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Abstract

An analogue in a solid of the well known Pascal's theorem (Baker, [1], p. 219) for a
conic is established by Baker ([2], pp. 53—54, Ex. 15) after Chasles [6] and by Salmon ([2],
p. 142). The same is discussed in detail by Court [8]. The purpose of this paper is to extend
it to a protective space of n dimensions or briefly to an n-space Sn. To prove it, we introduce
here once again the idea of a set of »+1 associated lines in S. as indicated in an earlier work
(Mandan, [12]) in analogy with a set of 5 associated lines in St (Baker, [4], p. 122), and
make use of the method of induction.

Associated spaces

1. DEFINITIONS. A set of » + l lines xt in Sn (n > 3) are said to be
associated, if through every point of every x, there pass oo"-8 (»—2)-spaces
meeting all of them such that every («—2)-space meeting n of them meets
the (»+l ) th too (cf. Coxeter & Todd, [10]).

Dually, a set of n-\-l (n—2)-spaces yt in Sn are said to be associated,
if in every prime or Sn_x through every yt there lie oo"~3 lines meeting
all of them such that every line meeting n of them meets the («+l ) th too.

Thus there are oon-2 (»—2)-spaces meeting all xf, one (»—2)-space
in each prime through each xit and GO"-2 lines meeting all yit one line
through each point of each y{ (cf. Baker, [4]; Mandan, [12]).

For n = 3, we take oo° = 1 such that any four generators of one system
of a quadric in a solid form an associated set.

For n = 2, we take any triad of concurrent lines in a plane and any
triad of collinear points to form an associated set.

2. Now we establish by induction the following

LEMMA 1. / / through the w + 1 vertices At (i = 0, • • • , » ) of a simplex
S in Sn (2 < n), w + 1 lines xt be drawn such that oo"~3 (»—2)-spaces pass
through every At meeting them, then xt form an associated set.

PROOF. If P be an arbitrary point on the line XQ, then through every
join PAr (r = 1, • • •, n) there pass oo"-4 {n—2)-spaces meeting all the

• The Editor expresses his regret for the long delay in publication of this paper.
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« + l lines xt. If A'r be the projection of Ar from P in an Sn - 1 and x'r of
xr, the n lines a£ pass through the n points J^ forming a simplex in the
SB_i such that GO""4 (w—3)-spaces pass through every A'r meeting them.
If we assume the lemma to be true in the Sn_t, x'r form an associated set
therein such that they are met by oo"-s [n—3)-spaces which joined to P
give us oo"-3 (n—2)-spaces through P meeting all the lines xt. The same
is similarly true for every point of every xt taken in place of P and hence
the lemma follows if our assumption be true. But it is true for n = 3 by
definition (§ 1) as a property of four generators of one system of a quadric
in a solid. Therefore the lemma follows by induction.

3. Dually we have the following

LEMMA 2. / / in the » + l primes a( of a simplex S in Sn (2 < n) w+1
(n—2)-spaces yt be taken such that oo""3 lines lie in every at meeting them,
yt form an associated set.

4. As an immediate consequence of definitions (§ 1), we have

LEMMA 3. A prime through one of w+1 associated (n—2)-spaces in Sn

meets the rest of them in n associated (n—Z)-spaces therein.

LEMMA 4. Any n of n-\-l associated lines in Sn project in a prime from
an arbitrary point on the (n-\-l)th line into n associated lines therein.

Pascal's theorem

5. The analogue of the Pascal's theorem takes the form of

THEOREM 1. The « ( » + l ) points of intersection of a quadric W with
the (*£*) edges of a simplex S in Sn lie, in 2n<"+1>/2 ways, in n+1 hyperplanes
bt, each hyperplane determined by n points on the n edges through a vertex
A( of S, which meet the n-\-l primes at of S opposite its corresponding vertices
At, in general, in n-\-l associated (n—2)-spaces yt.

PROOF. Let W meet an edge AtAt of S in a pair of points B(i, Bfi

such that the « points Bti on the n edges through a vertex At of S determine,
a hyperplane bf meeting a non-corresponding prime at of S in an (»—2)-
space b(i (# bj(). Let Wf be an («—2)-quadric section of W by ait and
let a bfi meet the (»—2)-space aif (= at() of S opposite A{At in the («—3)-
space yf{ (# yti). Then, in the notations of Coxeter (1955), we have

(i) yti = ati • bti = (a, • as) • {at • bf) = a, • (a, •bi) = at-yi- :

If we assume the theorem to be true in Sn_lt say for Wt and the (n—1)-
dimensional simplex of S in at, the « (»—3)-spaces yH therein are associated
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such that they and therefore, by virtue of the relation (i), the n (n—2)-
spaces yt are met by oo"~3 lines, in a{ (§ 1), which obviously meet yt too.
For yi lies in a{. Hence, by the lemma 2, the theorem follows, if our assump-
tion be true. But it is true for n = 3 (Baker, [2], pp. 53—54, Ex. 15) and
so for all n 2: 3.

Again for the determination of the w+1 hyperplanes bit either point
on every edge of S has two choices independent of one another and hence
there are 2n(B+1"2 possible ways to determine them.

Thus for n = 3, there are 64 ways as stated by Court [8], and not 32
as stated by Baker ([2], p. 53), to choose the 4 planes bt.

6. Conversely we have the following

THEOREM 2. Any n-\-l hyperplanes b( through n-\-\ associated (n—2)-
spaces yt in the M + 1 primes a{ of a simplex S in Sn meet its edges in M ( M + 1 )

points, each b{ containing n points on its n edges through its vertex A{ opposite
its corresponding prime a{, which lie on a quadric W.

PROOF. Let a bt meet the n edges AtAt of S through Atin the n points
Bu> (ai) be the («—l)-dimensional simplex of S in an a(, and bit, bH,
Vn> Va as in § 5. The n (n—3)-spaces yH in an at then form an associated
set by lemma 3 and lie in the « («—2)-spaces bH in a,-.

If we assume the theorem to be true in an Sn_lt say in an ait the
(|) pairs of the points Bjk, Bkj (i, j , k = 0, • • •, n; i ^ / ^ k) on the (")
edges AjAjt of (a{) lie on a quadric Wt therein. Every two such (w—2)-
quadrics W(, Wf obviously have a common (n—3)-quadric section W(i

by the (»—2)-space ait (§ 5) of S. The n-\-l such (n—2)-quadrics W( are
then easily seen to lie on a quadric W in Sn as required, if our assumption
be true. But it is true for n — 3 (Court, [8]) and so holds for all n 2> 3.

7. The preceding two theorems can now be summed up as the following

THEOREM 3. The n{n-\-l) points, two on each edge of a simplex S in
Sn, lie on a quadric, if and only if they lie, in 2n(n+1)/2 ways, in M + 1 hyper-
planes, each hyperplane containing n points on the n edges through a vertex
of S, which meet the « + l primes of S opposite its corresponding vertices,
in general, in M + 1 associated [n—2)-spaces (cf. Mandan, [12]).

8. The M + 1 hyperplanes b{ of theorem 2 may form a simplex, concur
or have a line common (cf. Court, [8]). Thus the theorem 2 leads to

THEOREM 4. If the primes of a simplex in Sn meet those of another in
M + 1 asscoiated (n—2)-spaces in a certain one-to-one correspondence, the primes
of either simplex cut the non-corresponding primes of the other along M + 1
(n-l)-dimensional simplexes inscribed in the same quadric W. The two such
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simplexes are polar reciprocals of each other with respect to a quadric Q
(Mandan, [12]) in 2"<"+1>/2 ways.

THEOREM 5. The n-\-\ hyperplanes determined by » + l associated
(n—2)-spaces located in then-\-l primes of a simplex S in Sn and any arbitrary
point or any line meeting them cut the non-corresponding primes of S along
n-\-l (n-l)-dimensional simplexes inscribed in the same quadric.

Brianchon's theorem

9. Now we are in a position to state the dual of the Pascal's theorems
3—5 as the following

THEOREM 6. The n(n-\-l) hyperplanes, two through each (n—2)-space
of a simplex S in Sn, envelope a quadric, if and only if they pass through,
in 2n(n+1)/2 ways, n-\-l points, each point determined by the n hyperplanes
through the n (n—2)-spaces in a prime of S, which join the n-\-l vertices of
S opposite its corresponding primes, in general, into n-\-l associated lines
(cf. Mandan, [12]).

THEOREM 7. / / the joins of the vertices of a simplex in Sn to those of
another in a certain one-to-one correspondence form a set of » + l associated
lines, the vertices of either simplex join the (n—2)-spaces in the primes of
the other opposite its corresponding vertices into n(n-\-l) hyperplanes tangent
to the same quadric W. The two such simplexes are polar reciprocals of each
other with regard to a quadric Q (Mandan, [12]) in 2n(n+1)/* ways.

THEOREM 8. The w+1 points common to n-\-l associated lines through
the vertices of a simplex S in Sn and any arbitrary hyperplane or any («—2)-
space meeting them join the (n—2)-spaces in the primes of S opposite its
corresponding vertices into n[n-\-l) hyperplanes tangent to the same quadric.

Special cases

10. Court [8] proves that the four lines yt of theorem 1 in a solid (when
n = 3) are hyperbolic (forming four generators of one system of a quadric)
or coplanar. But following his arguments, we can also establish that they
may lie two by two in two planes whose common line contains the two
points of their intersection which obviously lie on two opposite edges of the
tetrahedron S. The four planes b( in such a case may form a tetrahedron
or concur but are never coaxal. Hence corresponding to the theorems 4,
5 and their dual theorems 7, 8, we have

THEOREM 9. / / four lines lying two by two in two planes whose common
line contains the two points of their intersection are defined to form a 'semi-
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associated' set, and the four faces of a tetrahedron meet those of another, lying
in the same solid, in four semi-associated lines in a certain one-to-one cor-
respondence, the four faces of either tetrahedron cut the non-corresponding
faces of the other along four triangles inscribed in the same quadric W- The
two such tetrahedra are polar reciprocals of each other in regard to a quadric
Q, in 64 ways (cf. Mandan, [12], S-theorem), for which a pair of opposite
edges of either tetrahedron are 'conjugate' (Baker, [2], p. 34; Mandan, [13],
[14]). Hence the four joins of their corresponding vertices also form a set of
semi-associated lines such that the vertices of either tetrahedron join the sides
in the faces of the other opposite its corresponding vertices into twelve planes
tangent to the same quadric W (Mandan, [12], s-theorem).

THEOREM 10. The four planes determined by four semi-associated lines
located in the four faces of a tetrahedron T and any arbitrary point in its
solid cut the non-corresponding faces of T along four triangles inscribed in
the same quadric W. Dually the four points common to four semi-associated
lines through the vertices of T and any arbitrary plane in its solid join the
sides in the faces of T opposite its corresponding vertices into twelve planes
tangent to the same quadric W (cf. Theorems 5, 8).

11. The truth of lemma 1 is based on the assumption that it is true
for n — 3. We may observe here that it holds for n = 4 even if the four
lines x'T (§ 2) in the S3 form a semi-associated set. The vertex of projection
P then happens to become a Cremona point of the self-dual Segre's figure
153 of 16 lines and 15 points (Baker, [1], p. 226; [3], pp. 113—14; Mandan,
[12]) generated by the five associated lines xt in the S4. Thus it holds for
higher values of n too.

12. Again when n = 4, it may happen that the four lines x'T (§ 2) in
S3 are neither associated nor semi-associated as considered in the preceding
section, but are concurrent (Court, [8]). The five lines xt in the S4 then have
a common transversal t through the vertex of projection P and are no longer
associated (Mandan, [12]) as defined by Baker ([3], pp. 113—14). In S4,
oo2 planes pass through every line therein and therefore through t too.
Thus there pass through every one of the five points P4 of xt ont, oo2 (not
oo1 as required) planes meeting x(. If this situation does not arise for any
other point on any xt, the lines xt satisfy our definition (§ 1) for five associated
lines in S4 except for P( and therefore may be said to form a semi-as-
sociated set.

Similarly we may define dually in St a set of five semi-associated planes
y{ which meet a common plane p in five lines and satisfy our definition
for five associated planes therein except for the five solids Py{. Thus: The
theorems 2, 4, 5, 7, 8 hold good in S4 even if the associated lines and planes
therein are replaced by semi-associated ones.
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Again the lemma 1 and its dial lemma 2 too then hold good in S5

even if the five lines x'T (§2) in S4 are semi-associated but for one and only
one point P on x0, and therefore the theorems 1—5 also hold in Ss even
if they are true in S4 with five semi-associated planes yH (§ 5) but in one
and only one of the five primes at of the simplex S. Hence they and their
duals (Theorems 6—8) are true in Sn for all values of n greater than five.

Remark. This shows the possibility of plane transversals of six as-
sociated lines in S6. Thus it may form a basis for more thorough investigation
of the theory of such associated lines in spaces of dimensions higher than
four; these have not been much studied before except as an introduction
of them by Baker [4], followed by S. Beatty [5], Coxeter and Todd [10]
and lastly by Mandan [12], but then only as the joins of the corresponding
vertices of a pair of simplexes polar reciprocal of each other in regard to a
quadric.

13. It may happen that the situation of the preceding section repeats
for a second point P't on x{. The five lines xt then lie in the solid determined
by t (§ 12) and their second transversal t' through P't. But then the lines
lie in an S8. Therefore they must concur. Thus five associated lines in 54

may degenerate into concurrent ones.
Now repeating the argument of the preceding section for n = 5, 6, • • •

successively, we may arrive in Sn at » + l lines x( which have a common
transversal t satisfying our definition (§1) for an associated set except for
their n-\-1 points on t and therefore may be said to form a semi-associated set.

Dually, we may then define in Sn (3 < n) a set of w+1 semi-associated
(n—2)-spaces yf which meet a common (n—2)-space ^ in « + l (»—3)-
spaces and satisfy our definition for »-f-l associated (w—2)-spaces except
for the n-\-l primes py(. Thus: The theorems 2, 4, 5, 7, 8 hold good in Sn

(2 < n) even if the associated lines and (n—2)-spaces there are replaced by
semi-associated ones (§§ 10, 12).

14. We have remarked above (§ 5) that the Pascal's theorem 1 is true
in Sn when the « + l (»—2)-spaces yt are in general associated. We then
observe (§§ 10—13) that y( may degenarate into a semi-associated set or
be coprimal according as the n (n—3)-spaces yH (§ 5) lie in an (n—2)-space
in one prime at of the simplex S or in two such primes and therefore in
all its primes.

In fact, we have already deduced the Pascal's theorem 4 independently
from the Dandelin's figure in n-space (Mandan, [18]) when yt are coprimal
in which case the » + l primes bt (§ 5) form a simplex perspective to S.

A special case arises when the pair of points Bit, Bfi (§ 5) on each edge
of S in theorem 1 coincide. It has been established in an earlier work
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(Mandan, [11]) that W becomes the cevian quadric of S for a point M
through which its i^%1) bicevians meet its edges in the ("Jx) points Btj = BH

where therefore W touches them such that 6,- form a simplex S' polar
reciprocal of S for W as its transform in the homology (M, m, (1—«)/2),
m being the -polar hyperplane of both S and W. Thus S, S' are in perspective
from M such that yt lie in their prime of perspectivity m.

15. As a limiting case of theorem 1, we have the following

THEOREM 11. The joins of the vertices F, of a simplex S in Sn to the
corresponding ones of the simplex S' formed by the n-\-\ tangent primes at
the V( to a quadric W circumscribed to S form a set of n-\-l associated lines
xt. Thus S and S' are polar reciprocals of each other for W, and consequently
the n-\-l (n—2)-spaces y( common to their corresponding primes form an
associated set (cf. Baker, [2], p. 53, Ex. 14 for n = 3).

16. The lines xt of the preceding theorem may concur (§ 14) at a point
M say. The simplex S' is then perspective to S from M and therefore
anticevian (Mandan, [11]) of S for M. Consequently the («—2)-spaces y{

lie in the polar prime m of M for the simplex S or the quadric W. W is
then seen to be the polar quadric (Mandan, [11]) of M for S. S becomes
isodynamic with M, m as its Lemoine point and Lemoine hyperplane, and
S' isogonic with M as its Fermat point when W is taken to be the circum-
hypersphere of S or the inhypersphere of S' (Court, [8]; Mandan, [19])
as established in the author's two papers [21] and 'Polarity for a simplex'
(see Abstract in the Proceedings of the 48th Session of the Indian Science
Congress Association held at Roorkee in January 1961).

Degenerate cases

17. The cases of degeneration multiply in Sn as n increases. For example,
in S4 the five lines xt (§2), besides degenerating into a semi-associated or a
corpimal set (§§ 12, 13), may lie two in a plane and three in a solid such
that the three are general or concurrent, or only two of them meet (Mandan,
[13], [15], [16]). Similarly we may enumerate several such cases in higher
spaces too (Mandan, [17], [20]). The significant degeneration of such as-
sociated lines occurs when they have in S6 and S, a plane transversal,
in S8 and S9 a plane or a solid transversal, in S10 and S u a plane, a solid
or an S4 transversal, and in Sn (11 < n) a plane, a solid, • • • or an Sm_!
transversal for n = 2m and 2w+l (Mandan, [12]).

The discussion of the various cases like these forms the subject matter
for another paper on 'Associated spaces' (in progress) as remarked already
(§ 12).
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