Bull. Aust. Math. Soc. 97 (2018), 297-307
doi:10.1017/S0004972717000983

THE ESSENTIAL NORMS OF COMPOSITION OPERATORS
ON WEIGHTED DIRICHLET SPACES

YUFEI LI®, YUFENG LU and TAO YU

(Received 23 August 2017; accepted 7 September 2017; first published online 31 January 2018)

Abstract

Let ¢ be an analytic self-map of the unit disc. If ¢ is analytic in a neighbourhood of the closed unit disc,
we give a precise formula for the essential norm of the composition operator C, on the weighted Dirichlet
spaces D, for @ > 0. We also show that, for a univalent analytic self-map ¢ of D, if ¢ has an angular
derivative at some point of 9D, then the essential norm of C,, on the Dirichlet space is equal to one.
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1. Introduction
Let D be the open unit disc in the complex plane C and let H(ID) denote the collection
of analytic functions on ID. Throughout this paper, ¢ denotes a nonconstant analytic
function on D, with ¢(D) € D. Thus ¢ induces a composition operator C, on H(D)
defined by the equation Cy,(f) = f o ¢ for f € H(D).
For « > —1, the weighted Dirichlet space D, is defined by

D, ={f € HD) - IR, = 1FO)F + fD 1@ dA(@ < o,

where dA,(z) = (a + 1)(1 = |21*)? dA(z) and dA denotes the normalised area measure
on D. When a = 0, we replace the notation Dy by D, which is called the Dirichlet
space.

The weighted Bergman spaces A2 (« > —1) are defined by

Ay = {f € HD): ”f”iz = f If (2P dAu(z) < oo}.
¢ D
The Hardy space H? is defined by

2
H = (£ e HO): Wi = sup [ Ifre)F doj2m <o)

0<r<1 Jo

It is well known that D; = H? and D, = Ai_z fora > 1.
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Let X be a Banach space. The essential norm of C, on X, denoted by [|C,ll.,x, is the
distance from C, to the subspace consisting of all compact operators, namely,

IC,llex = inf {||C, — K|| : K is compact on X}.

The essential norms of composition operators on 9, were characterised by J.
Shapiro [9] in terms of generalised Nevanlinna counting functions. In this paper,
Shapiro also gave an exact formula for the essential norm of C, on H?. Cima and
Matheson [2] gave another exact formula for the essential norm of C, on H? based
on the Aleksandrov measure of ¢. Poggi-Corradini [8] considered Ai (@=0,1)
and obtained a similar result to the one in [9] for H*, using generalised Nevanlinna
counting functions and the theory of zero-divisors. In fact, as pointed out by the
authors in [1], Shimorin’s results on zero-divisors [11-13] mean that Corradini’s
technique also applies for —1 < @ < 1. An exact formula for the essential norm of
C, on D, is still unknown, except in the cases stated above.

Now let ¢ be analytic in a neighbourhood of the closed unit disc. Cowen [3,
Theorem 2.4] showed that

M <|ICyl o < 4M,

where
M=max{ Y I il =1},
w(e)=¢
Furthermore, employing the Aleksandrov measure and the angular derivative of ¢ (to
be defined in the next section), Cima and Matheson [2, page 63] proved that
ICI2 2 = M.

The main result of this paper extends the result in [3] to characterise the essential
norm of C, on D, (a > 0), where ¢ is holomorphic in a neighbourhood of the
closed unit disc. We use the angular derivative and generalised Nevanlinna counting
functions. Our result is explicit and should be readily applicable.

TueoreM 1.1. Suppose that ¢ is analytic in a neighbourhood of the closed unit disc
and @ > 0. Then

ICuEp, =max{ Y ¢ Isl = 1}
ple)=¢
From the Julia—Carathéodory theorem, we obtain the following result on D.

TueoreM 1.2. Suppose that ¢ is univalent and has an angular derivative at some point
n € dD. Then

ICelle,p = 1.

2. Prerequisites

In this section, we collect results that are needed for the proofs of the theorems.
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2.1. Generalised Nevanlinna counting functions. The generalised Nevanlinna
counting function for ¢ is defined by

Neyw)= > (1-1zPy forallweD, y>0,
z€p7! (w)
where N, (w) = 0 if w ¢ (D). In particular,
Nw,O(w) = nw(a))
is called the multiplicity of ¢ at w.

2.2. The change of variable formula (see [4, Theorem 2.32]). For any analytic
self-map ¢ of D and any f € D,,

If o IR, = £ + fD (f 0 ¢ P dA(2)

=1f(@O)F + (@+ 1) f | (@) Ny o(w) dA(w).
D
2.3. The pseudo-hyperbolic disc (see [14, page 61]). For a € D, define ¢, by

©u(2) = a_—_z for all z € D.
1-az

For 0 < r < 1, the pseudo-hyperbolic disc
def
D(a,r) = {z€D: lpa()l < 1} = a(rD)
is a Euclidean disc with centre and radius given by

1-r2 1 —|af®
=— q, =——7. 2.1
1- rzlaIZa 1- r2|a|2r @D
It is easy to check that
S
QDQ(Z) - (1 _ az)z
and ) )
IS (e o (Ul

|1 —az?

2.4. Angular derivative (see [4, pages 50-51]). Firstly, recall the notation for

nontangential approach regions (see [9, page 383]). Forne dDand 0 < p < 1,let S ,(n)

be the convex hull of the disc pID and the point 5. For 0 < r < 1,1etS, () = S, (1) \ rD.
Secondly, if f is a function defined on D and 7 € 9D, then

/lim f(z) = L
70

means that f(z) — L as z — n through any nontangential approach region S,(77). In
this case, we say that L is the nontangential limit of f at 7.
Lastly, ¢ is said to have an angular derivative at 7 € dD if there is & € 9D so that
Llim 2O
>0 z—1
exists. We call the limit the angular derivative of ¢ at 1, and denote it by ¢’ (7).
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2.5. Julia—Carathéodory Theorem (see [10, page 57] or [4, Theorem 2.44]).
Suppose that ¢ is an analytic self-map of D and that 7 € dD. Then the following
three statements are equivalent:

(1) d(p) =liminf,_,,(1 - le)))/(1 - [z]) < oo;
(2) ¢ has finite angular derivative ¢’(n) at n; and
(3) both ¢ and ¢’ have (finite) nontangential limits at n and |£] = 1, where & =
liInrﬁl 90(”77)
Moreover, when these conditions hold:
@) d@m >0in(1); and
(5)  ¢'(m) =dmné and d(n) = £lim (1 — (@)D - |z)).
The next lemma is a geometric consequence of the Julia—Carathéodory theorem.
Lemma 2.1 [9, Corollary 3.2]. Suppose that ¢ has an angular derivative at some point

n € dD and that ¢ is the nontangential limit of ¢ at n. Then, for each pair o, p with
0 <o <p <1, there exists t with 0 < t < 1 such that

S 51(§) € @(S ().
Moreover, we deduce the following corollary.
CoRrOLLARY 2.2. Suppose that ¢ has an angular derivative at some point n € D and

that & is the nontangential limit of ¢ at n. Fix r with 0 < r < 1 and let o = 2r/(1 + r?).
Then, for each p with o < p < 1, there exist t,h with 0 < t,h < 1 such that

D(a,r) € S5i(&) Ce(Sp(m)  foralla e Ep,
where Ej ={a :arga = argé, h < la| < 1}.
Proor. Suppose that o < p < 1. By Lemma 2.1, there exists ¢ with 0 < # < 1 such that

S 01(&) € (S p(m).

To finish the proof, it suffices to show that D(a, r) C S ,(£) (combining this with the

fact that for any z € D(a, r), z tends to £ if a is close to £). Fix z € D(a, r). If the straight

line in D through z ends at &, making an angle 8, < /2 with the radius to that point,
then

R r(1 = la?) r(1 + |al) 2r
9,) < = = < =
Sup S < T S TR — A 1R S AR

bl

after substituting the values for C and R given in (2.1). This implies D(a, r) C S (&)
and completes the proof. O

Lemma 2.3. Suppose that « > 0 and that ¢ is analytic in a neighbourhood of the closed
unit disc, with ¢(D) C D. For A € 0D, if{gj};le is the set of all preimages of ¢ at A in
the unit circle OD, then

Ltim el Z| @

a=a (1= lal)*
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ProoF. Since ¢ is analytic in a neighbourhood of D, ¢'({;) exists, and by the Julia—
Carathéodory theorem, ¢’({;) = d({ j)g_j/l #0for j=1,2,...,n. Moreover, there exists
v > 1 such that ¢ — A has no zeros on d(yD) and {£ /}?:1 are all the zeros of ¢ — A in
vD. Thus we may define

5= A > 0.
n}(mD) lp(w) — A >

If la— 1| <6/2 and w € d(yD), then
la — Al <lp(w) — 4.

By Rouché’s Theorem, ¢ — a must have n zeros in yD.

Now fix o, p with 0 <o < p <1 and choose 0 < ¢ < 1 such that the §; = §,:({))
are disjoint for 1 < j <n. By Lemma 2.1, ﬂ7=1 ©(S ;) contains S . (1) for some s with
0 < s < 1. If we pick s sufficiently large so that |[a — A| < §/2 for every a € S 4 5(1), then
¢ — a has exactly n zeros in yD. Since a € ﬂ;le @(S j), it follows that ¢ — a has exactly
n zeros in D.

Fora € S ;5(1) and 1 < j < n, choose the preimage z'//(a) of a that lies in S ;. Then

Noala) = > (1= P (@P)". (2.2)
j=1

By the Schwarz lemma [5, Lemma 1.2], for any analytic mapping ¢ : D — D,

¢’ (2l
L-lp@P ~ 1 -1z

This ensures that z(a) — {;j through §; for each j, as a — A through S ; (1). Thus,
again by the Julia—Carathéodory theorem,

(1 - 122
a—daeS () (1= |a]?)®

Combining this with (2.2),

- Npa(@)
Llim Z| @pre

which completes the proof. O

for all z € D. 2.3)

=" (pI”

Note that there exists a sequence {a,,} in D such that |a,,| — 1 and
: Ny.o(a) . Ngolanw)
hmsup—m = 1m T e
lal—1 (1 - |Cl| ) lam|—1 (1 - |am| )
By selecting an appropriate subsequence, if necessary, we may assume that a,
converges to some point £ € dD. Thus

. Nyo(a) . Ngolan)
lim sup 5o = lim vt
-1 (L=lal®)®  an—=é (1 = lam|*)*

(2.4)

This remark leads to the next proposition.
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ProrosiTion 2.4. Suppose that a > 0 and that ¢ is analytic in a neighbourhood of the
closed unit disc, with (D) C D. Then

Ngo,a(am)
an—¢ (1 = |ay|*)

=max{ Y I el =1}, 2.5)

p(e)=¢
Remark 2.5. If, for each ¢ € 9D, the preimage of ¢ at ¢ does not exist, then we define
max{ 1@ sl =1} =0.
wlef)=¢
ProoF oF ProposITION 2.4.

Case I: ¢ has no angular derivative at every point 77 in dD. Since ¢ is analytic in a
neighbourhood of the closed unit disc, if there exists A € dD such that ¢(17) = A for
some 71 € dD, then ¢’(n) exists, which is a contradiction. Therefore,

max lp(2)] < 1.
This implies that (2.5) is valid.

Case II: ¢ has an angular derivative at some point on the unit circle. By Lemma 2.3,

Nyola)

lim sup — 259 5 max{ 10 (@) : |¢] = 1} > 0. 2.6)
ot (1= laP)” Z 4
p(e)=¢
Conversely, from (2.4) and (2.6),
Ngo,a(am)

an—g (1 = lam*)”

Combining this with the fact that ¢ is analytic in the neighbourhood of D, we can find
a sufficiently large M > 0 so that, for m > M, the preimage of ¢ at a,, exists and £ is a
value of ¢ at some point in dD.

Suppose that {{j}]_, is the set of all preimages of ¢ at ¢ in the unit circle. As
shown above (see the proof of Lemma 2.3), ¢’({;) # O for j=1,2,...,n and there is a
Euclidean disc B(£, 6) such that ¢ — a has at most n zeros in D for every a € B(¢,0) N D.
Recall that ¢ is analytic in the neighbourhood of D, so ¢ preserves angles at ¢ ; for
1 < j < n. Hence we can choose € > 0 and define Q; (j = 1,2,...,n) by

Qi={zeD:|z-{jI <€
so that:

() QnQ;j=0fori#+j

(2)  ¢(£2)) is a simply connected region internally tangential to the circle at & for
1 <j<n,and Q= ¢(Q)) # 0; and

3) QCB(E0).
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Fix j with 1 < j < n. If there is a subsequence {b,} of {a,,} such that, for every s,
the preimage z\(by) of by lies in Q;, then (2.3) ensures that z/(b;) — ¢; through Q;
as by — ¢ through ¢(Q;). Thus, by the Julia—Carathéodory theorem once more,

(1 = 29(bylP)* ( 1— 2

< limsup T 07 PEE

b—é (1 —|bs?)® —l ) =" (NI .7)

In what follows, it suffices to show that if there is a subsequence {c,} of {a,,} such
that ¢, € Q for every s, then

m M < max{ Z I’ ()™ 2 |1 = 1}.

ot (T=1e,P)
C s ple)=1

In this case, where ¢, € Q for every s, choose the preimage z'/(c,) of ¢, that lies in Q j
for 1 < j <n. Then

Npalcg) = D (1= (o)
Jj=1

From (2.7),
m Npales) < max{ Z @’ (€)™ 1] = 1}- (2.8)

ek (1 1e, P
T s @le)=1
Thus, combining (2.4) and (2.6) with (2.8) completes the proof of the proposition.

The following corollary is a direct consequence of (2.4) and Proposition 2.4.

COROLLARY 2.6. Suppose that a > 0 and that ¢ satisfies the hypotheses of Proposition
2.4. Then
. NAp,a(a)
limsup ————
-1 (1 =lal*)*

=max{ Y I el =1},

ple?)=¢

3. Proof of Theorems 1.1 and 1.2
In what follows, we assume that a > 0.
3.1. The upper estimate. Suppose K, takes f to the nth partial sum of its Taylor

series: that is,

n 0o

(Knf)(2) = Z ajz’  where f(z) = Z a7’ € D,.

J=0 J=0

Let R, = I — K,,, where I is identity operator on D,. It is clear that K}, is compact on
PD,. Hence

||C<p||e,2)n = “C<p(Kn + Rn)“e,Z)a < “Cq:Rn” (31)
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For any f € D,, it follows from the change of variable formula that
IC,Ruf13, =R, f (@O + fD (R f) (0@l @) dAa(2)
=R f(@O)F + (@ + 1) fD (R f) (@) Ny o(w) dA(w).
Fix 0 < rg < 1. Then

IC,Ru 113, = 1Ry fF@(O)P + (@ + 1) f R fY (@)PN,p o) dA(w)

D\roD

fa+) f R @F N @) dA)
From [4, pages 133-135],

limsup sup ( f i |<Rnf)’(w)|2N¢,a(w)dA<w>+|Rnf(¢(0>>|2):0.

n—00 ||fllp, <1

This implies that

limsup [C,R,|I> < (@ + 1) sup f |/ (@) Ny o(@) dA(w)
S D\roD

n— 1fllpe <1
Ny o(w) ,
< sup o sup f /(@) dAs(w)
webD\reD (1 = 0l*)* 7115, <1 JD\RD
Nyo(w)

web\ren (1 = )

Letting ry — 1 and combining (3.1) and the preceding formula,

Ny q(a
||Cso||3,1)(, < lim sup pal@

a1 (1 —=laP)®’ (3-2)

3.2. The lower estimate. Suppose that a € D. Let

£2(2) = (1 = |af*)! 724! fz _do for all 7 € D.
a o (1 — aw)e+?

Clearly, [|f¢llp, =1 and f converges pointwise to zero on D as |a| = 1. By [4,
Corollary 1.3], £ converges to zero weakly on 9,, and hence

lim [|K f;llp, =0
lal—1

for any compact operator K on D,. This yields

ICy — Kll = lim sup [(Cy, — K) /i llp, = limsup||Cy [ ll, »

lal—1 lal—1
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which implies that
IC¢lle.p, > limsup [ICy f7 o, - (3.3)

lal—1

By the change of variable formula,

IC £ 117, = \f3 (@(ODI” + fD ((fa 0 @) @F dAg(2)

=@ + (@ + 1) fD £ ()N, o(w) dA(w)

(] _| |2)oz+2
> (@ +1) ﬁN%a(w)dA(a))
—@+1) f Qo lga (PN () dA)
w(soa(z)) AL (). (3.4)

p (1 = lea(2)?)”

3.3. Proof of Theorem 1.1. Suppose that @ > 0 and that ¢ is analytic in a
neighbourhood of the closed unit disc. If

max{ 3" /@Il = 1] =0,
w(e)=¢

then Theorem 1.1 follows from Corollary 2.6 and (3.2). Thus, in what follows, we

assume that
ax{ D Wl =1)>0

p(e)=¢
and choose &) € 0D such that
> e =max{ 3 I el =1, (3.5)
wle®)=& p(e®)=¢
On the one hand, Corollary 2.6 and (3.2) give
ICaE, <max{ > I 1si =1}
p(e)=¢
On the other hand, if we fix r with 0 < r < 1, then by (3.4),
Ny.a(@a(2))
ICe 211D, 2 f S dAL(D). (3.6)
olallo, = | T lpaoPr

Now choose a sequence {ax} € D so that arg a; = arg&p and a; — & as k — co. By
Corollary 2.2 and Lemma 2.3,

N .
im M = Z l¢' ()™ forall z € rD.
k—oo (1 — |§Duk(Z)| ) o(ei)=¢,
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Thus, by the Lebesgue dominated convergence theorem,
N (04 a .
Jim f % A= (L= (1= 3 I,
T 1T el weM=6o
Combining this with (3.6),
limsup [Cp f2103, > (1= (1 =) 7 1),
lal=1 ele)=o
Letr — 1. By (3.3) and (3.5),
ICuEp, 2 max{ Y g™ Isl = 1,
ple)=¢
This completes the proof of Theorem 1.1.
3.4. Proof of Theorem 1.2. Since ¢ is univalent, (3.2) yields
ICI2p < 1. 3.7)

This result, with a different proof, can also be found in [6, Proposition 2.4].
On the other hand, suppose that ¢ has an angular derivative at € D and that £ is
the nontangential limit of ¢ at . Fix r with 0 < r < 1. By (3.3) and (3.4),

IC,II? 1 > lim sup fD ny(a(2)) dA(z) = limsup fD ny(pa(2)) dAR).  (3.8)

lal—1 arg a=arg &, a—§&
By Corollary 2.2, there exists & with 0 < h < 1 such that
D(a,r) C (D) forallac Ey,
which implies that
ny(pa(z)) =1 forallzerDandb € E).
It follows from (3.7) and (3.8) that
P <NC I p < 1.

Letting r — 1 gives
”Ct,a”e,.'D =1,

which completes the proof.

In [7, Theorem 5.3], MacCluer and Shapiro showed that if C,, is bounded on D, for
some y with =1 <y <0, then C, is compact on D if and only if ¢ does not have an
angular derivative at any point of dD. Hence, by Theorem 1.2, we have this corollary.

CoroLrary 3.1. Suppose that ¢ is univalent and that C, is bounded on D,, for some y
with —1 <y <0. Then C, is not compact on D if and only if

“Ctp”e,D =1
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