ACCUMULATION POINTS OF CONTINUOUS REALVALUED FUNCTIONS AND COMPACTIFICATIONS

BY
ENG UNG CHOO

All topological spaces are assumed to be completely regular. $C(X)$ (resp. $C^{*}(X)$) will denote the ring of all (resp. all bounded) continuous real-valued functions on $X . \beta X$ is the Stone-Cech compactification of X. A real number t is said to be an accumulation point of a function $f \in C(X)$ if and only if $f^{-1}[[t-\varepsilon, t+\varepsilon]]$ is not compact for every $\varepsilon>0$. The set of all accumulation points of f will be denoted by $\Delta(f)$. For any positive integer n, a topological criterion for the existence of a function $f \in C(X)$ such that $|\Delta(f)|=n$ is given. It is proved that for every function $g \in C(X)$ with finite $\Delta(g)$, there exists a function $f \in C^{*}(X)$ which has finite range on every discrete closed subset of X such that $|\Delta(f)|=|\Delta(g)|$. Peter A. Loeb [5] has constructed the minimal compactification X^{f} of X in which f has a continuous extension which is one-one on $X^{f}-X$. It is shown that every n-point compactification [6] of X (if it exists) is of this type. Finally, an equivalent condition for the existence of a homeomorphism h from X^{f} onto X^{g} such that $h(x)=x$ for each $x \in X$ is given for any any two functions $f, g \in C^{*}(X)$. All notations are referred to [3].

Definition 1. Let $f \in C(X)$. A real number t is said to be an accumulation point of f if and only if $f^{-1}[[t-\varepsilon, t+\varepsilon]]$ is not compact for every $\varepsilon>0$. The set of all accumulation points of f is denoted by $\Delta(f)$.

Intuitively, $\Delta(f)$ gives the 'dense' portion of $f[X]$. If $f^{-1}(t)$ is not compact, then $t \in \Delta(f)$. The converse may not be true.

Example 1. Let $X=\{(a, \sin (1 / a): a>0\} \cup\{(0,0)\}$ and f be the function defined by $f((a, \sin (1 / a))=a$ for each $a>0$ and $f((0,0))=0$. Then $f \in C(X)$. It is easily seen that $0 \in \Delta(f)$ even though $f^{-1}(0)$ is compact.

We can always restrict ourselves to $C^{*}(X)$ in the study of $|\Delta(f)|$ since for every $f \in C(x)$, there exists $g \in C^{*}(X)$ such that $|\Delta(g)|=|\Delta(f)|$.

Lemma 1. Let $f \in C^{*}(R)$ and $t \in R$. Then

$$
\Delta(f)=\bigcap\left\{C_{R} f[X-K]: K \quad \text { is a compact subset of } X\right\} .
$$

Thus $\Delta(f)$ is closed in R.

Received by the editor Sept 25, 1975.

Proof. Suppose $t \in \Delta(f)$. Let K be any compact subset of X. Then $f^{-1}[[t-$ $\varepsilon, t+\varepsilon]]-K \neq \phi$ for every $\varepsilon>0$.
Thus $[t-\varepsilon, t+\varepsilon] \cap f[X-K] \neq \phi$ for every $\varepsilon>0$. Hence $t \in C l_{R} f[X-K]$. Since K is any arbitrary compact subset of X, we have

$$
t \in \bigcap\left\{C l_{R} f[X-K[: K \quad \text { is a compact subset of } X\}\right.
$$

Conversely, if $t \notin \Delta(f)$, then $K=f^{-1}[[t-\delta, t+\delta]]$ is compact for some $\delta>0$. Thus $(t-\delta, t+\delta) \cap f[X-K]=\phi$ and $t \notin C l_{R} f[X-K]$.

Lemma 2. Let $f \in C^{*}(X)$ and $t \in R$. Then $t \in \Delta(f)$ if and only if $\left(f^{\beta}\right)^{-1}[[t-\varepsilon, t+\varepsilon]]-X \neq \phi$ for every $\varepsilon>0$, where f^{β} is the continuous extension of f over βX.

Proof. If $t \in \Delta(f)$, then $f^{-1}[[t-\varepsilon, t+\varepsilon]]$ is not compact for every $\varepsilon>0$. Hence $\left(f^{\beta}\right)^{-1}[[t-\varepsilon, t+\varepsilon]] \neq f^{-1}[[t-\varepsilon, t+\varepsilon]]$ for every $\varepsilon>0$. It follows that $\left(f^{\beta}\right)^{-1}[[t-\varepsilon, t+\varepsilon]]-x \neq \phi$ for every $\varepsilon>0$.

Suppose $t \notin \Delta(f)$. Then $f^{-1}[[t-\delta, t+\delta]]$ is compact for some $\delta>0$. If there exists $z \in\left(f^{\beta}\right)^{-1}[[t-\delta / 3, t+\delta / 3]]-X$, then there exists a neighbourhood O_{1} of z in βX such that $f^{\beta}\left[O_{1}\right] \subset(t-\delta / 2, t+\delta / 2)$. Since $f^{-1}[[t-\delta, t+\delta]]$ is compact, $O_{2}=\beta X-f^{-1}[[t-\delta, t+\delta]]$ is also a neighborhood of z. Thus $O_{1} \cap O_{2}$ is a neighborhood of z. But $\left(O_{1} \cap O_{2}\right) \cap X=\phi$. This is impossible since X is dense in βX. Hence $\left(f^{\beta}\right)^{-1}[[t-\delta / 3, t+\delta / 3]]-X=\phi$. Consequently, if $\left(f^{\beta}\right)^{-1}[[t-\varepsilon$, $t+\varepsilon]]-X \neq \phi$ for every $\varepsilon>0$, then $t \in \Delta(f)$.

Corollary 1. Let $f \in C^{*}(X)$. If X is locally compact, then $\Delta(f)=f^{\beta}[\beta X-X]$.
Proof. If $t \in f^{\beta}[\beta X-X]$, then $\left(f^{\beta}\right)^{-1}[[t-\varepsilon, t+\varepsilon]]-X \neq \phi$ for every $\varepsilon>0$. By Lemma 2, $t \in \Delta(t)$.

Conversely, suppose $t \in \Delta(t)$. Then $\left(f^{\beta}\right)^{-1}[[t-\varepsilon, t+\varepsilon]]-X \neq \phi$ for every $\varepsilon>$ 0 . Since X is locally compact, $\beta X-X$ is compact and $f^{\beta}[\beta X-X]$ is closed. If $t \notin f^{\beta}[\beta X-X]$, then there exists $\delta>0$ such that $[t-\delta, t+\delta] \cap f^{\beta}[\beta X-X]=\phi$. Thus $\left(f^{\beta}\right)^{-1}[[t-\delta, t+\delta]]-X=\phi$, which is a contradiction. Hence $t \in$ $f^{\beta}[\beta X-X]$.

Lemma 3. Let $f \in C(X)$ such that $|\Delta(f)|=n$ where n is a positive integer. Then there exists $g \in C^{*}(X)$ such that $\Delta(g)=\{1,2, \ldots, n\}$.

Proof. Let $\Delta(f)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ where $a_{1}<a_{2}<\cdots<a_{n}$. Let h be a function in $C^{*}(R)$ defined by

$$
h(x)=\left\{\begin{array}{lll}
\exp \left(x-a_{1}\right) & \text { if } x \leq a_{1} \\
\left(\frac{x-a_{i}}{a_{i+1}-a_{i}}\right)(i+1)+\left(\frac{a_{i+1}-x}{a_{i+1}-a_{i}}\right) i, & \text { if } & a_{i}<x \leq a_{i+1}, \quad i=1,2, \ldots, n-1, \\
n+2-\exp \left(a_{n}-x\right) & \text { if } x>a_{n} .
\end{array}\right.
$$

Then h is a homeomorphism from R onto the open interval ($0, n+2$). Let $\boldsymbol{g}=\boldsymbol{h} \cdot f$. Then $g \in C^{*}(X)$ and $\Delta(g)=\{1,2, \ldots, n\}$.

There may not exist any function $f \in C^{*}(X)$ such that $\Delta(f)$ is finite. The following theorem gives a topological criterion for the existence of $f \in C^{*}(X)$ satisfying $|\Delta(f)|=n$.

Theorem 1. Let n be a positive integer. There exists $f \in C^{*}(X)$ such that $|\Delta(f)|=n$ if and only if there exist n mutually disjoint closed non-compact subsets $A_{1}, A_{2}, \ldots, A_{n}$ of X such that $X-\bigcup_{i=1}^{n} A_{i}$ has compact closure.

Proof. (\Rightarrow) Let $f \in C^{*}(X)$ and $|\Delta(f)|=n$. By Lemma 3, we may assume that $\Delta(f)=\{1,2, \ldots, n\}$. The sets $A_{i}=f^{-1}\left[\left[i-\frac{1}{3}, i+\frac{1}{3}\right]\right], \quad i=1,2, \ldots, n$ are mutually disjoint closed non-compact subsets of X. For each $\gamma \in$ $C l_{R} f[X]-\bigcup_{i=1}^{n}\left(i-\frac{1}{3}, i+\frac{1}{3}\right)$, there exists a real number $\varepsilon(\gamma)>0$ such that $f^{-1}[[\gamma-\varepsilon(\gamma), \gamma+\varepsilon(\gamma)]]$ is compact. By the compactness of the set $C l_{R} f[X]-\bigcup_{i=1}^{n}$ $\left(i-\frac{1}{3}, i+\frac{1}{3}\right)$, there exist $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$ such that $C l_{R} f[x]-\bigcup_{i=1}^{n}\left(i-\frac{1}{3}\right.$, $\left.i+\frac{1}{3}\right)$ is contained in $\bigcup_{i=1}^{k}\left(\gamma_{i}-\varepsilon\left(\gamma_{i}\right), \gamma_{i}+\varepsilon\left(\gamma_{i}\right)\right)$. Thus $X-\bigcup_{i=1}^{n} f^{-1}\left[\left(i-\frac{1}{3}, i+\frac{1}{3}\right)\right]$ is contained in $\bigcup_{i=1}^{k} f^{-1}\left[\left[\gamma_{i}-\varepsilon\left(\gamma_{i}\right), \gamma_{i}+\varepsilon\left(\gamma_{i}\right)\right]\right]$ which is a compact set, being a finite union of compact sets. Hence $X-\bigcup_{i=1}^{n} A_{i}$ has compact closure.
(\Leftrightarrow) Let $A_{1}, A_{2}, \ldots, A_{n}$ be n mutually disjoint closed non-compact subsets of X and $X-\bigcup_{i=1}^{n} A_{i} \subset K$ where K is a compact subset of X. For each $i=1,2, \ldots, n$, let $g(x)=i$ for each $x \in A_{i} \cap K$. Then g is a continuous function on $\left(\bigcup_{i=1}^{n} A_{i}\right) \cap K$. K is compact and thus is a normal space. Since $\left(\bigcup_{i=1}^{n} A_{i}\right) \cap$ K is a closed subset of K, hence g has a continuous extension $h \in C^{*}(K)$. Let $f(x)=h(x)$ for each $x \in K$ and $f(x)=i$ for each $x \in A_{i}, i=1,2, \ldots, n$. Then $f \in C^{*}(X)$ and $|\Delta(f)|=n$.

Theorem 2. Suppose $g \in C^{*}(X)$ and $\Delta(g)$ is finite. Then there exists $h \in C^{*}(X)$ such that $\Delta(g)=\Delta(h)=\left\{\gamma \in R: h^{-1}(\gamma)\right.$ is not compact $\}$

Proof. By Lemma 3, we may assume that $\Delta(g)=\{1,2, \ldots, m\}$. Let f be a function in $C(R)$ defined by

$$
f(x)=\left\{\begin{array}{lll}
x+\frac{1}{3} & \text { if } & x<\frac{2}{3} \\
i & \text { if } & i-\frac{1}{3} \leq x \leq i+\frac{1}{3},
\end{array} \quad i=1,2, \ldots, m\right.
$$

It is easily seen that f is a homeomorphism from $\left(\bigcup_{i=1}^{m-1}\left(i+\frac{1}{3}, i+\frac{2}{3}\right)\right) \cup\left(-\infty, \frac{2}{3}\right) \cup$ $\left(m+\frac{1}{3}, \infty\right)$ onto $R-\{1,2, \ldots, m\}$. Then $h=f \cdot g \in C^{*}(X)$. For each $i=$ $1,2, \ldots, m, h^{-1}(i)=g^{-1}\left[f^{-1}(i)\right]=g^{-1}\left[\left[i-\frac{1}{3}, i+\frac{1}{3}\right]\right]$ is not compact since $i \in \Delta(g)$. Then $\Delta(g)=\{1,2, \ldots, m\} \subset \Delta(h)$. Let $\gamma \in R-\Delta(g)$. Then there exists a real number $\varepsilon>0$ such that $[\gamma-\varepsilon, \gamma+\varepsilon] \cap \Delta(g)=\phi$. Thus
$f^{-1}[[\gamma-\varepsilon, \gamma+\varepsilon]] \cap\left[i-\frac{1}{3}, i+\frac{1}{3}\right]=\phi \quad$ for \quad each $\quad i=1,2, \ldots, m$. Hence $h^{-1}[[\gamma-\varepsilon, \gamma+\varepsilon]] \subset X-\bigcup_{i=1}^{m} g^{-1}\left[\left[i-\frac{1}{3}, i+\frac{1}{3}\right]\right]$. From the proof of Theorem 1, we know that $X-\bigcup_{i=1}^{m} g^{-1}\left[\left(i-\frac{1}{3}, i+\frac{1}{3}\right)\right]$ is compact. Therefore, $h^{-1}[[\gamma-\varepsilon, \gamma+$ ε]] being a closed subset of a compact set is itself compact. Hence $\gamma \notin \Delta(h)$. Consequently, $\Delta(h)=\Delta(g)=\left\{\gamma \in R: h^{-1}(\gamma)\right.$ is not compact $\}$.

Corollary 2. If $f \in C^{*}(X)$ and $\Delta(f)$ is finite, then there exists an opening covering $\left\{O_{i}: i \in I\right\}$ of X such that

$$
\Delta(f)=\bigcap\left\{f\left[X-\bigcup_{i \in F} O_{i}\right]: F \text { is a finite non-empty subset of } I\right\}
$$

Proof. By previous theorem, there exists $g \in C^{*}(X)$ such that $\Delta(f)=$ $\left\{\gamma \in R: \mathrm{g}^{-1}[\gamma]\right.$ is not compact $\}$. For each $\gamma \in \Delta(f)$, by the non-compactness of $g^{-1}[\gamma]$, there exists an open covering $\left\{O_{i}: i \in I_{\gamma}\right\}$ such that $g^{-1}[\gamma]$ has no finite subcover. Let $O_{\tau}=X-\bigcup_{\gamma \in \Delta(f)} g^{-1}[\gamma]$ and $I=\{\tau\}\left[\bigcup_{\gamma \in \Delta(f)} I_{\gamma}\right]$. Then $\left\{O_{i}: i \in I\right\}$ is an open covering of X and

$$
\Delta(f)=\bigcap\left\{f\left[X-\bigcup_{i \in F} O_{i}\right]: F \text { is a finite non-empty subset of } I\right\}
$$

In [1], it is proved that the set $D(X)$ of all functions $f \in C(X)$, where $f[A]$ is finite for every closed discrete subset of A of X, is a subring of $C^{*}(X)$. The next theorem shows that we can restrict ourselves to $D(X)$ in searching for functions with a finite set of accumulation points.
Theorem 3. Let $g \in C^{*}(X)$ where $\Delta(g)$ is finite. There exists $h \in D(X)$ such that $|\Delta(h)|=|\Delta(g)|$.
Proof. By Lemma 3, we may assume that $\Delta(g)=\{1,2, \ldots, m\}$. Let f be the function defined in the proof of Theorem 2 and let $h=f \cdot g$. Then $h \in C^{*}(X)$ and $|\Delta(h)|=|\Delta(g)|$. It follows from the proof of Theorem 1 that $X-\bigcup_{i=1}^{m}$ $\mathrm{g}^{-1}\left[\left(i-\frac{1}{3}, i+\frac{1}{3}\right)\right]$ is compact. For every closed discrete subset A of X, since $X-\bigcup_{i=1}^{m} g^{-1}\left[\left(i-\frac{1}{3}, i+\frac{1}{3}\right)\right]$ is compact, $A-\bigcup_{i=1}^{m} g^{-1}\left[\left(i-\frac{1}{3}, i+\frac{1}{3}\right)\right]$ is a finite set. Thus $h[A]$ is finite. Hence $h \in D(X)$.

From here onwards, X is assumed to be a locally compact space. The proofs of the following two theorems can be found in [5]. For any two compactifications X_{1}, X_{2}, of X, we write $X_{1} \cong X_{2}$ if there exists a homeomorphism h from X_{1} onto X_{2} such that $h(x)=x$ for every $x \in X$.

Theorem 4. Let $f \in C^{*}(X)$. For every open set Q in R and compact subset K of X, let $Q_{k}=[Q \cap \Delta(f)] \cup\left[f^{-1}[Q]-K\right]$. If the disjoint union $X^{f}=X \cup \Delta(f)$ has the topology generated by the base consisting of all open sets of X and all sets Q_{K}, then X^{f} is a Hausdorff compactification of X in which f has a continuous extension which is one-one on $\Delta(f)$.

Theorem 5. Let $f \in C^{*}(X)$. If \bar{X} is a Hausdorff compactification of X such that f has a continuous extension which is one-one on $\bar{X}-X$, then $\bar{X} \cong X^{f}$.

Magill [6] has proved some necessary and sufficient conditions for a space X to have an n-point compactification. We will show that such compactifications are of type X^{f}.

Theorem 6. If \bar{X} is an n-point compactification of X, then $\bar{X} \cong X^{f}$ for some $f \in C^{*}(X)$.

Proof. Let $\bar{f} \in C(\bar{X})$ such that \bar{f} is one-one on $\bar{X}-X$. If f is the restriction of \bar{f} on X, then $f \in C^{*}(X)$. By Theorem 4 and Theorem 5, we conclude that $X^{f} \cong \bar{X}$.

The following corollary follows immediately from Theorem 1 and Theorem 6.

Corollary 3. A space X has an n-point compactification if and only if there exist n mutually disjoint closed non-compact subsets $A_{1}, A_{2}, \ldots, A_{n}$ of X such that $X-\bigcup_{i=1}^{n} A_{i}$ has compact closure.

Theorem 7. Let $f \in C^{*}(X)$ and $|\Delta(f)| \leq \aleph_{0}$. For every positive $n \leq|\Delta(f)|$, there exists $g \in C^{*}(X)$ such that $|\Delta(g)|=n$.

Proof. Suppose $\Delta(f)$ is finite. By Lemma 3, we may assume that $\Delta(f)=$ $\{1,2, \ldots, m\}$. Given any positive integer $n \leq m$, let $\phi(\gamma)=\gamma$ for each $\gamma \leq n$ and $\phi(\gamma)$ for $\gamma>n$. Then $\phi \in C(R)$. Let $g=\phi \cdot f$. Then $g \in C^{*}(X)$ and $|\Delta(g)|=n$.

Suppose now that $\Delta(f)$ is countably infinite. Then X has a countably infinite compactification. It follows from Theorem 2.1 in [9] that X has an n-point compactification, for each positive integer n. Thus by Theorem 6, there exists $g \in C^{*}(X)$ such that $|\Delta(g)|=n$, for each positive integer n.

It follows from Theorem 4.3.2 in [2] that there is no n-point compactification of R for $n \geq 3$. Thus there is no function $f \in C^{*}(R)$ such that $\Delta(f)$ is finite and $|\Delta(f)| \geq 3$. In [1], it is shown that for $n \geq 2, D\left(R^{n}\right)=\left\{f \in C\left(R^{n}\right)\right.$: there exists a positive integer k such that f is constant on $\left.\left\{x \in R^{n}:\|x\| \geq k\right\}\right\}$. Therefore there is no function $f \in C^{*}\left(R^{n}\right)$, such that $\Delta(f)$ is finite and $|\Delta(f)| \geq 2$. We note that the continuous function $g(x)=\sin x$ for each $x \in R$ satisfies $\Delta(g)=[-1,1]$. Thus $|\Delta(g)|=c$. This shows that the condition $|\Delta(f)| \leq \kappa_{0}$ in Theorem 7 is essential.

Example 2. The space N of positive integers has the discrete topology. Let $f(4 n)=0$ for each $n \in N$ and $f(n)=1 / n$ for each n which is not a multiple of 4 . Let $g(n)=0$ for each even $n \in N$ and $g(n)=1 / n$ for each odd $n \in N$. Then $f, g \in C^{*}(N)$ and $\Delta(f)=\Delta(g)=\{0\}$. The open set $\Delta(f) \cup\{4 n: n \in N\}$ in X^{f} is not open in X^{g}. Therefore, $X^{f} \neq X^{g}$.

Finally, an equivalent condition for $X^{f} \cong X^{g}$ is given where we use only the function values of f and g.

Theorem 8. Let $f, g \in C^{*}(X) . X^{f}=X^{g}$ if and only if there is an one-one
correspondence Φ between $\Delta(f)$ and $\Delta(g)$ satisfying
(1) $\forall \in>0_{\exists} \quad \delta>0 \quad$ s.t. $\left.\quad g^{-1}[[\Phi(\gamma)-\delta, \quad \Phi(\gamma)+\delta]]-f^{-1}[\gamma-\varepsilon, \quad \gamma+\varepsilon)\right]$ is compact and

$$
\begin{equation*}
\forall \in>0_{\exists} \quad \delta>0 \quad \text { s.t. } \quad f^{-1}[[\gamma-\delta, \gamma+\delta]]-g^{-1}[(\phi(\gamma)-\varepsilon . \phi(\gamma)+\varepsilon)] \tag{2}
\end{equation*}
$$

is compact for every $r \in \Delta(f)$.
Proof. (\Rightarrow) Let h be a homeomorphism from X^{f} onto X^{g} such that $h(x)=x$ for each $x \in X$. Then the correspondence defined by h satifies (1) and (2) for every $\gamma \in \Delta(f)$.
(\Leftarrow) Suppose there is an one-one correspondence Φ which satisfies (1) and (2). Let $h(x)=x$ for each $x \in X$ and $h(\gamma)=\Phi(\gamma)$ for each $\gamma \in \Delta(f)$. Then h is an one-one function from X^{f} onto X^{g}. Obviously, h is continuous at each $x \in X$. Let $\gamma \in \Delta(f)$ and $t=h(\gamma) \in \Delta(g)$. Given $\varepsilon>0$ and a compact subset K of X, $[(t-\varepsilon, t+\varepsilon) \cap \Delta(g)] \cup\left(g^{-1}[(t-\varepsilon, t+\varepsilon)]-K\right)$ is a basic neighborhood of t in X^{g}. By (2), there exists $\delta>0$ such that $f^{-1}[[\gamma-\delta, \gamma+\delta]]-g^{-1}[(t-\varepsilon / 2, t+\varepsilon / 2)]$ is compact. Let $u \in(\gamma-\delta, \gamma+\delta) \cap \Delta(f)$. Suppose $h(u) \notin(t-\varepsilon, t+\varepsilon) \cap \Delta(g)$. There exists $\beta>0$ such that $[h(u)-\beta, h(u)+\beta] \cap[t-\varepsilon / 2, t+\varepsilon / 2]=\phi$. By (2) again, there exists $\eta>0$ such that $f^{-1}[[u-\eta, u+\eta]]-g^{-1}[(h(u)-\beta, h(u)+\beta)]$ is compact. Let $\alpha>0$ be sufficiently small so that $[u-\alpha, u+\alpha] \subset(\gamma-\delta$, $\gamma+\delta) \cap(u-n, u+\eta)$. Now, $f^{-1}[[u-\alpha, u+\alpha]]-g^{-1}[(t-\varepsilon / 2, t+\varepsilon / 2)]$ and $f^{-1}[[u-\alpha, u+\alpha]]-g^{-1}[(h(u)-\beta, h(u)+\beta)]$ are compact and $[h(u)-\beta, h(u)+$ $\beta] \cap[t-\varepsilon / 2, t+\varepsilon / 2]=\phi$. Hence $f^{-1}[[u-\alpha, u+\alpha]]$ is compact. But this contradicts the assumption that $u \in \Delta(f)$. Thus $h(u) \in(t-\varepsilon, t+\varepsilon) \cap \Delta(g)$ for each $u \in(\gamma-\delta, \gamma+\delta) \cap \Delta(f)$. This means that h maps the basic neighborhood $\left.[(\gamma-\delta, \gamma+\delta) \cap \Delta(f)] \cup\left(f^{-1}[\gamma-\delta, \gamma+\delta)\right]-K\right)$ of γ into $[(t-\varepsilon, t+\varepsilon) \cap \Delta(g)] \cup$ $\left(g^{-1}[(t-\varepsilon, t-\varepsilon)]-K\right)$. Therefore h is continuous. Since X^{f} is compact and h is one-one, onto and continuous, hence h is a homeomorphism and $X^{f} \cong X^{\mathrm{g}}$.

References

1. E. U. Choo, Admissible Subrings of Real-valued Functions, Doctoral Thesis, The University of British Columbia, Canada. 1971.
2. P. A. Firby, Lattice and Compactifications, III. London Mathematical Society Proceedings Ser. 3, Vol. 27 (1973), 61-68.
3. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrant, N.Y., 1960.
4. P. A. Loeb, Compactifications of Hausdorff Spaces, Proc. Amer. Math. Soc. 22 (1969), 627-634.
5. P. A. Loeb, A Minimal Compactification for Extending Functions, Proc. Amer. Math. Soc. 18 (1967), 282-283.
6. K. D. Magill, Jr., N-point Compactifications, Amer. Math. Monthly 72 (1965), 1075-1081.
7. K. D. Magill, Jr., Countable Compactifications, Canad. J. Math. 18 (1966), 616-620.

Department of Mathematics, University of British Columbia, Vancouver, B.C.

