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The development of a consistent framework for Calphad model sensitivity is necessary for the rational reduction
of uncertainty via new models and experiments. In the present work, a sensitivity theory for Calphad was
developed, and a closed-form expression for the log-likelihood gradient and Hessian of a multi-phase equilibrium
measurement was presented. The inherent locality of the defined sensitivity metric was mitigated through the
use of Monte Carlo averaging. A case study of the Cr–Ni system was used to demonstrate visualizations and
analyses enabled by the developed theory. Criteria based on the classical Cramér–Rao bound were shown to be a
useful diagnostic in assessing the accuracy of parameter covariance estimates from Markov Chain Monte Carlo.
The developed sensitivity framework was applied to estimate the statistical value of phase equilibria
measurements in comparison with thermochemical measurements, with implications for Calphad model
uncertainty reduction.
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Introduction
Calphad-based thermodynamic models are routinely used to

probe the phase stability in multicomponent systems.

Computational efficiency and the ability to incorporate exper-

imental measurements, atomistic simulations, and expert intu-

ition in a semi-empirical fashion have led to the broad

adoption of the Calphad approach, but it is only in recent

years that serious attention has been paid to uncertainty quan-

tification (UQ) of the model predictions.

Stan and Reardon demonstrated early work on Calphad

UQ using genetic algorithms which anticipated the Bayesian

approach adopted by later work [1]. As computing efficiency

increased, several authors identified Markov Chain Monte

Carlo (MCMC) as a powerful technique for optimizing

Calphad model parameters and simultaneously determining

their uncertainty with respect to the data [2, 3]. Readers

interested in further discussion of recent developments in

Bayesian UQ for ICME, with application to Calphad, are

directed to a recent review [4].

While there have been significant developments in under-

standing the propagation of Calphad model uncertainty to

the equilibrium predictions [5], the inverse has received mini-

mal attention since the work of Jansson in Calphad parameter

optimization [6]. In seeking to develop a theory of Calphad

model sensitivity, it is desired to understand the flow of uncer-

tainty from the experimental measurements to a given Calphad

model. Clear definitions must be given to all observation types,

including multi-phase equilibrium information, commonly

referred to as “phase diagram data.” The development of a con-

sistent framework for Calphad model sensitivity is necessary,

not only for UQ, but also for the rational reduction of uncer-

tainty via new models and experiments.
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Theory of Calphad model sensitivity
Without loss of generality to multicomponent, multisublattice

systems, we will first consider an isobaric binary system, A–B,

consisting of two single-sublattice phases, α and β. The

molar Gibbs energies are defined as Ga
m(T , y

a
A, y

a
B ; u) and

Gb
m(T , y

b
A, y

b
B ; u), respectively, where T is the temperature, yji

is the site fraction of component i in phase j, and θ is an empir-

ically determined vector of continuously valued model param-

eters for the phases. Gj
m may have a nonlinear dependence on

the elements of θ, but the partial derivatives with respect to the

parameters are assumed to exist. It is often the case that each

element of θ is associated with only one phase, but that

assumption is not necessary. Nj is the molar amount of phase

j. The total molar amount of components A and B, MA and

MB, are equal to Na yaA + Nby
b
A and NayaB + Nby

b
B , respectively.

In the interest of brevity, detailed solutions for the equa-

tions of equilibrium are not included here. This derivation

can be found in several publications, recently in significant

detail by Sundman et al. [7]. For this work, it was sufficient

to assume a particular solution is known to the equations

under the given conditions.

Let an experimental observation at equilibrium of the coex-

istence of phases α and β at a fixed temperature T find the mea-

sured mole fractions x̃aA, x̃
a
B, x̃

b
A, and x̃bB. The mole fractions

predicted by the candidate model specified by θ are xaA, x
a
B ,

xbA, and xbB . The “residual driving force” formulation for the

error in a candidate model specified by θ of a multiphase equi-

librium observation was adopted in this work [8, 9]. The Gibbs

energies of phases in coexistence lie on an equipotential line

(hyperplane in multicomponent systems), which minimizes

the total energy. When the model degrees of freedom, θ, do

not satisfy that criteria for a given experimental measurement,

the deviation from the equipotential condition can be quantified

as a signed distance (“driving force”) from a fictitious hyperplane.

That hyperplane is the arithmetic mean of the hyperplanes calcu-

lated at the measured phase compositions using the candidate

model. As the deviation approaches zero, the hyperplanes at

each measured composition will approach the mean (Fig. 1).

An advantage of this formulation is that it is continuous

with respect to the metastability of one or more observed

phases, meaning that if an observed phase is not predicted to

be stable according to the candidate model, the error can still

be defined. Another advantage is that it is differentiable with

respect to θ. The “residual driving force” of a multiphase equi-

librium measurement is defined as

R(u) = ∑
i
(�mix̃

j
i)−

∑
i
(mj

ix̃
j
i) . (1)

The index j refers to each observed phase, i.e., α or β.

Equation (1) is computed at x̃ji, the tie-line endpoint corre-

sponding to each observed phase j. �mi is the arithmetic mean

of the chemical potentials found by computing a multiphase

global equilibrium at each tie-line endpoint, i.e., an average

chemical potential of values calculated from their respective

compositions at all tie-line endpoints. For the mj
i terms, corre-

sponding to the individual phases, we compute single-phase

local equilibria, i.e., compute the chemical potentials at x̃ai
while only considering the α-phase, and also the chemical

potentials at x̃bi while only considering the β-phase (Fig. 1).

When θ are chosen such that x̃ji = xji , R(θ) will be equal to

zero. It is often the case that, in an experimental multiphase

equilibrium observation, only one of the phase compositions

can be determined, e.g., a measurement of the liquidus temper-

ature by differential scanning calorimetry heating/cooling curve

analysis. For the case of a phase β of undetermined composi-

tion in equilibrium with a phase α at measured composition

x̃ai , x̃
b
i can be estimated as the composition which maximizes

the thermodynamic driving force for the formation of the

β-phase relative to �mi. The computation of �mi then excludes

the chemical potentials calculated at the estimated x̃bi .

For sensitivity estimation, the first derivatives of R(θ) need

to be computed. Assume that xji is independent of θ. The

Figure 1: (a) Mean hyperplane of
a phase co-existence measure-
ment. (b) Residual driving force
R(θ) relative to the mean hyper-
plane [Eq. (1)].
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derivative can then be written as follows:

∂R
∂u

=
∑
i

∂�mi

∂u
x̃ji

( )
−

∑
i

∂m
j
i

∂u
x̃ji

( )
. (2)

Because the arithmetic mean is a linear operator, it is suf-

ficient to determine an expression for ∂μi/∂θ. The chemical

potentials are dependent variables which are outcomes of a

nonlinear optimization. The Lagrangian formulation of the

Gibbs energy minimization problem [6, 7] can be stated as

follows:

HL =
∑
j
NjGj

m −∑
i
fimi −

∑
l
clll . (3)

fi = Mi − M̃i is the mass balance constraint for component

i, l is an index for the internal constraints cl (e.g., site fraction

balance) for all phases in equilibrium, where λl is the corre-

sponding Lagrange multiplier. For the following and all

subsequent steps, we assume calculation at a feasible solution,

so that the gradient of the Lagrangian is equal to zero. For

the present case, this can be expanded as the following system

of equations:

∂cl(yk)
∂yk

∂fA
∂yk

∂fB
∂yk

0
∂fA
∂Nj

∂fB
∂Nj

⎡
⎢⎢⎣

⎤
⎥⎥⎦

ll
mA
mB

⎡
⎣

⎤
⎦ =

∂
∑

j N
jGj

m

( )
∂yk
Gj

m

⎡
⎢⎣

⎤
⎥⎦ . (4)

yk are the internal variables for all stable phases in the cal-

culation, and Nj is the amount of phase j. λl can otherwise be

discarded for the present analysis.

Assume that all cl and Mi are independent of θ and differ-

entiate the system of equations, resulting in

∂cl(yk)
∂yk

∂fA
∂yk

∂fB
∂yk

0
∂fA
∂Nj

∂fB
∂Nj

⎡
⎢⎢⎣

⎤
⎥⎥⎦

∂ll
∂u
∂mA

∂u
∂mB

∂u

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ =

∂
∑

j N
jGj

m

( )
∂yk∂u

∂Gj
m

∂u

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ . (5)

Because of redundant constraints, under some circum-

stances this system of equations may be overdetermined. By

adopting the least-squares solution and referring to the preced-

ing matrix as A, the chemical potential θ derivatives can be

written in a closed form:

∂ll
∂u
∂mA

∂u
∂mB

∂u

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ = (ATA)

−1
AT

∂
∑

j N
jGj

m

( )
∂yk∂u

∂Gj
m

∂u

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ . (6)

This expression shares some similarity with the temperature

“dot derivative” in Sundman et al. [7], if the model degrees of

freedom (θ) are mathematically interpreted as independent ther-

modynamic state variables, similar to the temperature. It is often

the case that the Gibbs energy model of a phase has a linear

dependence on θ, e.g., Gj
m = . . .+ yAyB(u1 + u2T). For this

case, ∂Gj
m/∂u is independent of θ and is constant for a given

equilibrium solution, assuming the phases’ internal degrees

of freedom do not change. ∂μi/∂θ is also constant, as a

consequence. If this scenario applies to all the phases in the cal-

culation, then ∂R/∂θ will be independent of θ, and R(θ) will be

linear in θ.

Definition of phase equilibria log-likelihood
Assume that the error associated with an experimental observa-

tion of R(u; x̃ji) is normally distributed about zero with cons-

tant variance σ2. Note that R(u; x̃ji) is not a true observable

because its value is inferred from the measured quantities x̃ji,

but in principle this only affects computation of σ2. The

log-likelihood function for p independent observations can

then be expressed as:

ln L(u) = −∑
p

1
2s2

p
Rp(u; x̃ j,p

i )
2 −

∑
p

1
2
ln

2p
s2
p

( )
. (7)

The second term is often omitted, as it is independent of θ.

In the present work, attention is restricted solely to multiphase

equilibrium observations, though observations of other ther-

mochemical quantities, such as heat capacity and enthalpy of

formation, can easily be incorporated in the log-likelihood

and the following derivation of sensitivity. In statistics, the

score function s(θ) is defined as the gradient of the

log-likelihood function.

s(u)def
∂ ln L(u)

∂u
= −

∑
p

Rp(u; x̃a,pi , x̃b,pi )

s2
p

∂Rp(u; x̃a,pi , x̃b,pi )

∂u
.

(8)

A “partial” score of a particular observation can also be

defined and is denoted sp(θ). By the independence of observa-

tions, s(u) = ∑
p sp(u).

The corresponding Fisher information matrix (FIM),

I(x̃j,pi ; u), captures the curvature of the log-likelihood and is

defined as the negative of the expectation of the log-likelihood

Hessian as follows:

I(x̃ j,p
i ; u)def − E

∂2 ln L(u)

∂uT∂u

( )

=
∑
p

1
s2
p

∂2Rp(u)

∂uT∂u
Rp(u)+

∂Rp(u)

∂u

∂Rp(u)

∂uT

[ ]
.

(9)

Under a common condition, discussed in the previous sec-

tion, that Rp(θ) is linear in θ, (∂2Rp(θ)/∂θT∂θ) = 0, and the

Invited Feature Paper

▪
Jo
ur
na
lo

f
M
at
er
ia
ls
Re
se
ar
ch
▪

20
20
▪

w
w
w
.m
rs
.o
rg
/jm

r

© The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press cambridge.org/JMR 3

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/jm

r.
20

20
.2

69
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://www.mrs.org/jmr
http://www.cambridge.org/JMR
https://doi.org/10.1557/jmr.2020.269


higher-order term can be neglected, i.e.,

I(x̃ j,p
i ) = ∑

p

1
s2
p

∂Rp(x̃
j,p
i )

∂u

∂Rp( x̃
j,p
i )

∂uT
. (10)

The assumption of linearity causes the dependence on θ to

fall out of Eq. (10) because ∂Rp(θ)/∂θ is constant in θ, and so

the FIM is purely a function of the underlying model form and

the experimentally observed x̃j,pi . There is an important caveat:

in this toy problem, there are only two phases, but in multi-

component systems with several phases, a phase equilibria

measurement could involve only a subset of the potentially sta-

ble phases in a given system. If an experimental measurement

only observes, e.g., the phases α and β, and a candidate thermo-

dynamic model also only predicts α and/or β phase(s) under

the same conditions, then small perturbations of the parame-

ters of a third phase, γ, have zero effect on the log-likelihood

of that observation. More generally, for the case where none

of the phases which are observed or predicted have a depen-

dence on a particular element of θ (θm), (∂Rp(θ)/∂θm) = 0.

This result is intuitive, since an observation cannot provide

any information about the value of a parameter, when the

model does not depend on that parameter. However, if a can-

didate model mis-predicts the presence of a phase γ, an exper-

imental observation of α/β equilibrium under the same

conditions defines a log-likelihood that is locally a function

of the parameters of all three phases.

A scalar sensitivity metric based on the FIM can be defined

several ways and is strongly connected to the notion of the opti-

mality of a measurement. In the present work, a form of

“A-optimality” was adopted wherein the trace of the FIM

was used to define the sensitivity [10].

S(x̃ j,p
i )def trI(x̃ j,p

i ) = ∑
m

∑
p

1
s2
p

∂Rp(x̃
j,p
i )

∂um

2

. (11)

In Calphad modeling, the numerical values of the model

parameters can vary over several orders of magnitude (depend-

ing on whether the parameter is multiplying a constant, T3,

higher-order interaction, etc.), complicating sensitivity com-

parisons involving different parameters. The “scaled sensitiv-

ity” Z(x̃j,pi ) can be understood as a measure of how much the

specified observations help reduce the variance of θ. This

dimensionless scalar quantity has the desirable property of

being additive in observations as well as in parameters, facilitat-

ing sensitivity comparisons between subgroups of observations

and/or parameters.

Z(x̃ j,p
i ) = ∑

m

∑
p

s2
m

s2
p

∂Rp(x̃
j,p
i )

∂um

2

. (12)

The specific definition in Eq. (12) of an observation, p, war-

rants discussion. A “phase region” is defined in the present

work as a group of tie-line endpoints corresponding to the

same multiphase equilibrium. The approach taken in this

work was to define an observation in terms of each measured

phase region, such that each dataset consisted of multiple

“observations,” all assumed statistically independent. This def-

inition preserved the additivity property of Z(x̃j,pi ) and made it

convenient to generate sensitivity analyses based on both the

parameters and the datasets (“groups of phase regions”). A dis-

advantage of this approach was that trends in Z(x̃j,pi ) with

respect to the MCMC iterations were challenging to interpret.

The MCMC simulation involves a maximization of the

log-likelihood function [Eq. (7)], and while it is expected that

the magnitude of the total log-likelihood gradient [Eq. (8)]

decreases with an approach toward the maximum-likelihood

value of θ, the same is not generally true for Z(x̃j,pi ). This is

because of error cancellation due to a summation of terms

with opposing sign in the log-likelihood gradient. In the scaled

sensitivity as defined in the present work, the gradient of each

observation is squared prior to summation, so opposing gradi-

ents do not cancel. For the case of strongly conflicting (incon-

sistent) observations, the value of Z(x̃j,pi ) may be large, even

near the maximum-likelihood θ. Another possibility would

have been to define each dataset as a single “observation,”

such that gradients cancel in a way similar to Eq. (8). That

approach could have value as a diagnostic quantity for

Calphad modeling during the parameter optimization process,

but a scaled sensitivity defined in such a way would be strongly

correlated with the log-likelihood gradient, and so such an

analysis might be better performed by just computing the gra-

dient norm. While the issue of potentially conflicting data has

been investigated in the context of the pure elements [11], fur-

ther analysis of the role of outliers in multicomponent Calphad

sensitivity analyses is recommended for future work.

A potential limitation of the present approach is that the

sensitivity metric is only local and, for example, a “nearly mis-

predicted” phase close to the limit of stability for a given tie-

line will contribute nothing to the sensitivity, even though a

small change in θ could cause it to become stable in the mea-

sured phase region of interest. This concern was mitigated

through the use of Monte Carlo estimates of θ around the

maximum-likelihood value. Z(u; x̃j,pi ) was then computed as

chain/trace averages, which introduced a degree of nonlocality

to the predictions.

Another potential limitation is that correlations between

parameters are not explicitly considered, i.e., the covariance

of θ. While it was not done in the present work, other optimal-

ity criteria incorporating the off-diagonal elements of Eq. (10)

are known [10]. One challenge to resolve for such an approach
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would be finding good empirical estimates of the covariance to

use in the rescaling of the FIM.

Application to Cr−Ni
The Cr−Ni system is a common exemplar system for thermo-

dynamic modeling of alloys, given its technological importance

and relative simplicity. It contains three stable solution phases:

fcc, bcc, and liquid. If one adopts the Standard Element

Reference and tabulated lattice stabilities for the solution

phases [12], then it is only left to the modeler to determine

the binary interaction parameters for each phase. The low-

temperature intermetallic phase, CrNi2, is neglected in the pre-

sent work, as are all magnetic contributions. A complete ther-

modynamic assessment was not an objective of this work, and

such interested readers are directed to a recent review by Tang

and Hallstedt [13].

The initial Cr−Ni thermodynamic model was generated by

the ESPEI software using thermochemical data (enthalpies and

entropies) for the individual phases [8]. The iterative

least-squares procedure used by ESPEI generated a database

with non-zero a + bT terms for the Redlich−Kister binary

interactions of both degree 0 and 1, in all three considered

phases, for a total of 12 adjustable model parameters. The nam-

ing convention for the binary interaction parameters was L

( phase;Redlich−Kister degree)[A,B], depending on which coef-

ficient of the corresponding a + bT expression was being refer-

enced. The phase diagram of this initial model is shown in

Fig. 2(a). The thermochemical data used to generate the

starting point were then discarded for the subsequent analysis.

Typically, this data would be retained in a Calphad modeling

procedure, but it was excluded in this work to isolate the stat-

istical influence of the phase equilibria measurements.

For the MCMC step, phase equilibria data for the solution

phases were collected from the literature [14, 15, 16, 17, 18, 19,

20, 21, 22, 23, 24, 25]. The ESPEI YAML configuration file and

JSON data files for the MCMC step can be found in

Supplementary Material. Twenty-four chains (twice the num-

ber of parameters) were included in the ensemble. All data

were equally weighted with an ESPEI “data weight” of 20, for

an effective σp of 50 J/mol. A flat prior, contributing a log-prior

of zero to the log-probability, was assumed for all parameter

values. The MCMC simulation was run for 500 fixed iterations

without stopping criteria. The phase diagram from the

chain-average parameters at the last iteration is shown in

Fig. 2(b). The log-likelihood trace is shown in Fig. 3.

Details on the code and data files needed to reproduce

the figures and the table can be found in Supplementary

Material.

An after-the-fact sensitivity analysis was conducted on a Cr

−Ni thermodynamic model using the parameter trace from the

MCMC simulation. Log-likelihood gradients and scaled sensi-

tivities were computed according to Eqs. (8) and (12), respec-

tively, and stored for each experimental measurement at each

MCMC iteration. The scaled sensitivity was computed as a

summation over the observations ( p) contained within each

dataset and then normalized based on the number of contained

measurements (phase regions). The empirical variance of each

Figure 2: Initial and final phase diagram of Cr−Ni, with experimentally measured phase equilibria from the literature superimposed. (a) The initial Cr−Ni ther-
modynamic model was generated by the ESPEI software using thermochemical data (not shown) for the individual phases. (b) The Cr−Ni phase diagram is
shown after 500 MCMC iterations, using only the shown phase equilibria measurements as input.
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parameter, s2
m, was computed based on the trace of the last 300

iterations, marginalized over all chains.

Figure 4 shows the dataset-scaled sensitivity per phase

region. The scaled sensitivity [Eq. (12)] was computed for

each dataset and then normalized based on the number of con-

tained measurements (phase regions). For most datasets, there

was a general decreasing trend with the number of MCMC

iterations until settling around a particular value. A significant

increase in scaled sensitivity was seen from the Bechtoldt1961

dataset (defining A1-phase compositions at the Ni-rich

boundary with A2). This was understood to be caused by

within-dataset disagreement on the sign of the log-likelihood

gradient and could be an indicator of inconsistent observations,

insufficient degrees of freedom in the present model, or

both.

The computed sensitivities can also be visualized in terms

of each model degree of freedom. The contribution of each

parameter to the scaled sensitivity is shown as a function of

MCMC iterations in Fig. 5. The sensitivity contribution from

the higher-order liquid parameters was minimal throughout

the optimization process, indicating that the considered obser-

vations were relatively uninformative for those model degrees

of freedom. High sensitivities seen from the higher-order

parameters in the A1 phase were consistent with the dataset-

based analysis (Fig. 4) and were understood as an indicator

that those parameters were strongly coupled to the observa-

tions, particularly at the Ni-rich side of the A1−A2-phase
boundary.

Sensitivities can also be projected back into the space of the

observations, providing insight into where new measurements

might make the most impact on the likelihood. Figure 6

shows the scaled sensitivity per parameter averaged over the

last 300 MCMC iterations, which is visualized in the space of

observations. The result comported with intuition, with param-

eters showing sensitivity to the phase equilibria measurements

from the corresponding phase. Some parameters showed sensi-

tivity corresponding to the “far” ends of equilibrium tie-lines

involving the given phase, consistent with the coupling between

phases defined by Eq. (1). In attempting to explain the compo-

sitional sensitivity fluctuation observed in the higher-order

liquid parameters, consider that binary Redlich−Kister param-

eters of degree 1 achieve extreme values at mole fractions of

approximately 0.21 and 0.79. This could explain the localized

sensitivity peak observed in the higher-order liquid parameters,

Figure 3: ESPEI MCMC log-likelihood trace.

Figure 4: Dataset-scaled sensitivity per phase region. The scaled sensitivity [Eq. (12)] was computed as a summation over all parameters (m) and observations ( p)
contained within each dataset and normalized based on the number of contained measurements (phase regions).
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though the absolute magnitude of the sensitivity for those

parameters was still observed to be small.

Highly focused analyses became possible with data at this

resolution, enabling consideration of the impact of each dataset

on individual model degrees of freedom. For the higher-order

liquid entropy sensitivity shown in Fig. 7(a), the peak in the

Svechnikov1962 curve was understood to be indicative of a

within-dataset initial disagreement in the sign of the

log-likelihood gradient with respect to the given parameter.

This disagreement was captured by the scaled sensitivity due

to the squared gradient term, which increases in magnitude

when multiple observations from the same dataset are in

Figure 5: Scaled sensitivity per parameter. The contribution of each parameter (m) to the scaled sensitivity [Eq. (12)] is computed as a summation over all obser-
vations ( p) in all datasets and is shown as a function of MCMC iterations.

Figure 6: Scaled sensitivity per parameter averaged over the last 300 MCMC iterations, visualized in the space of observations. Each subplot was separately nor-
malized, such that full opacity corresponded to the largest observed scaled sensitivity for the given parameter.
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conflict. As the apparent conflict was resolved by the MCMC

optimization, the sensitivity decreased. Initial sensitivity con-

tributed by some of the other datasets was observed, but

quickly dropped to zero as the phase mis-prediction was

resolved by the optimization. The log-likelihood contribution

of the Bechtoldt1961 dataset remained very sensitive to the reg-

ular solution parameter for the A1 phase [Fig. 7(b)], and the

sensitivity actually increased with respect to the MCMC itera-

tions. While optimization reduces the total log-likelihood gra-

dient, it does not guarantee sensitivity reduction with respect

to every dataset.

It is desirable to determine whether an MCMC-based opti-

mization has run for a sufficient number of iterations, and if its

estimate of parameter uncertainty is reasonable. In this work,

the developed Calphad sensitivity theory was applied to per-

form an analysis using the well-known Cramér–Rao (CR)

lower bound on the parameter covariance. The CR bound is

a statement on the covariance of an unbiased estimator, giving

the inverse of the Fisher information matrix [Eq. (10)] as the

lower bound [26]. While any realized estimator may fail to

achieve the lower limit, a corollary to the CR bound is that,

if a given estimator’s covariance falls below the given limit,

the estimator must be biased in some way.

Corner plots for the A1 and liquid phases, with estimated

CR covariance ellipsoids, are shown in Fig. 8. For computation

of the expectation of the log-likelihood Hessian [Eq. (10)], a

likelihood-weighted average of the Hessians of the last 300

MCMC iterations, marginalized over all chains, was used. For

Figure 7: Parameter scaled sensitivity
per dataset. (a) Higher-order entropy
parameter of the liquid and (b) regular
solution parameter of the A1 phase.
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the model degrees of freedom in the A1 phase, the covariances

computed from the MCMC samples were found to be in rea-

sonable agreement with the CR bound, including the reproduc-

tion of key correlations. For the liquid model degrees of

freedom, MCMC covariances far below the CR bound were

observed in the higher-order liquid parameters, indicating

bias in the MCMC covariance estimate. This was understood

to be caused by an insufficient number of MCMC samples to

capture a relatively flat likelihood along those degrees of free-

dom in the neighborhood of the maximum-likelihood estimate.

Figure 8: Corner plots for (a) the A1 and (b) liquid phases, with
estimated CR covariance ellipsoids superimposed in red, at 1
and 2 standard deviations.
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In seeking to remove undesired bias in the liquid uncer-

tainty estimate, two approaches were considered. The first

was to use informative priors for the parameters that were

found to be insensitive. This would mean adding information

from another source, possibly based on experience or intuition.

While this could resolve the issue in one sense, the choice of

any particular prior would be difficult to justify in advance.

Another approach would be to add more informative

observations to the optimization. In this work, only phase equi-

libria measurements were considered, but a pair of liquid mix-

ing enthalpy measurements, for example, would strongly

increase both the magnitude of the likelihood gradient [Eq.

(8)] for the higher-order constant binary interaction term for

the liquid and the curvature of the likelihood function along

that direction [Eq. (10)]. The extent of the statistical informa-

tion for a given model contained within a set of observations

can be quantified by the eigenvalues of Eq. (10) and are quan-

tified for two cases in Table 1. One scalar measure based on

this spectral approach is the ratio of the largest to smallest

eigenvalue (condition number) and was also computed in the

table. Assume that such measurements were perfectly consis-

tent with the candidate model (zero error). Even in making

the relatively conservative assumption of σp = 1000 J/mol for

this hypothetical measurement, the strongly informative nature

of thermochemical measurements provides a reduction to the

uncertainty bound of the higher-order liquid parameters, driv-

ing an increase in the smallest FIM eigenvalues and an

order-of-magnitude reduction in the matrix condition number.

One would then expect subsequent MCMC optimization to be

accelerated by the greater curvature of the augmented likeli-

hood function and an uncertainty estimate closer to the CR

bound to be achieved.

It is promising for the future of Calphad sensitivity that this

analysis was able to quantifiably reproduce the long-respected

wisdom in the Calphad community that thermochemical mea-

surements are the foundation of an accurate thermodynamic

model, with the phase diagram playing a highly visible, yet

merely supporting, role.

Conclusions
Sensitivity analysis is a powerful tool for the development of

Calphad-based thermodynamic models, providing data-point

level resolution on the coupling of prediction error to the

model parameters. Through the presented theory it was

shown possible, in a case study of the Cr–Ni system, to assess

the accuracy of MCMC-based covariance estimates using the

classical Cramér–Rao bound. Computation of the Fisher infor-

mation matrix quantified the statistical value of thermochemi-

cal measurements versus phase equilibria measurements; the

former was shown to be much greater. Further analysis of

the role of conflicting data in multicomponent Calphad

model sensitivity, and how it might influence the design of

new experiments, was suggested for future work.
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