GROUP GRADINGS OF $M_{2}(K)$

R. Khazal, Crina Boboc and S. DĂScălescu

Abstract

We describe all group gradings of the matrix algebra $M_{2}(k)$, where k is an arbitrary field. We prove that any such grading reduces to a grading of type C_{2}, a grading of type $C_{2} \times C_{2}$, or to a good grading. We give new simple proofs for the description of C_{2}-gradings and $C_{2} \times C_{2}$-gradings on $M_{2}(k)$.

0. Introduction and preliminary results

Let k be a field, G a group and A a k-algebra. We say that A is G-graded if $A=\bigoplus_{g \in G} A_{g}$, a direct sum of k-vector subspaces, such that $A_{g} A_{h} \subseteq A_{g h}$ for any $g, h \in G$. The following general problem was posed by E. Zelmanov (see [8]): find all G-gradings of the matrix algebra $M_{n}(k)$, where G is a group, k a field, and n a positive integer. The answer depends on the structure of G and k, so it is hard to expect the problem can be solved in the general. However, several results have been obtained in special cases. In [7], gradings on $A=M_{n}(k)$ for which every matrix unit $e_{i j}$ (the matrix having 1 on the (i, j)-position, and zero elsewhere) is a homogeneous element (that is, it belongs to one of the subspaces A_{g}) have been studied. These gradings have been further investigated in [6], where they were called good gradings. Good gradings are fundamental in the study of all gradings, since as we shall see below, in certain cases any grading is isomorphic to a good grading. The description of all gradings of $M_{2}(k)$ by the cyclic group C_{2} with two elements was done in [6], by using computational methods and the duality between group actions and group gradings. This was explained in [4] in terms of actions and coactions of Hopf algebras, the basic underlying idea being that a G-grading on an algebra A is precisely a structure of a $k G$-comodule algebra on A. This idea was very useful for studying gradings of matrix algebras by cyclic groups, see [4]. In particular all the isomorphism types of C_{2}-gradings on $M_{2}(k)$ were obtained in [4] in the case where $\operatorname{char}(k) \neq 2$. For $\operatorname{char}(k)=2$, the classification has been completed in [2]. We note that in the case where k is algebraically closed, any C_{m}-grading on $M_{n}(k)$ is isomorphic to a good grading (see [5, 10]). This fact led to a different approach to the classification of all gradings of $M_{n}(k)$ over cyclic groups for an arbitrary field k, by using descent theory;

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.
see [5]. For non-cyclic groups, the description of gradings seems to be more difficult. One result in this direction is in [3], where gradings of $M_{2}(k)$ over the Klein group $C_{2} \times C_{2}$ were classified for an arbitrary field k. The method also used the Hopf algebra approach and duality. A strong result was obtained in [1], where the gradings of $M_{n}(k)$ by an Abelian group were described for an algebraically closed field k, a special role being played again by the good gradings.

In this paper we give a complete answer to Zelmanov's problem in the case $n=2$, by classifying all group gradings of $M_{2}(k)$, for any field k. We reobtain the results about C_{2}-gradings and $C_{2} \times C_{2}$-gradings with a new, elementary technique, that does not make use of Hopf algebras or duality between gradings and actions. Our main result is the following.

Theorem Let G be a group with identity element $1, k$ be a field, and $A=M_{2}(k)$.
(I) If $\operatorname{char}(k) \neq 2$, then any G-grading of A is isomorphic to one of the following types.
(1) The trivial grading, that is, $A_{1}=A, A_{g}=0$ for any $g \neq 1$.
(2) A good grading of the form $A_{1}=\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right), A_{g}=\left(\begin{array}{ll}0 & k \\ k & 0\end{array}\right), A_{h}=0$ for $h \in G-\{1, g\}$, where $g \in G$ is an element of order 2 .
(3) A grading of the form $A_{1}=\left\{\left.\left(\begin{array}{cc}u & v \\ b v & u\end{array}\right) \right\rvert\, u, v \in k\right\}, A_{g}=\left\{\left.\left(\begin{array}{cc}u & v \\ -b v & -u\end{array}\right) \right\rvert\,\right.$ $u, v \in k\}, A_{h}=0$ for $h \in G-\{1, g\}$, where $g \in G$ is an element of order 2 , and $b \in k-k^{2}$.
(4) A grading of the form $A_{1}=\left(\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right), A_{g}=\left(\begin{array}{ll}0 & k \\ 0 & 0\end{array}\right), A_{g^{-1}}=\left(\begin{array}{ll}0 & 0 \\ k & 0\end{array}\right)$, $A_{h}=0$ for $h \in G-\left\{1, g, g^{-1}\right\}$, where $g \in G$ is an element of order greater than 2.
(5) A grading of the form $A_{1}=k I_{2}, A_{g}=k X, A_{h}=k Y, A_{g h}=k X Y, A_{u}=0$ for $u \in G-\{1, g, h, g h\}$, where $g, h \in G$ such that $\{1, g, h, g h\}$ is a subgroup of G isomorphic to $C_{2} \times C_{2}$, and X, Y are invertible matrices such that $X^{2}, Y^{2} \in k I_{2}$ and $X Y=-Y X$.
(II) If $\operatorname{char}(k)=2$, then any grading is isomorphic to one of the gradings of type (1), (2), (4) in (I), or to a grading of the form.
(3') $\quad A_{1}=\left\{\left.\left(\begin{array}{cc}x & x+y \\ b(x+y) & y\end{array}\right) \right\rvert\, x, y \in k\right\}, A_{g}=\left\{\left.\left(\begin{array}{cc}b x+y & x \\ y & b x+y\end{array}\right) \right\rvert\, x, y\right.$ $\in k\}, A_{h}=0$ for $h \in G-\{1, g\}$, where $g \in G$ is an element of order 2, and $b \in k-\left\{\alpha^{2}+\alpha \mid \alpha \in k\right\}$.

Throughout the paper we denote $A=M_{2}(k)$. If $A=\bigoplus_{g \in G} A_{g}$ is a grading by the group G, we denote by $\operatorname{supp}(A)=\left\{g \in G \mid A_{g} \neq 0\right\}$. Note that $1 \in \operatorname{supp}(A)$, since $I_{2} \in A_{1}$ for any grading. If H is a subgroup of G, we say that the grading is of type H, if $\operatorname{supp}(A) \subseteq H$. The theorem above says that any isomorphism type of group grading of $M_{2}(k)$ is either trivial, a good grading as in (c), or either of type C_{2} or of type $C_{2} \times C_{2}$ (when there exist subgroups of G isomorphic to C_{2} or $C_{2} \times C_{2}$). In Sections 1,2 and 3 , respectively, we describe all gradings with $\operatorname{supp}(A)$ having 2,3 and 4 elements, respectively. For basic facts about graded algebras we refer to [9].

We give now some easy results that will be used in the sequel.
Lemma 0.1. Let X, Y be non-zero elements of $M_{2}(k)$ such that $X^{2} \in k I_{2}$ and $X Y=Y X=0$. Then $X^{2}=0$, and X, Y are linearly dependent.

Proof: If $X^{2} \in k^{*} I_{2}$, then X is invertible, so then $Y=0$, a contradiction. Thus $X^{2}=0$. Since the conditions still hold if we replace X, Y by $U X U^{-1}, U Y U^{-1}$, with U invertible, we may assume that X has the Jordan form. Since $X \neq 0$, we must have $X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. An easy computation shows now that $X Y=Y X=0$ implies that Y must be of the form $\left(\begin{array}{ll}0 & a \\ 0 & 0\end{array}\right)$, so $Y \in k X$.

LEMMA 0.2. Let $A=\bigoplus_{g \in G} A_{g}$ be a grading of the matrix algebra. If $X \in A_{g}$ for some $g \in G$, then $X^{2} \in A_{1}$. In particular if $g^{2} \neq 1$ we have $X^{2}=0$.

Proof: By the Cayley-Hamilton theorem we have that $X^{2} \in A_{1}+A_{g}$. On the other hand $X^{2} \in A_{g^{2}}$, and then the result is clear.

Corollary 0.3. If $A=\underset{g \in G}{ } A_{g}$ is a grading such that $A_{1}=k I_{2}$, then for any $g, h \in G, g \neq h$ and any non-zero $X \in A_{g}, Y \in A_{h}$, we have either $X Y \neq 0$ or $Y X \neq 0$.

Proof: We know by Lemma 0.2 that $X^{2} \in k I_{2}$. If $X Y=Y X=0$, then by Lemma 0.1 we see that X, Y are linearly dependent, a contradiction.

Lemma 0.4. Let $A=\bigoplus_{g \in G} A_{g}$ be a grading such that $A_{1} \cap A_{g} A_{h}=0$ for any g, h $\in \operatorname{supp}(A)-\{1\}$ (in particular this happens whenever $g h \neq 1$ for any $g, h \in \operatorname{supp}(A)$ $-\{1\})$. Then the grading is trivial.

Proof: Define $\varphi: A \rightarrow A_{1}$ by $\varphi(X)=X_{1}$, the homogeneous component of degree 1 of X. Then

$$
\varphi(X Y)=(X Y)_{1}=\sum_{g, h \in G, g h=1} X_{g} Y_{h}=\sum_{g, h \in \operatorname{supp}(A), g h=1} X_{g} Y_{h}=X_{1} Y_{1}=\varphi(X) \varphi(Y)
$$

so φ is an algebra morphism. Since $\varphi \neq 0$ and $\operatorname{Ker}(\varphi)$ is an ideal of $M_{2}(k)$, we get that $\operatorname{Ker}(\varphi)=0$, and then $A=A_{1}$.

1. Gradings of support 2

We first describe the gradings of the matrix algebra by a cyclic group with 2 elements.
Theorem 1.1. Let k be a field and $C_{2}=\{1, c\}$ be the cyclic group of order 2. Then the C_{2}-gradings of $A=M_{2}(k)$ are described as follows.
(I) If $\operatorname{char}(k) \neq 2$, then any grading is isomorphic to one of the following.
(i) The trivial grading $A_{1}=M_{2}(k), A_{c}=0$;
(ii) The good grading $A_{1}=\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right), A_{c}=\left(\begin{array}{ll}0 & k \\ k & 0\end{array}\right)$
(iii) The grading $A_{1}=\left\{\left.\left(\begin{array}{cc}u & v \\ b v & u\end{array}\right) \right\rvert\, u, v \in k\right\}, A_{c}=\left\{\left.\left(\begin{array}{cc}u & v \\ -b v & -u\end{array}\right) \right\rvert\, u, v \in k\right\}$ where $b \in k-k^{2}$.
(II) If $\operatorname{char}(k)=2$, then any grading is isomorphic either to the trivial grading or to the good grading as in (i), (ii) in (I), or to a grading of the form
(iii') $\begin{aligned} & A_{1}=\left\{\left.\left(\begin{array}{cc}x & x+y \\ b(x+y) & y\end{array}\right) \right\rvert\, x, y \in k\right\}, A_{c}=\left\{\left.\left(\begin{array}{cc}b x+y & x \\ y & b x+y\end{array}\right) \right\rvert\, x, y\right. \\ & \\ & \in k\} \text { for some } b \in k-\left\{\alpha^{2}+\alpha \mid \alpha \in k\right\} .\end{aligned}$
Proof: Let k be of any characteristic and assume that the grading is not trivial. Then we have the following cases.
Case 1. $\operatorname{dim} A_{1}=3$ and $\operatorname{dim} A_{c}=1$. Let $A_{c}=k X$, with $X^{2} \in k I_{2}$. If $X^{2}=0$ we obtain a contradiction by Lemma 0.4. Thus $X^{2} \neq 0$, and then X is invertible. Let $B \in A_{1}-k I_{2}$. Then $B X \in A_{c}$, so $B X \in k X$, and then $B \in k I_{2}$, a contradiction. So this case is not possible.
Case 2. $\operatorname{dim} A_{1}=1$ and $\operatorname{dim} A_{c}=3$. If $A_{c} A_{c}=0$; then the grading is trivial by Lemma 0.4. Thus there exist $X, Y \in A_{c}$ with $X Y \neq 0$. Then $X Y \in k^{*} I_{2}$, so X and Y are invertible. Hence for $Z \in A_{c}-k X$ we have $X^{2}, X Z \in k^{*} I_{2}$, and since X is invertible this implies that $Z \in k X$, a contradiction. So this case is also not possible.
Case 3. $\operatorname{dim} A_{1}=2$ and $\operatorname{dim} A_{c}=2$. Let $A_{1}=k I_{2}+k B$. By considering the grading (isomorphic to the initial one) $A=A_{1}^{\prime} \oplus A_{c}^{\prime}$, where $A_{1}^{\prime}=U A_{1} U^{-1}, A_{c}^{\prime}=U A_{c} U^{-1}$, for a certain invertible matrix U, we may assume that B has the Jordan form.

If B is diagonal, then it is easy to see that $A_{1}=\left(\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right)$. Then if $X=\left(\begin{array}{ll}x & y \\ z & t\end{array}\right) \in A_{c}$, then $\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)=e_{11} X e_{11} \in A_{c}$, so $x=0$, and similarly $t=0$. Thus $A_{c} \subseteq\left(\begin{array}{ll}0 & k \\ k & 0\end{array}\right)$, and since $A=A_{1}+A_{c}$ we must have $A_{c}=\left(\begin{array}{ll}0 & k \\ k & 0\end{array}\right)$. Thus we obtain a grading of type (ii).

If the minimal polynomial of B is $t^{2}-b$ for some $b \notin k^{2}$, then $B=\left(\begin{array}{ll}0 & 1 \\ b & 0\end{array}\right)$. We obtain that $A_{1}=\left\{\left.\left(\begin{array}{cc}u & v \\ b v & u\end{array}\right) \right\rvert\, u, v \in k\right\}$. We see that if $X \in A$ and $X^{2} \in A_{1}$, then either $X=\left(\begin{array}{cc}x & y \\ b y & x\end{array}\right)$ or $X=\left(\begin{array}{cc}x & y \\ z & -x\end{array}\right)$, for some $x, y, z \in k$. Thus if we take $X \in A_{c}$, we must have $X=\left(\begin{array}{cc}x & y \\ z & -x\end{array}\right)$. Then $B X=\left(\begin{array}{cc}z & -x \\ b x & b y \in A_{c}\end{array}\right)$, so $z=-b y$. This shows that $A_{c} \subseteq H=\left\{\left.\left(\begin{array}{cc}u & v \\ -b v & -u\end{array}\right) \right\rvert\, u, v \in k\right\}$. If $\operatorname{char}(k)=2$ we have $H=A_{1}$, a contradiction. If $\operatorname{char}(k) \neq 2$, we have $A=A_{1} \oplus A_{c} \subseteq A_{1} \oplus H$, implying that $A_{c}=H$, so the grading is of type (iii).

If the minimal polynomial of B is $(t-\lambda)^{2}$ for some $\lambda \in k$, replace B by $B-\lambda I_{2} \in A_{1}$, and find $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Then with the same computations as above (for $b \notin k^{2}$) we obtain $A_{c} \subseteq\left\{\left.\left(\begin{array}{cc}u & v \\ 0 & -u\end{array}\right) \right\rvert\, u, v \in k\right\}$. But then we have $A_{1}+A_{c} \subseteq\left(\begin{array}{cc}k & k \\ 0 & k\end{array}\right) \neq A$, a contradiction.

It remains to consider the case where the minimal polynomial of B is irreducible of the form $t^{2}-\alpha t-\beta$ with $\alpha \neq 0$. If $\operatorname{char}(k) \neq 2$, then replace B by $B-(\alpha / 2) I_{2} \in A_{1}$, and then reducing to the Jordan form we are again in the case $B=\left(\begin{array}{ll}0 & 1 \\ b & 0\end{array}\right), b \notin k^{2}$, as above. If $\operatorname{char}(k)=2$, then replace B by $(1 / \alpha) B \in A_{1}$ (with minimal polynomial of the form $\left.t^{2}+t+b\right)$, and then reduce to the Jordan form. Thus we can assume that $B=\left(\begin{array}{ll}0 & 1 \\ b & 1\end{array}\right)$ for some $b \notin\left\{\alpha^{2}+\alpha \mid \alpha \in k\right\}$. In this case we see that

$$
A_{1}=\left\{\left.\left(\begin{array}{cc}
x & u \\
b u & x+u
\end{array}\right) \right\rvert\, x, u \in k\right\}=\left\{\left.\left(\begin{array}{cc}
x & x+y \\
b(x+y) & y
\end{array}\right) \right\rvert\, x, y \in k\right\}
$$

Let $X \in A_{c}$. Since $X^{2} \in A_{1}$ we must have as above $X=\left(\begin{array}{ll}v & y \\ z & v\end{array}\right)$ for some $z, y, v \in k$. Using the fact that $(B X)^{2} \in A_{1}$ we obtain that $z=b y+v$. Hence

$$
A_{c} \subseteq H^{\prime}=\left\{\left.\left(\begin{array}{cc}
v & y \\
b y+v & v
\end{array}\right) \right\rvert\, v, y \in k\right\}=\left\{\left.\left(\begin{array}{cc}
b x+y & x \\
y & b x+y
\end{array}\right) \right\rvert\, x, y \in k\right\}
$$

Now again $A=A_{1} \oplus A_{c} \subseteq A_{1} \oplus H$ implies that $A_{c}=H^{\prime}$ and we obtain the grading of type (iii').

Remarks 1.2.

(i) The gradings in (I)(iii) are classified by the factor group $k^{*} /\left(k^{*}\right)^{2}$. Indeed, it was proved in $[4,5]$ that two gradings like these, corresponding to b_{1}, b_{2} $\in k-k^{2}$, are isomorphic if and only if $b_{1} / b_{2} \in k^{2}$.
(ii) The gradings in (II)(iii') are classified by the factor group $k / S(k)$, where $S(k)=\left\{\alpha^{2}+\alpha \mid \alpha \in k\right\}$ is an additive subgroup of k. It was proved in $[2,5]$ that two gradings of this type, corresponding to $b_{1}, b_{2} \in k-S(k)$ are isomorphic if and only if $b_{1}-b_{2} \in S(k)$.
The following result shows that any grading of support with 2 elements is essentially a grading by C_{2}.

Proposition 1.3. Let G be a group. Then any G-grading of $A=M_{2}(k)$ with $|\operatorname{supp}(A)|=2$ is of type C_{2}.

Proof: Let $\operatorname{supp}(A)=\{1, g\}$. If the order of g is 2 , then the grading is of type C_{2}. If the order of g is different from 2, then the grading is trivial by Lemma 0.4, and this ends the proof.

2. Gradings of support 3

In this section we consider gradings of A by a group G, such that $\operatorname{supp}(A)=\{1, g, h\}$ has 3 elements. We discuss separately the cases where $\operatorname{dim} A_{1}=2$ and $\operatorname{dim} A_{1}=1$.

Proposition 2.1. If $\operatorname{dim} A_{1}=2$, then $h=g^{-1}$ and the grading is isomorphic to the good grading given by

$$
A_{1}=\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right), A_{g}=\left(\begin{array}{cc}
0 & k \\
0 & 0
\end{array}\right), A_{g^{-1}}=\left(\begin{array}{cc}
0 & 0 \\
k & 0
\end{array}\right), A_{p}=0 \text { for } p \notin\left\{1, g, g^{-1}\right\}
$$

Proof: Since $\operatorname{dim} A_{1}=2$, there exists $B \in A_{1}$ such that A_{1} is spanned by I_{2} and B. We have $\operatorname{dim} A_{g}=\operatorname{dim} A_{h}=1$, and let $A_{g}=k X, A_{h}=k Y$ for some $X, Y \in A$. Since $A_{1} A_{g} \subseteq A_{g}$ and $A_{1} A_{h} \subseteq A_{h}$, we obtain that there exist $\alpha, \beta \in k$ such that $B X=\alpha X$ and $B Y=\beta Y$. Therefore the linear map $\varphi: A \rightarrow A, \varphi(Z)=B Z$ has the eigenvalues α, β with corresponding eigenvectors X, Y. It is easy to see that $P_{\varphi}=P_{B}^{2}$, where P_{φ} and P_{B} denote the characteristic polynomials of φ and B. Hence P_{B} is a product of two linear factors. As in Section 2, we can assume that B has the Jordan form by changing B, X, Y by $U B U^{-1}, U X U^{-1}, U Y U^{-1}$.

Assume first that $B=\left(\begin{array}{cc}b_{1} & 0 \\ 0 & b_{2}\end{array}\right)$ is diagonalisable. Obviously $b_{1} \neq b_{2}$, since $B \notin k I_{2}$. Then clearly $A_{1}=\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$, as the span of I_{2} and B. Therefore we can replace B by any matrix in A_{1} which is not a scalar multiple of I_{2}, and let us take $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. This
matrix B has eigenvalues 0 , with corresponding eigenvectors of the form $\left(\begin{array}{ll}0 & 0 \\ r & s\end{array}\right) r, s \in k$, and 1 , with corresponding eigenvectors of the form $\left(\begin{array}{ll}u & v \\ 0 & 0\end{array}\right), u, v \in k$. Therefore we have $A_{g}=k\left(\begin{array}{ll}u & 1 \\ 0 & 0\end{array}\right)$ and $A_{h}=\left(\begin{array}{ll}0 & 0 \\ 1 & s\end{array}\right)$ for some $u, s \in k$ (or the other way around, but that will lead to an isomorphic grading). Now the facts that $A_{g} A_{1} \subseteq A_{g}$ and $A_{h} A_{1} \subseteq A_{h}$ imply that $u=0$ and $s=0$. We obtain that

$$
A_{1}=\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right), A_{g}=\left(\begin{array}{cc}
0 & k \\
0 & 0
\end{array}\right), A_{h}=\left(\begin{array}{cc}
0 & 0 \\
k & 0
\end{array}\right)
$$

Since $\operatorname{deg}\left(e_{12}\right)=g, \operatorname{deg}\left(e_{21}\right)=h$, and $0 \neq e_{12} e_{21} \in A_{1}$, we must have $h=g^{-1}$.
If B is not diagonalisable, then $\alpha=\beta=b$ for some $b \in k$, and $B=\left(\begin{array}{ll}b & 1 \\ 0 & b\end{array}\right)$. In this case $A_{1}=\left\{\left.\left(\begin{array}{ll}c & d \\ 0 & c\end{array}\right) \right\rvert\, c, d \in k\right\}$, and again, since we can replace B by any matrix in A_{1} which is not a scalar multiple of I_{2}, we may consider that $B=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, with only 0 as an eigenvalue. The corresponding eigenvectors are of the form $\left(\begin{array}{cc}m & n \\ 0 & 0\end{array}\right)$, with $m, n \in k$. Since $k B+k X+k Y$ has dimension 3 and consists of eigenvectors, we obtain a contradiction.

Remark 2.2. If $g \in G$ is an element of order greater than 2 , and $A=B=M_{2}(k)$ are the G-graded algebras defined by

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right), A_{g}=\left(\begin{array}{ll}
0 & k \\
0 & 0
\end{array}\right), A_{g^{-1}}=\left(\begin{array}{ll}
0 & 0 \\
k & 0
\end{array}\right), A_{p}=0 \text { for } p \notin\left\{1, g, g^{-1}\right\} \\
& B_{1}=\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right), B_{g}=\left(\begin{array}{ll}
0 & 0 \\
k & 0
\end{array}\right), B_{g^{-1}}=\left(\begin{array}{ll}
0 & k \\
0 & 0
\end{array}\right), B_{p}=0 \text { for } p \notin\left\{1, g, g^{-1}\right\}
\end{aligned}
$$

then A and B are isomorphic as graded algebras. Indeed, the map $\varphi: A \rightarrow B, \varphi(X)$ $=U X U^{-1}$, where $U=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, is a graded isomorphism.

Proposition 2.3. There do not exist gradings of A with $|\operatorname{supp}(A)|=3$ and $\operatorname{dim} A_{1}=1$.

Proof: Assume that such a grading exists, so say that $\operatorname{dim} A_{g}=2$ and $\operatorname{dim} A_{h}=1$. Let $X \in A_{g}, Y \in A_{h}$ be non-zero elements. Then by Corollary 0.3 we have that either
$X Y \neq 0$ or $Y X \neq 0$. Since $g h, h g \notin\{g, h\}$, in any case we must have $g h=1$, and since $A_{1}=k I_{2}$, this implies that X and Y are invertible. Then $A_{g} Y \subseteq A_{1}=k I_{2}$, and since Y is invertible, this implies that $A_{g} \subseteq k Y^{-1}$, a contradiction with $\operatorname{dim} A_{g}=2$.

3. Gradings of support 4

We start by describing all gradings of $A=M_{2}(k)$ by the Klein group.
Theorem 3.1. Let $G=C_{2} \times C_{2}=\{1, g, h, g h\}$ be the Klein group. Then:
(I) If $\operatorname{char}(k) \neq 2$, any G-grading of A is isomorphic to one of the following.
(i) A grading of type C_{2}.
(ii) A grading of the form $A_{1}=k I_{2}, A_{g}=k X, A_{h}=k Y, A_{g h}=k X Y$, where X, Y are invertible matrices such that $X^{2}, Y^{2} \in k I_{2}$ and $X Y$ $=-Y X$.
(II) If char $(k)=2$, any G-grading of A is isomorphic to a grading of type C_{2}.

Proof: Assume that the grading is not of type C_{2}. Then by using the results of the previous section, we see that the support must have 4 elements, so each homogeneous component has dimension 1, in particular $A_{1}=k I_{2}$. Let $A_{g}=k X$ and $A_{h}=k Y$. Then by Corollary 0.3 we have that either $X Y \neq 0$ or $Y X \neq 0$. Say that $X Y \neq 0$. Then $A_{g h}=k X Y$.

If $X^{2}=0$, then $X(X Y)=0$, and again by Corollary 0.3 we must have $(X Y) X$ $\neq 0$, so $X Y X=\alpha Y$ for some non-zero scalar α. But then $0=X(X Y) X=\alpha X Y$, a contradiction. Hence $X^{2} \neq 0$, and similarly $Y^{2} \neq 0$, so X, Y are invertible.

Now $X Y X^{-1} \in A_{h}$, so $X Y X^{-1}=\alpha Y$ for some scalar α. Since $X^{2} \in k I_{2}$ this implies that $\alpha^{2} Y=Y$. If $\operatorname{char}(k) \neq 2$, we have $\alpha \in\{1,-1\}$. If $\alpha=1$, then $X Y=Y X$ and A is commutative, since it is generated as an algebra by X and Y. We conclude that $X Y=-Y X$ and the grading is of type (ii). If $\operatorname{char}(k)=2$, then $\alpha=1$, and as above we obtain that A is commutative, a contradiction. We conclude that the only possible gradings in characteristic 2 are of type C_{2}.
Remark 3.2. The isomorphism types of the $C_{2} \times C_{2}$-gradings are described in [3].
The general situation of a grading with support having 4 elements is solved by the following.

Proposition 3.3. Any group grading of A with $|\operatorname{supp}(A)|=4$ is of type $C_{2} \times C_{2}$.

Proof: Let $A=\bigoplus_{g \in G} A_{g}$ with $S=\operatorname{supp}(A)=\{1, g, h, s\}$. We first note that $u v \neq 1$ for any $u, v \in S, u \neq v$. Indeed, if $u v=1$ for some u, v like this, pick some non-zero $X \in A_{u}, Y \in A_{v}$. Then $X^{2} \in k I_{2}$ by Lemma 0.2 , and then by Corollary 0.3 either $X Y \in k^{*} I_{2}$ or $Y X \in k^{*} I_{2}$. In any case, X is invertible. But $u^{2} \neq 1$ (since $u v=1$), so $X^{2}=0$, a contradiction.

Since the grading is not trivial, we see from Lemma 0.4 that there exists $u \in S-\{1\}$ with $A_{u} A_{u} \cap A_{1} \neq 0$, in particular $u^{2}=1$. Say for instance that $u=g$, and let $A_{g}=k X$, with $X^{2} \in k^{*} I_{2}$; in particular X is invertible. Then $A_{g} A_{h}=X A_{h} \neq 0$, so $g h \in S$, and the only possibility is that $g h=s$. Similarly $A_{h} A_{g} \neq 0$, and then $g h=h g=s$. Hence we have $h s=s h$. If $h s \notin S$, we would have $A_{h} A_{s}=A_{s} A_{h}=0$, and then if we take non-zero $Y \in A_{h}, Z \in A_{s}$, we have $Y Z=Z Y=0$, a contradiction by Corollary 0.3.

Therefore $h(h g)=(h g) h \in S$, and since this can not be $h, h g$ or 1 , we must have $h(h g)=g$, implying that $h^{2}=1$. This shows that S is a subgroup isomorphic to $C_{2} \times C_{2}$, and the proof is finished.

References

[1] Yu. A. Bahturin, S.K. Sehgal and M.V. Zaicev, 'Group gradings on associative algebras', J. Algebra 241 (2001), 677-698.
[2] C. Boboc, 'Superalgebra structures on $\mathrm{M}_{2}(k)$ in characteristic 2', Comm. Algebra 30 (2002), 255-260.
[3] C. Boboc, 'Gradings of $\mathrm{M}_{2}(k)$ by the Klein group', Comm. Algebra 31 (2003), 2311-2326.
[4] C. Boboc and S. Dăscălescu, 'Gradings of matrix algebras by cyclic groups', Comm. Algebra 29 (2001), 5013-5021.
[5] S. Caenepeel, S. Dăscălescu and C. Năstăsescu, 'On gradings of matrix algebras and descent theory', Comm. Algebra 30 (2002), 5901-5920.
[6] S. Dăscălescu, B. Ion, C. Năstăsescu and J. Rios Montes, 'Group gradings on full matrix rings', J. Algebra 220 (1999), 709-728.
[7] E.L. Green, 'Graphs with relations, coverings and group-graded algebras', Trans. Amer. Math. Soc. 279 (1983), 297-310.
[8] A.V. Kelarev, 'Applications of epigroups to graded ring theory', Semigroup Forum 50 (1995), 327-350.
[9] C. Năstăsescu and F. Van Oystaeyen, Graded ring theory (North Holland, Amsterdam, New York, 1982).
[10] M.V. Zaicev and S.K. Segal, 'Finite gradings on simple artinian rings', Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 (2001), 21-24.

Department of Mathematics and Computer Science
Faculty of Science
Kuwait University
Safat 13060
Kuwait
e-mail: khazal@mcs.sci.kuniv.edu.kw

Department of Mathematics and Computer Science
Faculty of Science
Kuwait University
Safat 13060
Kuwait
e-mail: sdascal@mcs.sci.kuniv.edu.kw

University of Bucharest
Faculty of Physics
Măgurele
Bucharest
Romania
e-mail: crina@al.math.unibuc.ro

[^0]: Received 26th February, 2003
 This work was supported by Kuwait University Research Grant No. SM 03/02.

