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Abstract

We consider a birth, death and catastrophe process where the transition rates are allowed
to depend on the population size. We obtain an explicit expression for the expected time
to extinction, which is valid in all cases where extinction occurs with probability 1.
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The model under consideration is a continuous-time Markov chain (X(t), t ≥ 0) taking values
in S = {0, 1, . . . }, where X(t) represents the number in a population at time t . When there are
i individuals present the population size changes at rate fi (> 0), and when a change occurs
it is the result of a birth with probability a (> 0) or a catastrophe of size k (i.e. the removal
of k individuals) with probability dk (k ≥ 1). (Simple death events are catastrophes of size 1.)
We assume that dk > 0 for at least one k ≥ 1 and a + ∑

k≥1 dk = 1. Thus, the process has
transition rates Q given by

qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fi
∑
k≥i

dk, j = 0, i ≥ 1,

fidi−j , j = 1, 2, . . . , i − 1, i ≥ 2,

−fi, j = i, i ≥ 1,

fia, j = i + 1, i ≥ 1,

0, otherwise,

and the sole absorbing state 0, corresponding to population extinction, is accessible from the
irreducible class {1, 2, . . . }. The special case fi = ρi, where ρ (> 0) is a per-capita transition
rate, was studied by Brockwell [1], Pakes [5], Pakes and Pollett [6], and Pollett [7]. Cairns and
Pollett [2] studied the case of general fi , providing an explicit expression for the expected time
to extinction in the subcritical case. They noted that the supercritcal case could be handled by
way of a standard transformation involving the extinction probabilities, and that the critical case
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could be handled if the variance of the catastrophe size distribution was finite. The purpose of
this note is to point out that this latter condition is not needed.

Let

d(s) = a +
∞∑
i=1

dis
i+1,

|s| < 1, be the probability generating function (PGF) of the jump-size distribution. Then the
drift D = 1 − d ′(1−) = a − ∑∞

i=1 idi satisfies −∞ ≤ D ≤ 1, and the process is said to be
subcritical, critical or supercritical according to whether D < 0, D = 0 or D > 0. Now let
b(s) = d(s) − s and e(s) = 1/b(s). It is well known (Section V.12 of Harris [3]) that e(s)
has a power series expansion with strictly positive coefficients (ei, i ≥ 0) and with radius of
convergence σ , where σ is the smallest zero of b(s) on (0, 1]. (Indeed this is true for any PGF
d(s)with d(0) > 0.) Furthermore, σ = 1 or σ < 1 according to whetherD ≥ 0 orD < 0, and
b(s) > 0 for all s ∈ [0, σ ). If as we shall assume hereD ≤ 0, then the process is non-explosive
and absorption occurs with probability 1 (Pakes [5]). We will prove the following result, which
is Theorem 2 of [2] extended to include the D = 0 case.

Theorem 1. For the subcritical or critical birth, death and catastrophe process, the expected
extinction time τi , starting in state i, is finite if and only if κ := ∑∞

i=1 σ
i/fi < ∞, in which

case τ0 = 0, τ1 = κ/a, and τi = κei−1 − ∑i−1
j=1 ei−1−j /fj (i ≥ 2).

Cairns and Pollett’s proof [2] for the subcritical case rested on the facts that ei/ei+1 ≤ σ and
ei/ei+1 → σ , which they deduced from results obtained by Yang [8] concerning the invariant
measure of a Markov branching process. However, they could be applied to the birth, death
and catastrophe process only in the D < 0 case. Lemma 1 shows that the two conditions hold
whatever the sign of D. Thus, Theorem 1 is established.

Lemma 1. Let p(s) be a PGF with p(0) > 0 and let σ be the smallest zero of p(s) on (0, 1].
Then, the coefficients (ei, i ≥ 0) of the power series e(s) = 1/(p(s)− s) satisfy

(i) σ−i ≤ ei ≤ σei+1, and

(ii) limi→∞ ei/ei+1 = σ .

Proof. Let m(s) = ∑∞
i=0mis

i be a PGF with m(0) > 0 and m′(1−) ≤ 1, so that 1 is the
smallest root of m(s) = s on [0, 1]. As already noted, h(s) = 1/(m(s) − s) is a power series
with nonnegative coefficients (hi, i ≥ 0). We will prove that 1 ≤ hi ≤ hi+1 (i ≥ 0) and that
hi/hi+1 → 1. The proof of the lemma will then follow by taking m1 = p1σ + 1 − σ and
mi = piσ

i (i �= 1).
Following Harris (Section V.12 of [3]), we write

1

m(s)− s
= 1

(1 − s)(1 −�(s))
, (1)

where �(s) = (1 − m(s))/(1 − s), which is analytic at s = 0 and has the following power
series expansion with nonnegative coefficients: �(s) = 1−m0 + (1−m0 −m1)s+ (1−m0 −
m1 −m2)s

2 + · · · . Setting

∞∑
i=0

gis
i = 1

1 −�(s)
= 1 +�(s)+�(s)2 +�(s)3 + · · · , (2)

https://doi.org/10.1239/jap/1183667423 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1183667423


568 P. POLLETT ET AL.

we see that g0 ≥ 1 and gi ≥ 0 (i ≥ 1). From (1) and (2) we have
∞∑
i=0

his
i = 1

m(s)− s
= (1 + s + s2 + s3 + · · · )

∞∑
i=0

gis
i .

Hence, hi = ∑i
j=0 gj , and so hi+1 ≥ hi ≥ 1.

Next, since
∞∑
i=0

gis
i = 1

1 −�(s)
= �(s)

1 −�(s)
+ 1,

we have g0 = ψ0g0 + 1 and gi = ∑i
j=0 ψjgi−j (i ≥ 1), where ψi = 1 −m0 −m1 −· · ·−mi .

It follows that g0 = 1/(1 −ψ0) and gi = g0
∑i
j=1 ψjgi−j (i ≥ 1). We will prove that gi ≤ g0

(i ≥ 0) using mathematical induction. The statement is clearly true for i = 0. So, suppose
that, for some fixed i ≥ 1, gj ≤ g0 for all j ≤ i − 1. Then,

gi = 1

1 − ψ0

i∑
j=1

ψjgi−j ≤ g0

1 − ψ0

i∑
j=1

ψj ≤ g0,

where in the last inequality we have used the fact that
∑∞
j=0 ψj = m′(1−) ≤ 1.

As hi = ∑i
j=0 gj , we have 1 ≤ hi+1/hi = 1 + gi+1/hi . Also, as (hi) is an increasing

sequence, the limit L = limi→∞ hi exists, but might be infinite. If L < ∞, then gi → 0, and
so gi+1/hi → 0. Otherwise, if L = ∞, then gi+1/hi → 0, because gi ≤ g0. In either case
we have hi+1/hi → 1.

On setting m1 = p1σ + 1 − σ and mi = piσ
i (i �= 1), it is clear that m0 = p0 > 0,∑∞

i=0mi = 1, and m(s) = ∑∞
i=0 piσ

isi + (1 − σ)s. Hence, m(s)− s = p(σs)− σs, and so
hi = eiσ

i and 1 is the smallest root of m(s) = s on [0, 1] because σ is the smallest root of
p(s) = s on [0, 1]. The first claim, that σ−i ≤ ei ≤ σei+1 (i ≥ 0), now follows because 1 ≤
hi ≤ hi+1. To prove the second claim, observe that limi→∞ ei/ei+1 = σ limi→∞ hi/hi+1 =
σ . The proof is complete.

Example. We will suppose that catastrophe sizes follow the zeta distribution (also known
as the Zipf or ‘discrete Pareto’ distribution), an example of a power law that has been used
to model the effect of a variety of hazards, such as the area burnt in forest fires [4]. We set
dk = (1 − a)k−r/ζ(r), where ζ(·) is the Riemann zeta function and r is a parameter that
determines the weight ascribed to the tail of the distribution. Then, b(s) = a − s + (1 − a)

× s Lir (s)/ζ(r), where Lir (·) is the (real-valued) polylogarithm function of order r . The
distribution (dk, k ≥ 1) is only defined for r > 1 and its mean is finite only if r > 2; for
1 < r ≤ 2, D = −∞, while for r > 2, D is finite and its value depends on a. The variance of
the distribution is finite if and only if r > 3, and so when 2 < r ≤ 3 the mean is finite but the
variance is infinite. For example, when r = 3, it can be shown that D < 0, D = 0 or D ≥ 0,
according to whether a is less than, equal to, or greater than π2/[6ζ(3) + π2]. The expected
extinction times (τi, i ≥ 0) may then be obtained from Theorem 1. If in particular D = 0,
then σ = 1 and thus, the τi are finite if and only if κ = ∑∞

i=1 1/fi is finite (i.e. if changes in
the population size occur ‘fast enough’ as the population size increases). For the linear case
fi = ρi, the birth, death and catastrophe process with zeta catastrophes and r = 3 has finite
or infinite expected extinction times according to whether D < 0 or D ≥ 0. Alternatively, if
fi = ρi(i + 1) then the expected extinction times are finite when D ≤ 0; when D > 0 the
process is explosive (Theorem 1 of [2]).
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