PASGAL'S THEOREM IN n-SPACE *

SAHIB RAM MANDAN

(Received 19 April 1961)

Abstract

An analogue in a solid of the well known Pascal's theorem (Baker, [1], p. 219) for a conic is established by Baker ([2], pp. 53-54, Ex. 15) after Chasles [6] and by Salmon ([2], p. 142). The same is discussed in detail by Court [8]. The purpose of this paper is to extend it to a projective space of n dimensions or briefly to an n-space S_{n}. To prove it, we introduce here once again the idea of a set of $n+1$ associated lines in S_{n} as indicated in an earlier work (Mandan, [12]) in analogy with a set of 5 associated lines in S_{4} (Baker, [4], p. 122), and make use of the method of induction.

Associated spaces

1. Definitions. A set of $n+1$ lines x_{i} in $S_{n}(n>3)$ are said to be associated, if through every point of every x_{i} there pass $\infty^{n-3}(n-2)$-spaces meeting all of them such that every ($n-2$)-space meeting n of them meets the $(n+1)$ th too (cf. Coxeter \& Todd, [10]).

Dually, a set of $n+1(n-2)$-spaces y_{i} in S_{n} are said to be associated, if in every prime or S_{n-1} through every y_{i} there lie ∞^{n-3} lines meeting all of them such that every line meeting n of them meets the $(n+1)$ th too.

Thus there are $\infty^{n-2}(n-2)$-spaces meeting all x_{i}, one $(n-2)$-space in each prime through each x_{i}, and ∞^{n-2} lines meeting all y_{i}, one line through each point of each y_{i} (cf. Baker, [4]; Mandan, [12]).

For $n=3$, we take $\infty^{0}=1$ such that any four generators of one system of a quadric in a solid form an associated set.

For $n=2$, we take any triad of concurrent lines in a plane and any triad of collinear points to form an associated set.
2. Now we establish by induction the following

Lemma 1. If through the $n+1$ vertices $A_{i}(i=0, \cdots, n)$ of a simplex S in $S_{n}(2<n), n+1$ lines x_{i} be drawon such that $\infty^{n-3}(n-2)$-spaces pass through every A_{i} meeting them, then x_{i} form an associated set.

Proof. If P be an arbitrary point on the line x_{0}, then through every join $P A_{r}(r=1, \cdots, n)$ there pass $\infty^{n-4}(n-2)$-spaces meeting all the

[^0]$n+1$ lines x_{i}. If A_{r}^{\prime} be the projection of A_{r} from P in an S_{n-1} and x_{r}^{\prime} of x_{r}, the n lines x_{r}^{\prime} pass through the n points A_{r}^{\prime} forming a simplex in the S_{n-1} such that $\infty^{n-4}(n-3)$-spaces pass through every A_{r}^{\prime} meeting them. If we assume the lemma to be true in the S_{n-1}, x_{r}^{\prime} form an associated set therein such that they are met by $\infty^{n-3}(n-3)$-spaces which joined to P give us $\infty^{n-3}(n-2)$-spaces through P meeting all the lines x_{i}. The same is similarly true for every point of every x_{i} taken in place of P and hence the lemma follows if our assumption be true. But it is true for $n=3$ by definition (§ 1) as a property of four generators of one system of a quadric in a solid. Therefore the lemma follows by induction.
3. Dually we have the following

Lemma 2. If in the $n+1$ primes a_{i} of a simplex S in $S_{n}(2<n) n+1$ $(n-2)$-spaces y_{i} be taken such that ∞^{n-3} lines lie in every a_{i} meeting them, y_{i} form an associated set.
4. As an immediate consequence of definitions (§ 1), we have

Lemma 3. A prime through one of $n+1$ associated ($n-2$)-spaces in S_{n} meets the rest of them in n associated ($n-3$)-spaces therein.

Lemma 4. Any n of $n+1$ associated lines in S_{n} project in a prime from an arbitrary point on the $(n+1)$ th line into n associated lines therein.

Pascal's theorem

5. The analogue of the Pascal's theorem takes the form of

Theorem 1. The $n(n+1)$ points of intersection of a quadric W with the $\binom{n+1}{2}$ edges of a simplex S in S_{n} lie, in $2^{n(n+1) / 2}$ ways, in $n+1$ hyperplanes b_{i}, each hyperplane determined by n points on the n edges through a vertex A_{i} of S, which meet the $n+1$ primes a_{i} of S opposite its corresponding vertices A_{i}, in general, in $n+1$ associated ($n-2$)-spaces y_{i}.

Proof. Let W meet an edge $A_{i} A_{j}$ of S in a pair of points $B_{i j}, B_{i j}$ such that the n points $B_{i j}$ on the n edges through a vertex A_{i} of S determine a hyperplane b_{i} meeting a non-corresponding prime a_{j} of S in an (n-2)space $b_{i j}\left(\neq b_{i t}\right)$. Let W_{i} be an ($n-2$)-quadric section of W by a_{i}, and let a $b_{j i}$ meet the ($n-2$)-space $a_{i j}\left(=a_{j i}\right)$ of S opposite $A_{i} A_{j}$ in the ($n-3$)space $y_{j i}\left(\neq y_{i f}\right)$. Then, in the notations of Coxeter (1955), we have

$$
\begin{equation*}
y_{j i}=a_{j i} \cdot b_{j_{i}}=\left(a_{i} \cdot a_{j}\right) \cdot\left(a_{i} \cdot b_{j}\right)=a_{i} \cdot\left(a_{j} \cdot b_{j}\right)=a_{i} \cdot y_{j} \cdots \tag{i}
\end{equation*}
$$

If we assume the theorem to be true in S_{n-1}, say for W_{i} and the ($n-1$)dimensional simplex of S in a_{i}, the $n(n-3)$-spaces $y_{j i}$ therein are associated
such that they and therefore, by virtue of the relation (i), the $n(n-2)$ spaces y_{j} are met by ∞^{n-3} lines, in $a_{i}(\S 1)$, which obviously meet y_{i} too. For y_{i} lies in a_{i}. Hence, by the lemma 2, the theorem follows, if our assumption be true. But it is true for $n=3$ (Baker, [2], pp. 53-54, Ex. 15) and so for all $n \geqq 3$.

Again for the determination of the $n+1$ hyperplanes b_{i}, either point on every edge of S has two choices independent of one another and hence there are $2^{n(n+1) / 2}$ possible ways to determine them.

Thus for $n=3$, there are 64 ways as stated by Court [8], and not 32 as stated by Baker ([2], p. 53), to choose the 4 planes b_{i}.
6. Conversely we have the following

Theorem 2. Any $n+1$ hyperplanes b_{i} through $n+1$ associated ($n-2$)spaces y_{i} in the $n+1$ primes a_{i} of a simplex S in S_{n} meet its edges in $n(n+1)$ points, each b_{i} containing n points on its n edges through its vertex A_{i} opposite its corresponding prime a_{i}, which lie on a quadric W.

Proof. Let a b_{i} meet the n edges $A_{i} A_{j}$ of S through A_{i} in the n points $B_{i j},\left(a_{i}\right)$ be the $(n-1)$-dimensional simplex of S in an a_{i}, and $b_{i j}, b_{j i}$, $y_{i j}, y_{j i}$ as in §5. The $n(n-3)$-spaces $y_{j i}$ in an a_{i} then form an associated set by lemma 3 and lie in the $n(n-2)$-spaces $b_{j i}$ in a_{i}.

If we assume the theorem to be true in an S_{n-1}, say in an a_{i}, the $\binom{n}{2}$ pairs of the points $B_{j k}, B_{k j}(i, j, k=0, \cdots, n ; i \neq j \neq k)$ on the ($\binom{n}{2}$ edges $A_{j} A_{k}$ of (a_{i}) lie on a quadric W_{i} therein. Every two such ($n-2$)quadrics W_{i}, W_{j} obviously have a common ($n-3$)-quadric section $W_{i j}$ by the ($n-2$)-space $a_{i j}$ (§5) of S. The $n+1$ such ($n-2$)-quadrics W_{i} are then easily seen to lie on a quadric W in S_{n} as required, if our assumption be true. But it is true for $n=3$ (Court, [8]) and so holds for all $n \geqq 3$.
7. The preceding two theorems can now be summed up as the following

Theorem 3. The $n(n+1)$ points, two on each edge of a simplex S in S_{n}, lie on a quadric, if and only it they lie, in $2^{n(n+1) / 2}$ ways, in $n+1$ hyperplanes, each hyperplane containing n points on the n edges through a vertex of S, which meet the $n+1$ primes of S opposite its corresponding vertices, in general, in $n+1$ associated ($n-2$)-spaces (cf. Mandan, [12]).
8. The $n+1$ hyperplanes b_{i} of theorem 2 may form a simplex, concur or have a line common (cf. Court, [8]). Thus the theorem 2 leads to

Theorem 4. If the primes of a simplex in S_{n} meet those of another in $n+1$ asscoiated ($n-2$)-spaces in a certain one-to-one correspondence, the primes of either simplex cut the non-corresponding primes of the other along $n+1$ ($n-1$)-dimensional simplexes inscribed in the same quadric W. The two such
simplexes are polar reciprocals of each other with respect to a quadric Q (Mandan, [12]) in $2^{n(n+1) / 2}$ ways.

Theorem 5. The $n+1$ hyperplanes determined by $n+1$ associated ($n-2$)-spaces located in the $n+1$ primes of a simplex S in S_{n} and any arbitrary point or any line meeting them cut the non-corresponding primes of S along $n+1(n-1)$-dimensional simplexes inscribed in the same quadric.

Brianchon's theorem

9. Now we are in a position to state the dual of the Pascal's theorems $3-5$ as the following

Theorem 6. The $n(n+1)$ hyperplanes, two through each ($n-2$)-space of a simplex S in S_{n}, envelope a quadric, if and only if they pass through, in $2^{n(n+1) / 2}$ ways, $n+1$ points, each point determined by the n hyperplanes through the $n(n-2)$-spaces in a prime of S, which join the $n+1$ vertices of S opposite its corresponding primes, in general, into $n+1$ associated lines (cf. Mandan, [12]).

Theorem 7. If the joins of the vertices of a simplex in S_{n} to those of another in a certain one-to-one correspondence form a set of $n+1$ associated lines, the vertices of either simplex join the ($n-2$)-spaces in the primes of the other opposite its corresponding vertices into $n(n+1)$ hyperplanes tangent to the same quadric W^{\prime}. The two such simplexes are polar reciprocals of each other with regard to a quadric Q (Mandan, [12]) in $2^{n(n+1) / 2}$ ways.

Theorem 8. The $n+1$ points common to $n+1$ associated lines through the vertices of a simplex S in S_{n} and any arbitrary hyperplane or any ($n-2$)space meeting them join the ($n-2$)-spaces in the primes of S opposite its corresponding vertices into $n(n+1)$ hyperplanes tangent to the same quadric.

Special cases

10. Court [8] proves that the four lines y_{i} of theorem 1 in a solid (when $n=3$) are hyperbolic (forming four generators of one system of a quadric) or coplanar. But following his arguments, we can also establish that they may lie two by two in two planes whose common line contains the two points of their intersection which obviously lie on two opposite edges of the tetrahedron S. The four planes b_{i} in such a case may form a tetrahedron or concur but are never coaxal. Hence corresponding to the theorems 4, 5 and their dual theorems 7, 8, we have

Theorem 9. If four lines lying two by two in two planes whose common line contains the two points of their intersection are defined to form a 'semi-
associated' set, and the four faces of a tetrahedron meet those of another, lying in the same solid, in four semi-associated lines in a certain one-to-one correspondence, the four faces of either tetrahedron cut the non-corresponding faces of the other along four triangles inscribed in the same quadric W. The two such tetrahedra are polar reciprocals of each other in regard to a quadric Q, in 64 ways (cf. Mandan, [12], S-theorem), for which a pair of opposite edges of either tetrahedron are 'conjugate' (Baker, [2], p. 34; Mandan, [13], [14]). Hence the four joins of their corresponding vertices also form a set of semi-associated lines such that the vertices of either tetrahedron join the sides in the faces of the other opposite its corresponding vertices into twelve planes tangent to the same quadric W^{\prime} (Mandan, [12], s-theorem).

Theorem 10. The four planes determined by four semi-associated lines located in the four faces of a tetrahedron T and any arbitrary point in its solid cut the non-corresponding faces of T along four triangles inscribed in the same quadric W. Dually the four points common to four semi-associated lines through the vertices of T and any arbitrary plane in its solid join the sides in the faces of T opposite its corresponding vertices into twelve planes tangent to the same quadric W^{\prime} (cf. Theorems 5, 8).
11. The truth of lemma 1 is based on the assumption that it is true for $n=3$. We may observe here that it holds for $n=4$ even if the four lines $x_{r}^{\prime}(\S 2)$ in the S_{3} form a semi-associated set. The vertex of projection P then happens to become a Cremona point of the self-dual Segre's figure 153_{3} of 15 lines and 15 points (Baker, [1], p. 226; [3], pp. 113-14; Mandan, [12]) generated by the five associated lines x_{i} in the S_{4}. Thus it holds for higher values of n too.
12. Again when $n=4$, it may happen that the four lines $x_{r}^{\prime}(\S 2)$ in S_{3} are neither associated nor semi-associated as considered in the preceding section, but are concurrent (Court, [8]). The five lines x_{i} in the S_{4} then have a common transversal t through the vertex of projection P and are no longer associated (Mandan, [12]) as defined by Baker ([3], pp. 113-14). In S_{4}, ∞^{2} planes pass through every line therein and therefore through t too. Thus there pass through every one of the five points P_{i} of x_{i} on t, ∞^{2} (not ∞^{1} as required) planes meeting x_{i}. If this situation does not arise for any other point on any x_{i}, the lines x_{i} satisfy our definition (§1) for five associated lines in S_{4} except for P_{i} and therefore may be said to form a semi-associated set.

Similarly we may define dually in S_{4} a set offive semi-associated planes y_{i} which meet a common plane p in five lines and satisfy our definition for five associated planes therein except for the five solids $p y_{i}$. Thus: The theorems 2, 4, 5, 7, 8 hold good in S_{4} even if the associated lines and planes therein are replaced by semi-associated ones.

Again the lemma 1 and its dial lemma 2 too then hold good in S_{5} even if the five lines $x_{r}^{\prime}(\S 2)$ in S_{4} are semi-associated but for one and only one point P on x_{0}, and therefore the theorems $1-5$ also hold in S_{5} even if they are true in S_{4} with five semi-associated planes $y_{j i}$ (§ 5) but in one and only one of the five primes a_{i} of the simplex S. Hence they and their duals (Theorems 6-8) are true in S_{n} for all values of n greater than five.

Remark. This shows the possibility of plane transversals of six associated lines in S_{5}. Thus it may form a basis for more thorough investigation of the theory of such associated lines in spaces of dimensions higher than four; these have not been much studied before except as an introduction of them by Baker [4], followed by S. Beatty [5], Coxeter and Todd [10] and lastly by Mandan [12], but then only as the joins of the corresponding vertices of a pair of simplexes polar reciprocal of each other in regard to a quadric.
13. It may happen that the situation of the preceding section repeats for a second point P_{i}^{\prime} on x_{i}. The five lines x_{i} then lie in the solid determined by $t(\S 12)$ and their second transversal t^{\prime} through P_{i}^{\prime}. But then the lines lie in an $S_{\mathbf{3}}$. Therefore they must concur. Thus five associated lines in S_{4} may degenerate into concurrent ones.

Now repeating the argument of the preceding section for $n=5,6, \cdots$ successively, we may arrive in S_{n} at $n+1$ lines x_{i} which have a common transversal t satisfying our definition (§l) for an associated set except for their $n+1$ points on t and therefore may be said to form a semi-associated set.

Dually, we may then define in $S_{n}(3<n)$ a set of $n+1$ semi-associated $(n-2)$-spaces y_{i} which meet a common $(n-2)$-space p in $n+1(n-3)$ spaces and satisfy our definition for $n+1$ associated ($n-2$)-spaces except for the $n+1$ primes $p y_{i}$. Thus: The theorems 2, 4, 5, 7, 8 hold good in S_{n} $(2<n)$ even if the associated lines and $(n-2)$-spaces there are replaced by semi-associated ones (\$§ 10, 12).
14. We have remarked above (§5) that the Pascal's theorem 1 is true in S_{n} when the $n+1(n-2)$-spaces y_{i} are in general associated. We then observe ($\S \S 10-13$) that y_{i} may degenarate into a semi-associated set or be coprimal according as the $n(n-3)$-spaces $y_{s i}(\S 5)$ lie in an ($n-2$)-space in one prime a_{i} of the simplex S or in two such primes and therefore in all its primes.

In fact, we have already deduced the Pascal's theorem 4 independently from the Dandelin's figure in n-space (Mandan, [18]) when y_{i} are coprimal in which case the $n+1$ primes $b_{i}(\S 5)$ form a simplex perspective to S.

A special case arises when the pair of points $B_{i j}, B_{j i}$ (§ 5) on each edge of S in theorem 1 coincide. It has been established in an earlier work
(Mandan, [11]) that W becomes the cevian quadric of S for a point M through which its $\binom{n+1}{2}$ bicevians meet its edges in the $\binom{n+1}{2}$ points $B_{i j}=B_{i i}$ where therefore W touches them such that b_{i} form a simplex S^{\prime} polar reciprocal of S for W as its transform in the homology $(M, m,(1-n) / 2)$, m being the polar hyperplane of both S and W. Thus S, S^{\prime} are in perspective from M such that y_{i} lie in their prime of perspectivity m.
15. As a limiting case of theorem 1 , we have the following

Theorem 11. The joins of the vertices V_{i} of a simplex S in S_{n} to the corresponding ones of the simplex S^{\prime} formed by the $n+1$ tangent primes at the V_{i} to a quadric W circumscribed to S form a set of $n+1$ associated lines x_{i}. Thus S and S^{\prime} are polar reciprocals of each other for W, and consequently the $n+1$ ($n-2$)-spaces y_{i} common to their corresponding primes form an associated set (cf. Baker, [2], p. 53, Ex. 14 for $n=3$).
16. The lines x_{i} of the preceding theorem may concur (§14) at a point M say. The simplex S^{\prime} is then perspective to S from M and therefore anticevian (Mandan, [11]) of S for M. Consequently the ($n-2$)-spaces y_{i} lie in the polar prime m of M for the simplex S or the quadric $W . W$ is then seen to be the polar quadric (Mandan, [11]) of M for $S . S$ becomes isodynamic with M, m as its Lemoine point and Lemoine hyperplane, and S^{\prime} isogonic with M as its Fermat point when W is taken to be the circumhypersphere of S or the inhypersphere of S^{\prime} (Court, [8]; Mandan, [19]) as established in the author's two papers [21] and 'Polarity for a simplex' (see Abstract in the Proceedings of the 48th Session of the Indian Science Congress Association held at Roorkee in January 1961).

Degenerate cases

17. The cases of degeneration multiply in S_{n} as n increases. For example, in S_{4} the five lines $x_{i}(\S 2)$, besides degenerating into a semi-associated or a corpimal set ($\$ \S 12,13$), may lie two in a plane and three in a solid such that the three are general or concurrent, or only two of them meet (Mandan, [13], [15], [16]). Similarly we may enumerate several such cases in higher spaces too (Mandan, [17], [20]). The significant degeneration of such associated lines occurs when they have in S_{8} and S_{7} a plane transversal, in S_{8} and S_{9} a plane or a solid transversal, in S_{10} and S_{11} a plane, a solid or an S_{4} transversal, and in $S_{n}(11<n)$ a plane, a solid, \cdots or an S_{m-1} transversal for $n=2 m$ and $2 m+1$ (Mandan, [12]).

The discussion of the various cases like these forms the subject matter for another paper on 'Associated spaces' (in progress) as remarked already (§ 12).

Thanks are due to Professor B. R. Seth for his generous, kind and constant encouragement in my pure mathematical pursuits.

References

[1], [2], [3]. Baker, H. F., Principles of geometry, Vols. 2, 3, 4, (Cambridge 1922, 1923, 1925).
[4] Baker, H. F., Polarities for the nodes of a Segre's cubic primal in space of four dimensions, Proc. Camb. Phil. Soc. 32 (1936), 507-520.
[5] Beatty, S., Advanced problem 4079, Amer. Math. Monthly 50 (1943), 264.
[6] Chasles, M., Aperçu historique 32 (1837), 400.
[7] Court, N. A., Modern pure solid geometry (New York, 1935).
[8] Court, N. A., Pascal's theorem in space, Duke Math. J. 20 (1953), 417-420.
[9] Coxeter, H. S. M., The real projective plane (Cambridge, 1955).
[10] Coxeter, H. S. M., and Todd, J. A., Solution of advanced problem 4079, Amer. Math. Monthly 51 (1944), 599-600.
[11] Mandan, S. R., Cevian simplexes, Proc. Amer. Math. Soc. 11 (1960), 837-845.
[12] Mandan, S. R., Polarity for a quadric in n-space, Istanbul Univ. Fen Fak. Mec. Ser. A 24 (1959), 21-40.
[13] Mandan, S. R., Altitudes of a general simplex in 4-space, Bull. Calcutta Math. Soc., 1958, Supplement, 34-41.
[14] Mandan, S. R., Semi-isodynamic and -isogonic tetrahedra, Rend. Mat. e Appl. (5) 10 (1960), 401-415.
[15] Mandan, S. R., Altitudes of a simplex in four dimensional space, Bull. Calcutta Math. Soc., 1958, Supplement, 8-20.
[16] Mandan, S. R., Semi-orthocentric and orthogonal simplexes in 4-space, Bull. Calcutta Math. Soc., 1958, Supplement, $21-29$.
[17] Mandan, S. R., Uni- and demi-orthocentric simplexes, J. Indian Math. Soc. (N.S.) 23 (1961), 169-184.
[18] Mandan, S. R., Dandelin's figure in n-space, Casopic Propestovani Mathematiky 90 (1965), 58-64.
[19] Mandan, S. R., Orthogonal hyperspheres, Acta Math. Acad. Sci. Hungar. 13 (1962), 25-34.
[20] Mandan, S. R., Altitudes of a simplex in n-space, J. Australian Math. Soc. 2 (1961/1962), 403-424.
[21] Mandan, S. R., Isodynamic and isogonic simplexes, Ann. Mat. pura e appl. (4) 53 (1961) 45-65.
[22] Salmon, G., Analytical geometry of three dimensions, Vol. 1 (New York, 1927).
Indian Institute of Technology, Kharagpur.

[^0]: * The Editor expresses his regret for the long delay in publication of this paper.

