Canad. Math. Bull. Vol. 58 (2), 2015 pp. 225–232 http://dx.doi.org/10.4153/CMB-2014-064-2 © Canadian Mathematical Society 2015

Characterizing Distinguished Pairs by Using Liftings of Irreducible Polynomials

Kamal Aghigh and Azadeh Nikseresht

Abstract. Let *v* be a henselian valuation of any rank of a field *K* and let \overline{v} be the unique extension of *v* to a fixed algebraic closure \overline{K} of *K*. In 2005, we studied properties of those pairs (θ, α) of elements of \overline{K} with $[K(\theta):K] > [K(\alpha):K]$ where α is an element of smallest degree over *K* such that

 $\overline{\nu}(\theta - \alpha) = \sup \{ \overline{\nu}(\theta - \beta) \mid \beta \in \overline{K}, [K(\beta):K] < [K(\theta):K] \}.$

Such pairs are referred to as distinguished pairs. We use the concept of liftings of irreducible polynomials to give a different characterization of distinguished pairs.

1 Introduction

Throughout this paper, v is a henselian valuation of any rank of a field K and \overline{v} is the unique extension of v to a fixed algebraic closure \overline{K} of K with value group \overline{G} . For an overfield K' of K contained in \overline{K} , we shall denote by G(K') and R(K') respectively the value group and the residue field of the valuation v' of K' obtained by restricting \overline{v} to K'. By the degree of an element $\alpha \in \overline{K}$, we shall mean the degree of the extension $K(\alpha)/K$ and denote it by deg α . For a finite extension (K', v')/(K, v) (or briefly K'/K), def(K'/K) will stand for the defect of the valued field extension K'/K, *i.e.*, def(K'/K) = [K':K]/ef, where e and f are respectively the index of ramification and the residual degree of ν'/ν . For any β in the valuation ring of $\overline{\nu}$, β^* will denote its $\overline{\nu}$ -residue, *i.e.*, the image of β under the canonical homomorphism from the valuation ring of $\overline{\nu}$ onto its residue field.

An extension *w* of *v* to a simple transcendental extension K(x) of *K* is called *resid-ually transcendental* if the residue field of *w* is a transcendental extension of the residue field of *v*. Alexandru et al. characterized all residually transcendental extensions of *v* by means of minimal pairs (see [3, 4]). Recall that a pair (α, δ) in $\overline{K} \times \overline{G}$ is said to be minimal (with respect to (K, v)) if whenever $\beta \in \overline{K}$ satisfies $\overline{v}(\alpha - \beta) \ge \delta$, then deg $\alpha \le \deg \beta$. It is clear that when $\alpha \in K$, (α, δ) is a minimal pair for each $\delta \in \overline{G}$; however, as can be easily seen, a pair (α, δ) in $(\overline{K} \setminus K) \times \overline{G}$ is minimal if and only if δ is strictly greater than each element of the set $M(\alpha, K)$ defined by

$$M(\alpha, K) = \left\{ \overline{\nu}(\alpha - \beta) \mid \beta \in \overline{K}, \ [K(\beta):K] < [K(\alpha):K] \right\}.$$

Published electronically February 10, 2015.

Received by the editors May 27, 2013.

AMS subject classification: 12J10, 12J25, 12E05.

Keywords: valued fields, non-Archimedean valued fields, irreducible polynomials.

This led to the main invariant $\delta_K(\alpha)$, defined by $\delta_K(\alpha) = \sup M(\alpha, K)$ for those $\alpha \in \overline{K} \setminus K$ for which $M(\alpha, K)$ has an upper bound in \overline{G} , where for the sake of supremum, \overline{G} may be viewed as a subset of its Dedekind order completion. It may be pointed out that the supremum of $M(\alpha, K)$ being in \overline{G} does not necessarily imply that it belongs to $M(\alpha, K)$. In [2], Aghigh and Khanduja studied properties of those pairs (θ, α) of elements of \overline{K} with deg $\theta > \deg \alpha$ where α is an element of smallest degree over K such that $\overline{v}(\theta - \alpha) = \delta_K(\theta)$. Such pairs are called *distinguished pairs* (more precisely (K, v)-distinguished pairs) and were introduced in [13]. In other words, a pair (θ, α) of elements of \overline{K} is a distinguished pair if the following three conditions are satisfied.

- (i) $\overline{\nu}(\theta \alpha) = \delta_K(\theta);$
- (ii) $\deg \theta > \deg \alpha$;

(iii) if *y* belonging to \overline{K} has degree less than that of α , then $\overline{\nu}(\theta - \gamma) < \overline{\nu}(\theta - \alpha)$.

Distinguished pairs give rise to distinguished chains in a natural manner. A chain $\theta = \theta_0, \theta_1, \dots, \theta_r$ of elements of \overline{K} will be called a *complete distinguished chain* for θ if (θ_i, θ_{i+1}) is a distinguished pair for $0 \le i \le r-1$ and $\theta_r \in K$. It is worthwhile mentioning that complete distinguished chains for an element θ in $\overline{K} \setminus K$ give rise to several invariants associated with θ that are the same for all *K*-conjugates of θ and hence are invariants of the minimal polynomial of θ over *K* (see [2]). They are important tools of valuation theory that are used extensively in studying the properties of irreducible polynomials with coefficients in a valued field (K, v) (see [6, 8] for example).

The concept of lifting of a polynomial is another important tool for investigating the properties of irreducible polynomials with coefficients in valued fields (see [7,10, 11] for example). We briefly recall a survey of it.

If f(x) is a fixed nonzero polynomial in K[x], then using the Euclidean algorithm, each $F(x) \in K[x]$ can be uniquely represented as a finite sum $\sum_{i\geq 0} F_i(x)f(x)^i$, where for any *i*, the polynomial $F_i(x)$ is either 0 or has degree less than that of f(x). The above representation will be referred to as the *f*-expansion of F(x).

For a pair $(\alpha, \delta) \in \overline{K} \times \overline{G}$, the valuation $\overline{w}_{\alpha, \delta}$ of $\overline{K}(x)$ defined on $\overline{K}[x]$ by

(1.1)
$$\overline{w}_{\alpha,\delta}\left(\sum_{i}c_{i}(x-\alpha)^{i}\right) = \min_{i}\{\overline{v}(c_{i})+i\delta\}, \quad c_{i}\in\overline{K},$$

will be referred to as the valuation defined by the pair (α, δ) . The description of $\overline{w}_{\alpha,\delta}$ on K(x) is given by the already known theorem stated below (see [3]).

Theorem 1.1 Let $\overline{w}_{\alpha,\delta}$ be the valuation of $\overline{K}(x)$ defined by a minimal pair (α, δ) and $w_{\alpha,\delta}$ be the valuation of K(x) obtained by restricting $\overline{w}_{\alpha,\delta}$. If f(x) is the minimal polynomial of α over K of degree n and λ is an element of \overline{G} such that $w_{\alpha,\delta}(f(x)) = \lambda$, then the following hold.

(i) For any F(x) belonging to K[x] with f-expansion $\sum_i F_i(x) f(x)^i$, we have

$$w_{\alpha,\delta}(F(x)) = \min\{\overline{\nu}(F_i(\alpha)) + i\lambda\}$$

(ii) Let e be the smallest positive integer such that $e\lambda \in G(K(\alpha))$ and h(x) belonging to K[x] be a polynomial of degree less than n with $\overline{\nu}(h(\alpha)) = e\lambda$. Then

Characterizing Distinguished Pairs

the $w_{\alpha,\delta}$ -residue $\left(\frac{f(x)^e}{h(x)}\right)^*$ of $\left(\frac{f(x)^e}{h(x)}\right)$ is transcendental over $R(K(\alpha))$, and the residue field of $w_{\alpha,\delta}$ is canonically isomorphic to $R(K(\alpha))\left(\left(\frac{f(x)^e}{h(x)}\right)^*\right)$.

Using the canonical homomorphism from the valuation ring of v onto its residue field, one can lift any monic irreducible polynomial having coefficients in R(K) to yield a monic irreducible polynomial with coefficients in K. The description of the residue field of $w_{\alpha,\delta}$ given in Theorem 1.1(ii) led Popescu and Zaharescu to generalize the usual notion of lifting (see [13]). In fact, they introduced the notion of lifting of a polynomial belonging to $R(K(\alpha))[Y]$ (Y an indeterminate) with respect to a minimal pair (α, δ) as follows.

For a (K, v)-minimal pair (α, δ) , let f(x), n, λ , and e be as in Theorem 1.1. As in [13], a monic polynomial F(x) belonging to K[x] is said to be a lifting of a monic polynomial Q(Y) belonging to $R(K(\alpha))[Y]$ having degree $m \ge 1$ with respect to (α, δ) if there exists $h(x) \in K[x]$ of degree less than *n* such that

- $\deg F(x) = emn;$ (i)
- (ii) $w_{\alpha,\delta}(F(x)) = mw_{\alpha,\delta}(h(x)) = em\lambda;$ (iii) the $w_{\alpha,\delta}$ -residue of $F(x)/h(x)^m$ is $Q((f^e/h)^*).$

To be more precise, the above lifting will be referred to as the one with respect to (α, δ) and h. This lifting is said to be *trivial* if deg $F(x) = \deg f(x)$. Note that if (α, δ) is the minimal pair (0, 0), then the corresponding valuation $w_{0,0}$ is the Gaussian extension of v to K(x) given by $w_{0,0}(\sum_i a_i x^i) = \min_i (v(a_i))$ with residue field $R(K)(x^*).$

In this paper, we show that liftings and distinguished pairs are closely related to each other. We give a characterization of distinguished pairs using liftings of irreducible polynomials. Indeed, we shall prove the following theorem.

Theorem 1.2 Let θ , α be elements in the algebraic closure \overline{K} of a henselian valued field (K, v) with respective minimal polynomials g(x), f(x) over K. Suppose that deg $g(x) > \deg f(x)$. Let e be the smallest positive integer such that $e\overline{v}(f(\theta))$ is in $G(K(\alpha))$ with $e\overline{v}(f(\theta)) = \overline{v}(h(\alpha))$. Then the following three statements are equivalent.

- (θ, α) is a distinguished pair. (i)
- $(\alpha, \overline{\nu}(\theta \alpha))$ is a minimal pair and g(x) is a non-trivial lifting of the minimal (ii) polynomial of $(f(\theta)^e/h(\alpha))^*$ over $R(K(\alpha))$ with respect to this minimal pair.
- (iii) $(\alpha, \overline{\nu}(\theta \alpha))$ is a minimal pair and g(x) is a lifting of some irreducible monic polynomial $Q(Y) \neq Y$ belonging to $R(K(\alpha))[Y]$ with respect to $(\alpha, \overline{\nu}(\theta - \alpha))$.

2 **Preliminary Results**

In 1999, Khanduja and Saha generalized the fundamental principle stated in [13, Remark 3.3] to henselian valued fields of arbitrary rank (see [12, Theorem 1.1]). They proved the following theorem.

Theorem 2.1 Let (K, v) be a henselian valued field of any rank. Let $\alpha, \beta \in \overline{K}$ be such that $\overline{v}(\alpha - \beta) > \overline{v}(\alpha - \gamma)$ for any $\gamma \in \overline{K}$ satisfying $[K(\gamma):K] < [K(\alpha):K]$. Then

K. Aghigh and A. Nikseresht

- (i) $G(K(\alpha)) \subseteq G(K(\beta));$
- (ii) $R(K(\alpha)) \subseteq R(K(\beta));$
- (iii) def $(K(\alpha)/K)$ divides def $(K(\beta)/K)$.

Aghigh and Khanduja, in the course of investigation of the main invariant of elements algebraic over henselian valued fields, proved a useful lemma (see [1, Lemma 2.3]).

Lemma 2.2 Let (K, v) be henselian and θ be an element of $\overline{K} \setminus K$ such that $\delta_K(\theta)$ belongs to $M(\theta, K)$. If $\alpha \in \overline{K}$ is an element of smallest degree over K such that $\overline{v}(\theta - \alpha) = \delta_K(\theta)$, then

- (i) $(\alpha, \delta_K(\theta))$ is a minimal pair;
- (ii) $\overline{w}_{\alpha,\delta}(G(x)) = \overline{v}(G(\theta))$ for any polynomial $G(x) \in K[x]$ of degree less than the degree of θ over K, where the valuation $\overline{w}_{\alpha,\delta}$ is as defined by (1.1) with $\delta = \delta_K(\theta)$.

The following lemmas, which were actually obtained during the course of the proof of [2, Theorem 1.1], are also immediate consequences of it.

Lemma 2.3 Suppose that (θ, α) is a (K, v)-distinguished pair, f(x) is the minimal polynomial of α over K, and e is the smallest positive integer such that $e\overline{v}(f(\theta))$ is in $G(K(\alpha))$ with $e\overline{v}(f(\theta)) = \overline{v}(h(\alpha))$. Then $e(deg\alpha)$ divides deg θ .

Lemma 2.4 With the notations of Lemma 2.3, denote deg θ and deg α by m and n respectively; then $\left(\frac{f(\theta)^{\epsilon}}{h(\alpha)}\right)^{*}$ is algebraic of degree m/en over $R(K(\alpha))$.

Moreover, the following lemma proved in [2, Lemma 2.3] will be used in the sequel.

Lemma 2.5 Let f(x) and g(x) be respectively two monic irreducible polynomials over a henselian valued field (K, v) of degree n and m such that $f(\alpha) = g(\beta) = 0$. Then $m\overline{v}(f(\beta)) = n\overline{v}(g(\alpha))$.

We also need the following proposition, which is already known (see [5, Proposition 2.3]). Its proof is omitted.

Proposition 2.6 Let (α, δ) be a (K, v)-minimal pair and let f(x), λ , e, and h(x) be as in Theorem 1.1. Let $g(x) \in K[x]$ be a monic polynomial that is a lifting of a monic polynomial Q[Y] not divisible by Y belonging to $R(K(\alpha))[Y]$ of degree m with respect to (α, δ) and h. Then we have that

- (*i*) $\overline{v}(\theta_i \alpha) \leq \delta$ for each root θ_i of g(x);
- (ii) there exists a root θ of g(x) such that $\overline{v}(\theta \alpha) = \delta$;
- (iii) if θ is as in (ii), then $Q((f(\theta)^e/h(\alpha))^*) = 0$.

Finally, we will employ the following known lemma in the proof of Theorem 1.2 (see [9, Lemma 2.1]). For the sake of completeness, we prove it here.

Characterizing Distinguished Pairs

Lemma 2.7 Let $\overline{w}_{\alpha,\delta}$ be the valuation of $\overline{K}(x)$ with respect to a minimal pair (α, δ) defined by (1.1). If F(x) belonging to K[x] is such that for each root β of F(x), $\overline{v}(\alpha-\beta) < \delta$, then $\overline{w}_{\alpha,\delta}(\frac{F(x)}{F(\alpha)}-1) > 0$.

Proof Write $F(x) = b \prod_i (x - \beta_i)$. Hence we have

$$\frac{F(x)}{F(\alpha)} = \prod_{i} \left(\frac{x - \beta_i}{\alpha - \beta_i} \right) = \prod_{i} \left(1 + \frac{x - \alpha}{\alpha - \beta_i} \right).$$

By (1.1), $\overline{w}_{\alpha,\delta}(\frac{x-\alpha}{\alpha-\beta_i}) = \delta - \overline{v}(\alpha - \beta_i)$. Since $\overline{v}(\alpha - \beta_i) < \delta$ for every *i*, it follows that $\overline{w}_{\alpha,\delta}(\frac{x-\alpha}{\alpha-\beta_i}) > 0$. Therefore, one can obtain that $\overline{w}_{\alpha,\delta}(\frac{F(x)}{F(\alpha)} - 1) > 0$.

3 Proof of Theorem 1.2

For simplicity of notation, we shall denote $\overline{\nu}(\theta - \alpha)$ by δ . Let $\overline{w}_{\alpha,\delta}$ be the valuation of $\overline{K}(x)$ defined by the pair (α, δ) .

(i) \Rightarrow (ii). Suppose first that (θ, α) is a distinguished pair. By Lemma 2.3, deg $g/e(\deg f)$ is an integer, say l. So the f-expansion of g can be written as $g(x) = f(x)^{el} + g_{el-1}(x)f(x)^{el-1} + \dots + g_0(x)$, deg $g_i < \deg f$. We will prove that g(x) is a lifting of an irreducible polynomial of degree l over $R(K(\alpha))$ with respect to (α, δ) , which is a minimal pair by virtue of Lemma 2.2(i). For this we first prove that

(3.1)
$$\overline{w}_{\alpha,\delta}(g(x)) = e l \overline{w}_{\alpha,\delta}(f(x)).$$

Keeping in view Lemma 2.2, $\overline{\nu}(f(\theta)) = \overline{w}_{\alpha,\delta}(f(x)) = \lambda$ (say). Since (K, ν) is henselian, for any *K*-conjugate θ_i of θ , there exists a *K*-conjugate α' of α such that $\overline{\nu}(\theta_i - \alpha) = \overline{\nu}(\theta - \alpha') \le \delta_K(\theta) = \overline{\nu}(\theta - \alpha)$; consequently

$$\overline{w}_{\alpha,\delta}(x-\theta_i) = \min\{\delta, \overline{v}(\alpha-\theta_i)\} = \overline{v}(\alpha-\theta_i).$$

Therefore $\overline{w}_{\alpha,\delta}(g(x)) = \overline{v}(g(\alpha))$. Applying Lemma 2.5, we see that

$$\overline{v}(g(\alpha)) = el\overline{v}(f(\theta)) = el\lambda$$

The desired assertion (3.1) now is obtained.

By virtue of Theorem 1.1 and (3.1), we have (on taking $g_{el}(x) = 1$),

$$\overline{w}_{\alpha,\delta}(g) = \min_{0 \le i \le el} \{\overline{v}(g_i(\alpha)) + i\lambda\} = el\lambda$$

Recall that *e* is the smallest positive integer such that $e\lambda \in G(K(\alpha))$. It now follows that

(3.2)
$$\overline{\nu}(g_i(\alpha)) + i\lambda \ge el\lambda$$
 for $0 \le i \le el$, and
 $\overline{\nu}(g_i(\alpha)) + i\lambda > el\lambda$ if *e* does not divide *i*.

Fix a polynomial $h(x) \in K[x]$ of degree less than n with $\overline{\nu}(h(\alpha)) = e\lambda$. We shall denote $f(x)^e/h(x)$ by r(x). Observe that by virtue of Lemma 2.7, $\overline{w}_{\alpha,\delta}(h(x)) = \overline{\nu}(h(\alpha))$, and hence (3.1) implies that $\overline{w}_{\alpha,\delta}(r(x)) = 0$.

Keeping in view (3.2) and the fact that $\overline{\nu}(g_i(\alpha)) = \overline{w}_{\alpha,\delta}(g_i(x))$, we quickly conclude that

$$\begin{split} \overline{w}_{\alpha,\delta}\Big(\frac{g_i(x)f^i(x)}{h(x)^l}\Big) &\geq 0, \quad 0 \leq i \leq el, \\ \overline{w}_{\alpha,\delta}\Big(\frac{g_i(x)f^i(x)}{h(x)^l}\Big) > 0, \quad \text{if } e \text{ does not divide } i. \end{split}$$

On passing to the residue field of $\overline{w}_{\alpha,\delta}$, we obtain

$$\left(\frac{g(x)}{h(x)^{l}}\right)^{*} = (r(x)^{*})^{l} + \left(\frac{g_{e(l-1)}(x)}{h(x)}\right)^{*} (r(x)^{*})^{l-1} + \dots + \left(\frac{g_{0}(x)}{h(x)^{l}}\right)^{*}.$$

Let us denote $g_{e(l-j)}(x)/h(x)^j$ by $B_{l-j}(x)$. Keeping in mind that $B_{l-j}(x)^* = B_{l-j}(\alpha)^*$ by virtue of Lemma 2.7, we see that g(x) is a lifting of the polynomial $H(Y) = Y^l + B_{l-1}(\alpha)^* Y^{l-1} + \cdots + B_0(\alpha)^*$ with respect to the minimal pair (α, δ) .

It remains to be shown that H(Y) is the minimal polynomial of $\xi^* = \left(\frac{f(\theta)'}{h(\alpha)}\right)^*$ over $R(K(\alpha))$. As asserted by Lemma 2.4, ξ^* is algebraic over $R(K(\alpha))$ of degree $l = (\deg g)/e(\deg f)$. So the desired assertion is proved once we show that ξ^* is a root of the polynomial H(Y).

Taking the image of the equation

$$0 = \frac{g(\theta)}{h(\alpha)^{l}} = \sum_{i=0}^{e^{l}} \frac{g_{i}(\theta)}{h(\alpha)^{l}} f(\theta)^{i}$$

in the residue field, we conclude, using (3.2), that

(3.3)
$$\xi^{*'} + \left(\frac{g_{e(l-1)}(\theta)}{h(\alpha)}\right)^* \xi^{*^{l-1}} + \dots + \left(\frac{g_0(\theta)}{h(\alpha)^l}\right)^* = 0.$$

On the other hand, for any polynomial $q(x) \in K[x]$ of degree less than *n*, one may write $q(x) = c \prod_j (x - \beta_j)$. With the same method as the proof of Lemma 2.7, we get $\left(\frac{q(\theta)}{q(\alpha)}\right)^* = 1$.

Therefore (3.3) can be rewritten as

$$\xi^{*^{l}} + (B_{l-1}(\alpha))^{*} \xi^{*^{l-1}} + \dots + (B_{0}(\alpha))^{*} = 0$$

which shows that ξ^* is a root of H(Y). This completes the proof of (i) \Rightarrow (ii).

(ii) \Rightarrow (iii). This is trivial.

(iii) \Rightarrow (i). Suppose that g(x) is a lifting of a monic irreducible polynomial $Q(Y) \neq Y$ belonging to $R(K(\alpha))[Y]$ of degree *s* with respect to the minimal pair (α, δ) .

If $\beta \in \overline{K}$ and deg $\beta < \deg \alpha$, then $\overline{\nu}(\theta - \beta) < \delta$, for otherwise $\overline{\nu}(\alpha - \beta) \ge \delta$, which is impossible as (α, δ) is a minimal pair. So to prove that (θ, α) is a distinguished pair, it is enough to show that whenever γ belonging to \overline{K} satisfies $\overline{\nu}(\theta - \gamma) > \delta$, then deg $\gamma \ge \deg \theta$. Let $\gamma \in \overline{K}$ be such that $\overline{\nu}(\theta - \gamma) > \delta$, then $\overline{\nu}(\alpha - \gamma) = \delta$. Since (α, δ) is a minimal pair, it follows that for any $\beta \in \overline{K}$ with deg $\beta < \deg \alpha$, $\overline{\nu}(\alpha - \gamma) > \overline{\nu}(\alpha - \beta)$. Therefore, by Theorem 2.1,

(3.4)
$$G(K(\alpha)) \subseteq G(K(\gamma)), \quad \operatorname{def}(K(\alpha)/K) | \operatorname{def}(K(\gamma)/K),$$
$$R(K(\alpha)) \subseteq R(K(\gamma)).$$

Characterizing Distinguished Pairs

Let *e*, *h*, and *f* be as in Theorem 1.1. We next show that $\xi^* = \left(\frac{f(\theta)^e}{h(\alpha)}\right)^*$ belongs to $R(K(\gamma))$. Write

$$\frac{f(\gamma)}{f(\theta)} = \prod_{\alpha'} \left(\frac{\gamma - \alpha'}{\theta - \alpha'} \right) = \prod_{\alpha'} \left(1 + \frac{\gamma - \theta}{\theta - \alpha'} \right)$$

Since $\overline{\nu}(\theta - \gamma) > \delta$, and by Proposition 2.6(i), $\overline{\nu}(\theta - \alpha') \le \delta$, it follows from the above expression for $f(\gamma)/f(\theta)$ that $\left(\frac{f(\gamma)}{f(\theta)}\right)^* = 1$; in particular,

(3.5)
$$\overline{\nu}(f(\gamma)) = \overline{\nu}(f(\theta)), \quad \left(\frac{f(\gamma)^e}{h(\alpha)}\right)^* = \left(\frac{f(\theta)^e}{h(\alpha)}\right)^* = \xi^*.$$

By Proposition 2.6(iii), ξ^* is a root of the polynomial Q(Y) belonging to $R(K(\alpha))[Y]$, which is given to be irreducible. So we conclude from (3.4) and (3.5) that *e* divides $[G(K(\gamma)):G(K(\alpha))]$ and *s* divides $[R(K(\gamma)):R(K(\alpha))]$. As def $(K(\alpha)/K)$ divides def $(K(\gamma)/K)$, we see that $es(\deg f)$ divides deg *y*. In particular, deg $\gamma \ge es(\deg f)$. But by definition of lifting, deg $g = es \deg f = \deg \theta$. It now follows that deg $\gamma \ge \deg \theta$, as desired. Hence, (θ, α) is a distinguished pair.

4 An Example

Let v^x be the Gaussian extension of any henselian valuation v of a field K to K(x) defined by $v^x(\sum_i a_i x^i) = \min_i \{v(a_i)\}, a_i \in K$. Let f(x) be a monic polynomial with coefficients in the valuation ring of v such that the corresponding polynomial $f^*(x)$ (*i.e.*, the polynomial obtained by replacing the coefficients of f by their corresponding v-residues) belonging to R(K)[x] is irreducible and separable over R(K). Let $F(x) \in K[x]$ be a polynomial whose f-expansion given by $F(x) = \sum_{i=0}^{s} F_i(x) f(x)^i$ satisfies

$$F_s(x) = 1, \quad \frac{\nu^x(F_i(x))}{s-i} \ge \frac{\nu^x(F_0(x))}{s} > 0, \quad 0 \le i \le s-1$$

and that there does not exist any rational integer r > 1 dividing *s* such that $\frac{v^{x}(F_{0}(x))}{r} \in G(K)$. Let θ be a root of F(x). Since $F^{*}(x) = (f^{*}(x))^{s}$, it follows that there exists a (unique) root α of f(x) such that $\theta^{*} = \alpha^{*}$. We claim that (θ, α) is a distinguished pair.

As shown in the proof of [11, Theorem 1.1], F(x) is a lifting of the polynomial Y + 1 with respect to the minimal pair (α, δ) , where $\delta = v^x (F_0(x))/s > 0$. So by Proposition 2.6, there exists a root α' of f(x) such that $\overline{v}(\theta - \alpha') = \delta$. Observe that $\alpha' = \alpha$, for otherwise

$$\overline{\nu}(\alpha - \alpha') \geq \min\{\overline{\nu}(\alpha - \theta), \overline{\nu}(\theta - \alpha')\} > 0,$$

which is impossible in view of the hypothesis that f^* is a separable polynomial. So $\overline{v}(\theta - \alpha) = \delta$. Now the claim follows from Theorem 1.2.

Let us assume that deg $\alpha > 1$. Then we show that $(\alpha, 1)$ is a distinguished pair and hence θ , α , 1 is a complete distinguished chain of length 2. Note that $\delta_K(\alpha) = 0$, because if $\beta \in \overline{K}$ has degree less than deg α , then $\overline{\nu}(\alpha - \beta) \leq 0$, for otherwise $\alpha^* = \beta^*$ would lead to

$$[K(\beta):K] \ge [R(K)(\beta^*):R(K)] = [R(K)(\alpha^*):R(K)] = [K(\alpha):K]$$

Since $\overline{\nu}(\alpha - 1) = 0 = \delta_K(\alpha)$, it follows that $(\alpha, 1)$ is a distinguished pair.

K. Aghigh and A. Nikseresht

References

- K. Aghigh and S. K. Khanduja, On the main invariant of elements algebraic over a Henselian valued field. Proc. Edinb. Math. Soc. 45(2002), no. 1, 219–227.
- 2] _____, On chains associated with elements algebraic over a Henselian valued field. Algebra Colloq. 12(2005), no. 4, 607–616. http://dx.doi.org/10.1142/S100538670500057X
- [3] V. Alexandru, N. Popescu, and A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation. J. Math. Kyoto Univ. 28(1988), no. 4, 579–592.
- [4] _____, Minimal pairs of definition of a residual transcendental extension of a valuation. J. Math. Kyoto Univ. 30(1990), no. 2, 207–225.
- S. Bhatia and S. K. Khanduja, On extensions generated by roots of lifting polynomials. Mathematika 49(2002), no. 1–2, 107–118. http://dx.doi.org/10.1112/S0025579300016107
- [6] A. Bishoni and S. K. Khanduja, On Eisenstein-Dumas and generalized Schönemann polynomials. Comm. Algebra 38(2010), no. 9, 3163–3173. http://dx.doi.org/10.1080/00927870903164669
- [7] A. Bishoni, S. Kumar, and S. K. Khanduja, On liftings of powers of irreducible polynomials. J. Algebra Appl. 12(2013), no. 5, 1250222. http://dx.doi.org/10.1142/S0219498812502222
- [8] R. Brown and J. L. Merzel, Invariants of defectless irreducible polynomials. J. Algebra Appl. 9(2010), no. 4, 603–631. http://dx.doi.org/10.1142/S0219498810004130
- [9] S. K. Khanduja, On valuations of K(x). Proc. Edinburgh Math. Soc. 35(1992), no. 3, 419–426. http://dx.doi.org/10.1017/S0013091500005708
- [10] S. K. Khanduja and S. Kumar, On prolongation of valuations via Newton polygons and liftings of polynomials. J. Pure Appl. Algebra 216(2012), no. 12, 2648–2656. http://dx.doi.org/10.1016/j.jpaa.2012.03.034
- [11] S. K. Khanduja and J. Saha, On a generalization of Eisenstein's irreducibility criterion. Mathematika 44(1997), no. 1, 37–41. http://dx.doi.org/10.1112/S0025579300011931
- [12] _____, A generalized fundamental principle. Mathematika 46(1999), no. 1, 83–92. http://dx.doi.org/10.1112/S0025579300007580
- [13] N. Popescu and A. Zaharescu, On the structure of the irreducible polynomials over local fields. J. Number Theory 52(1995), no. 1, 98–118. http://dx.doi.org/10.1006/jnth.1995.1058

Department of Mathematics, K. N. Toosi University of Technology, P.O.Box 16315-1618, Tehran, Iran e-mail: aghigh@kntu.ac.ir a.nikseresht@mail.kntu.ac.ir