ϕ(z)|)(1 − |z|).

The next lemma is a geometric consequence of the Julia–Carathéodory theorem.

Lemma 2.1 [9, Corollary 3.2]. Suppose that ϕ has an angular derivative at some point
η ∈ ∂D and that ξ is the nontangential limit of ϕ at η. Then, for each pair σ, ρ with
0 < σ < ρ < 1, there exists t with 0 < t < 1 such that

S σ,t(ξ) ⊆ ϕ(S ρ(η)).

Moreover, we deduce the following corollary.

Corollary 2.2. Suppose that ϕ has an angular derivative at some point η ∈ ∂D and
that ξ is the nontangential limit of ϕ at η. Fix r with 0 < r < 1 and let σ = 2r/(1 + r2).
Then, for each ρ with σ < ρ < 1, there exist t, h with 0 < t, h < 1 such that

D(a, r) ⊆ S σ,t(ξ) ⊆ ϕ(S ρ(η)) for all a ∈ Eh,

where Eh = {a : arg a = arg ξ, h < |a| < 1}.

Proof. Suppose that σ < ρ < 1. By Lemma 2.1, there exists t with 0 < t < 1 such that

S σ,t(ξ) ⊆ ϕ(S ρ(η)).

To finish the proof, it suffices to show that D(a, r) ⊆ S σ(ξ) (combining this with the
fact that for any z ∈ D(a, r), z tends to ξ if a is close to ξ). Fix z ∈ D(a, r). If the straight
line in D through z ends at ξ, making an angle θz < π/2 with the radius to that point,
then

sup
z∈D(a,r)

sin(θz) ≤
R

1 − |C|
=

r(1 − |a|2)
1 − |a|2r2 − |a| + |a|r2 =

r(1 + |a|)
1 + |a|r2 ≤

2r
1 + r2 = σ,

after substituting the values for C and R given in (2.1). This implies D(a, r) ⊆ S σ(ξ)
and completes the proof. �

Lemma 2.3. Suppose that α > 0 and that ϕ is analytic in a neighbourhood of the closed
unit disc, with ϕ(D) ⊆ D. For λ ∈ ∂D, if {ζ j}

n
j=1 is the set of all preimages of ϕ at λ in

the unit circle ∂D, then

∠ lim
a→λ

Nϕ,α(a)
(1 − |a|2)α

=

n∑
j=1

|ϕ′(ζ j)|−α.

https://doi.org/10.1017/S0004972717000983 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000983


[5] The essential norms of composition operators 301

Proof. Since ϕ is analytic in a neighbourhood of D, ϕ′(ζ j) exists, and by the Julia–
Carathéodory theorem, ϕ′(ζ j) = d(ζ j)ζ jλ , 0 for j = 1, 2, . . . , n. Moreover, there exists
γ > 1 such that ϕ − λ has no zeros on ∂(γD) and {ζ j}

n
j=1 are all the zeros of ϕ − λ in

γD. Thus we may define
δ = min

ω∈∂(γD)
|ϕ(ω) − λ| > 0.

If |a − λ| < δ/2 and ω ∈ ∂(γD), then

|a − λ| < |ϕ(ω) − λ|.

By Rouché’s Theorem, ϕ − a must have n zeros in γD.
Now fix σ, ρ with 0 < σ < ρ < 1 and choose 0 < t < 1 such that the S j = S ρ,t(ζ j)

are disjoint for 1 ≤ j ≤ n. By Lemma 2.1,
⋂n

j=1 ϕ(S j) contains S σ,s(λ) for some s with
0 < s < 1. If we pick s sufficiently large so that |a − λ| < δ/2 for every a ∈ S σ,s(λ), then
ϕ − a has exactly n zeros in γD. Since a ∈

⋂n
j=1 ϕ(S j), it follows that ϕ − a has exactly

n zeros in D.
For a ∈ S σ,s(λ) and 1 ≤ j ≤ n, choose the preimage z( j)(a) of a that lies in S j. Then

Nϕ,α(a) =

n∑
j=1

(1 − |z( j)(a)|2)α. (2.2)

By the Schwarz lemma [5, Lemma 1.2], for any analytic mapping φ : D→ D,

|φ′(z)|
1 − |φ(z)|2

≤
1

1 − |z|2
for all z ∈ D. (2.3)

This ensures that z( j)(a)→ ζ j through S j for each j, as a→ λ through S σ,s(λ). Thus,
again by the Julia–Carathéodory theorem,

lim
a→λ, a∈S σ,s(λ)

(1 − |z( j)(a)|2)α

(1 − |a|2)α
= |ϕ′(ζ j)|−α.

Combining this with (2.2),

∠ lim
a→λ

Nϕ,α(a)
(1 − |a|2)α

=

n∑
j=1

|ϕ′(ζ j)|−α,

which completes the proof. �

Note that there exists a sequence {am} in D such that |am| → 1 and

lim sup
|a|→1

Nϕ,α(a)
(1 − |a|2)α

= lim
|am |→1

Nϕ,α(am)
(1 − |am|

2)α
.

By selecting an appropriate subsequence, if necessary, we may assume that am
converges to some point ξ ∈ ∂D. Thus

lim sup
|a|→1

Nϕ,α(a)
(1 − |a|2)α

= lim
am→ξ

Nϕ,α(am)
(1 − |am|

2)α
. (2.4)

This remark leads to the next proposition.
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Proposition 2.4. Suppose that α > 0 and that ϕ is analytic in a neighbourhood of the
closed unit disc, with ϕ(D) ⊆ D. Then

lim
am→ξ

Nϕ,α(am)
(1 − |am|

2)α
= max

{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
. (2.5)

Remark 2.5. If, for each ς ∈ ∂D, the preimage of ϕ at ς does not exist, then we define

max
{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}

= 0.

Proof of Proposition 2.4.

Case I: ϕ has no angular derivative at every point η in ∂D. Since ϕ is analytic in a
neighbourhood of the closed unit disc, if there exists λ ∈ ∂D such that ϕ(η) = λ for
some η ∈ ∂D, then ϕ′(η) exists, which is a contradiction. Therefore,

max
z∈D
|ϕ(z)| < 1.

This implies that (2.5) is valid.

Case II: ϕ has an angular derivative at some point on the unit circle. By Lemma 2.3,

lim sup
|a|→1

Nϕ,α(a)
(1 − |a|2)α

≥ max
{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
> 0. (2.6)

Conversely, from (2.4) and (2.6),

lim
am→ξ

Nϕ,α(am)
(1 − |am|

2)α
> 0.

Combining this with the fact that ϕ is analytic in the neighbourhood of D, we can find
a sufficiently large M > 0 so that, for m > M, the preimage of ϕ at am exists and ξ is a
value of ϕ at some point in ∂D.

Suppose that {ζ j}
n
j=1 is the set of all preimages of ϕ at ξ in the unit circle. As

shown above (see the proof of Lemma 2.3), ϕ′(ζ j) , 0 for j = 1, 2, . . . , n and there is a
Euclidean disc B(ξ, δ) such that ϕ − a has at most n zeros inD for every a ∈ B(ξ, δ) ∩D.
Recall that ϕ is analytic in the neighbourhood of D, so ϕ preserves angles at ζ j for
1 ≤ j ≤ n. Hence we can choose ε > 0 and define Ω j ( j = 1, 2, . . . , n) by

Ω j = {z ∈ D : |z − ζ j| < ε}

so that:

(1) Ωi ∩Ω j = ∅ for i , j;
(2) ϕ(Ω j) is a simply connected region internally tangential to the circle at ξ for

1 ≤ j ≤ n, and Ω =
⋂n

j=1 ϕ(Ω j) , ∅; and
(3) Ω ⊆ B(ξ, δ).
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Fix j with 1 ≤ j ≤ n. If there is a subsequence {bs} of {am} such that, for every s,
the preimage z( j)(bs) of bs lies in Ω j, then (2.3) ensures that z( j)(bs)→ ζ j through Ω j

as bs → ξ through ϕ(Ω j). Thus, by the Julia–Carathéodory theorem once more,

lim
bs→ξ

(1 − |z( j)(bs)|2)α

(1 − |bs|
2)α

≤ lim sup
z→ζ j

( 1 − |z|2

1 − |ϕ(z)|2

)α
= |ϕ′(ζ j)|−α. (2.7)

In what follows, it suffices to show that if there is a subsequence {cs} of {am} such
that cs ∈ Ω for every s, then

lim
cs→ξ

Nϕ,α(cs)
(1 − |cs|

2)α
≤ max

{ ∑
ϕ(eiθ)=λ

|ϕ′(eiθ)|−α : |λ| = 1
}
.

In this case, where cs ∈ Ω for every s, choose the preimage z( j)(cs) of cs that lies in Ω j

for 1 ≤ j ≤ n. Then

Nϕ,α(cs) =

n∑
j=1

(1 − |z( j)(cs)|2)α.

From (2.7),

lim
cs→ξ

Nϕ,α(cs)
(1 − |cs|

2)α
≤ max

{ ∑
ϕ(eiθ)=λ

|ϕ′(eiθ)|−α : |λ| = 1
}
. (2.8)

Thus, combining (2.4) and (2.6) with (2.8) completes the proof of the proposition.

The following corollary is a direct consequence of (2.4) and Proposition 2.4.

Corollary 2.6. Suppose that α > 0 and that ϕ satisfies the hypotheses of Proposition
2.4. Then

lim sup
|a|→1

Nϕ,α(a)
(1 − |a|2)α

= max
{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
.

3. Proof of Theorems 1.1 and 1.2

In what follows, we assume that α ≥ 0.

3.1. The upper estimate. Suppose Kn takes f to the nth partial sum of its Taylor
series: that is,

(Kn f )(z) =

n∑
j=0

a jz j where f (z) =

∞∑
j=0

a jz j ∈ Dα.

Let Rn = I − Kn, where I is identity operator on Dα. It is clear that Kn is compact on
Dα. Hence

‖Cϕ‖e,Dα
= ‖Cϕ(Kn + Rn)‖e,Dα

≤ ‖CϕRn‖. (3.1)
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For any f ∈ Dα, it follows from the change of variable formula that

‖CϕRn f ‖2Dα
= |Rn f (ϕ(0))|2 +

∫
D

|(Rn f )′(ϕ(z))|2|ϕ′(z)|2 dAα(z)

= |Rn f (ϕ(0))|2 + (α + 1)
∫
D

|(Rn f )′(ω)|2Nϕ,α(ω) dA(ω).

Fix 0 < r0 < 1. Then

‖CϕRn f ‖2Dα
= |Rn f (ϕ(0))|2 + (α + 1)

∫
D\r0D

|(Rn f )′(ω)|2Nϕ,α(ω) dA(ω)

+ (α + 1)
∫

r0D

|(Rn f )′(ω)|2Nϕ,α(ω) dA(ω).

From [4, pages 133–135],

lim sup
n→∞

sup
‖ f ‖Dα≤1

( ∫
r0D

|(Rn f )′(ω)|2Nϕ,α(ω) dA(ω) + |Rn f (ϕ(0))|2
)

= 0.

This implies that

lim sup
n→∞

‖CϕRn‖
2 ≤ (α + 1) sup

‖ f ‖Dα≤1

∫
D\r0D

| f ′(ω)|2Nϕ,α(ω) dA(ω)

≤ sup
ω∈D\r0D

Nϕ,α(ω)
(1 − |ω|2)α

sup
‖ f ‖Dα≤1

∫
D\r0D

| f ′(ω)|2 dAα(ω)

≤ sup
ω∈D\r0D

Nϕ,α(ω)
(1 − |ω|2)α

.

Letting r0 → 1 and combining (3.1) and the preceding formula,

‖Cϕ‖
2
e,Dα
≤ lim sup

|a|→1

Nϕ,α(a)
(1 − |a|2)α

. (3.2)

3.2. The lower estimate. Suppose that a ∈ D. Let

f αa (z) = (1 − |a|2)1/2α+1
∫ z

0

dω
(1 − aω)α+2 for all z ∈ D.

Clearly, ‖ f αa ‖Dα
= 1 and f αa converges pointwise to zero on D as |a| → 1. By [4,

Corollary 1.3], f αa converges to zero weakly onDα, and hence

lim
|a|→1
‖K f αa ‖Dα

= 0

for any compact operator K onDα. This yields

‖Cϕ − K‖ ≥ lim sup
|a|→1

‖(Cϕ − K) f αa ‖Dα
≥ lim sup

|a|→1
‖Cϕ f αa ‖Dα

,
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which implies that
‖Cϕ‖e,Dα

≥ lim sup
|a|→1

‖Cϕ f αa ‖Dα
. (3.3)

By the change of variable formula,

‖Cϕ f αa ‖
2
Dα

= | f αa (ϕ(0))|2 +

∫
D

|( fa ◦ ϕ)′(z)|2 dAα(z)

= | f αa (ϕ(0))|2 + (α + 1)
∫
D

| f ′a(ω)|2Nϕ,α(ω) dA(ω)

≥ (α + 1)
∫
D

(1 − |a|2)α+2

|1 − aω|2α+4 Nϕ,α(ω) dA(ω)

= (α + 1)
∫
D

(1 − |a|2)α

|1 − aω|2α
|ϕ′a(ω)|2Nϕ,α(ω) dA(ω)

=

∫
D

Nϕ,α(ϕa(z))
(1 − |ϕa(z)|2)α

dAα(z). (3.4)

3.3. Proof of Theorem 1.1. Suppose that α > 0 and that ϕ is analytic in a
neighbourhood of the closed unit disc. If

max
{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}

= 0,

then Theorem 1.1 follows from Corollary 2.6 and (3.2). Thus, in what follows, we
assume that

max
{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
> 0

and choose ξ0 ∈ ∂D such that∑
ϕ(eiθ)=ξ0

|ϕ′(eiθ)|−α = max
{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
. (3.5)

On the one hand, Corollary 2.6 and (3.2) give

‖Cϕ‖
2
e,Dα
≤ max

{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
.

On the other hand, if we fix r with 0 < r < 1, then by (3.4),

‖Cϕ f αa ‖
2
Dα
≥

∫
rD

Nϕ,α(ϕa(z))
(1 − |ϕa(z)|2)α

dAα(z). (3.6)

Now choose a sequence {ak} ⊆ D so that arg ak = arg ξ0 and ak → ξ0 as k→∞. By
Corollary 2.2 and Lemma 2.3,

lim
k→∞

Nϕ,α(ϕak (z))
(1 − |ϕak (z)|2)α

=
∑

ϕ(eiθ)=ξ0

|ϕ′(eiθ)|−α for all z ∈ rD.
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Thus, by the Lebesgue dominated convergence theorem,

lim
k→∞

∫
rD

Nϕ,α(ϕak (z))
(1 − |ϕak (z)|2)α

dAα(z) = (1 − (1 − r2)α+1)
∑

ϕ(eiθ)=ξ0

|ϕ′(eiθ)|−α.

Combining this with (3.6),

lim sup
|a|→1

‖Cϕ f αa ‖
2
Dα
≥ (1 − (1 − r2)α+1)

∑
ϕ(eiθ)=ξ0

|ϕ′(eiθ)|−α.

Let r→ 1. By (3.3) and (3.5),

‖Cϕ‖
2
e,Dα
≥ max

{ ∑
ϕ(eiθ)=ς

|ϕ′(eiθ)|−α : |ς| = 1
}
.

This completes the proof of Theorem 1.1.

3.4. Proof of Theorem 1.2. Since ϕ is univalent, (3.2) yields

‖Cϕ‖
2
e,D ≤ 1. (3.7)

This result, with a different proof, can also be found in [6, Proposition 2.4].
On the other hand, suppose that ϕ has an angular derivative at η ∈ ∂D and that ξ is

the nontangential limit of ϕ at η. Fix r with 0 < r < 1. By (3.3) and (3.4),

‖Cϕ‖
2
e,D ≥ lim sup

|a|→1

∫
rD

nϕ(ϕa(z)) dA(z) ≥ lim sup
arg a=arg ξ, a→ξ

∫
rD

nϕ(ϕa(z)) dA(z). (3.8)

By Corollary 2.2, there exists h with 0 < h < 1 such that

D(a, r) ⊆ ϕ(D) for all a ∈ Eh,

which implies that

nϕ(ϕa(z)) = 1 for all z ∈ rD and b ∈ Eh.

It follows from (3.7) and (3.8) that

r2 ≤ ‖Cϕ‖
2
e,D ≤ 1.

Letting r→ 1 gives
‖Cϕ‖e,D = 1,

which completes the proof.
In [7, Theorem 5.3], MacCluer and Shapiro showed that if Cϕ is bounded onDγ for

some γ with −1 < γ < 0, then Cϕ is compact on D if and only if ϕ does not have an
angular derivative at any point of ∂D. Hence, by Theorem 1.2, we have this corollary.

Corollary 3.1. Suppose that ϕ is univalent and that Cϕ is bounded onDγ for some γ
with −1 < γ < 0. Then Cϕ is not compact onD if and only if

‖Cϕ‖e,D = 1.
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