Canad. Math. Bull. Vol. 20 (1), 1977

ACCUMULATION POINTS OF CONTINUOUS REAL-VALUED FUNCTIONS AND COMPACTIFICATIONS

BY

ENG UNG CHOO

All topological spaces are assumed to be completely regular. C(X) (resp. $C^*(X)$) will denote the ring of all (resp. all bounded) continuous real-valued functions on X. βX is the Stone-Cech compactification of X. A real number t is said to be an accumulation point of a function $f \in C(X)$ if and only if $f^{-1}[[t-\varepsilon, t+\varepsilon]]$ is not compact for every $\varepsilon > 0$. The set of all accumulation points of f will be denoted by $\Delta(f)$. For any positive integer n, a topological criterion for the existence of a function $f \in C(X)$ such that $|\Delta(f)| = n$ is given. It is proved that for every function $g \in C(X)$ with finite $\Delta(g)$, there exists a function $f \in C^*(X)$ which has finite range on every discrete closed subset of X such that $|\Delta(f)| = |\Delta(g)|$. Peter A. Loeb [5] has constructed the minimal compactification X^f of X in which f has a continuous extension which is one-one on $X^f - X$. It is shown that every n-point compactification [6] of X (if it exists) is of this type. Finally, an equivalent condition for the existence of a homeomorphism h from X^f onto X^g such that h(x) = x for each $x \in X$ is given for any any two functions $f, g \in C^*(X)$. All notations are referred to [3].

DEFINITION 1. Let $f \in C(X)$. A real number t is said to be an accumulation point of f if and only if $f^{-1}[[t-\varepsilon, t+\varepsilon]]$ is not compact for every $\varepsilon > 0$. The set of all accumulation points of f is denoted by $\Delta(f)$.

Intuitively, $\Delta(f)$ gives the 'dense' portion of f[X]. If $f^{-1}(t)$ is not compact, then $t \in \Delta(f)$. The converse may not be true.

EXAMPLE 1. Let $X = \{(a, \sin(1/a): a > 0\} \cup \{(0, 0)\}\)$ and f be the function defined by $f((a, \sin(1/a)) = a \text{ for each } a > 0 \text{ and } f((0, 0)) = 0$. Then $f \in C(X)$. It is easily seen that $0 \in \Delta(f)$ even though $f^{-1}(0)$ is compact.

We can always restrict ourselves to $C^*(X)$ in the study of $|\Delta(f)|$ since for every $f \in C(x)$, there exists $g \in C^*(X)$ such that $|\Delta(g)| = |\Delta(f)|$.

LEMMA 1. Let $f \in C^*(R)$ and $t \in R$. Then

$$\Delta(f) = \bigcap \{ Cl_{\mathbb{R}} f[X - K] : K \text{ is a compact subset of } X \}.$$

Thus $\Delta(f)$ is closed in R.

Received by the editor Sept 25, 1975.

ENG UNG CHOO

Proof. Suppose $t \in \Delta(f)$. Let K be any compact subset of X. Then $f^{-1}[[t - \varepsilon, t + \varepsilon]] - K \neq \phi$ for every $\varepsilon > 0$.

Thus $[t-\varepsilon, t+\varepsilon] \cap f[X-K] \neq \phi$ for every $\varepsilon > 0$. Hence $t \in Cl_R f[X-K]$. Since K is any arbitrary compact subset of X, we have

 $t \in \bigcap \{ Cl_R f[X - K[: K \text{ is a compact subset of } X] \}.$

Conversely, if $t \notin \Delta(f)$, then $K = f^{-1}[[t - \delta, t + \delta]]$ is compact for some $\delta > 0$. Thus $(t - \delta, t + \delta) \cap f[X - K] = \phi$ and $t \notin Cl_R f[X - K]$.

LEMMA 2. Let $f \in C^*(X)$ and $t \in R$. Then $t \in \Delta(f)$ if and only if $(f^{\beta})^{-1}[[t-\varepsilon, t+\varepsilon]] - X \neq \phi$ for every $\varepsilon > 0$, where f^{β} is the continuous extension of f over βX .

Proof. If $t \in \Delta(f)$, then $f^{-1}[[t-\varepsilon, t+\varepsilon]]$ is not compact for every $\varepsilon > 0$. Hence $(f^{\beta})^{-1}[[t-\varepsilon, t+\varepsilon]] \neq f^{-1}[[t-\varepsilon, t+\varepsilon]]$ for every $\varepsilon > 0$. It follows that $(f^{\beta})^{-1}[[t-\varepsilon, t+\varepsilon]] - x \neq \phi$ for every $\varepsilon > 0$.

Suppose $t \notin \Delta(f)$. Then $f^{-1}[[t-\delta, t+\delta]]$ is compact for some $\delta > 0$. If there exists $z \in (f^{\beta})^{-1}[[t-\delta/3, t+\delta/3]] - X$, then there exists a neighbourhood O_1 of z in βX such that $f^{\beta}[O_1] \subset (t-\delta/2, t+\delta/2)$. Since $f^{-1}[[t-\delta, t+\delta]]$ is compact, $O_2 = \beta X - f^{-1}[[t-\delta, t+\delta]]$ is also a neighborhood of z. Thus $O_1 \cap O_2$ is a neighborhood of z. But $(O_1 \cap O_2) \cap X = \phi$. This is impossible since X is dense in βX . Hence $(f^{\beta})^{-1}[[t-\delta/3, t+\delta/3]] - X = \phi$. Consequently, if $(f^{\beta})^{-1}[[t-\varepsilon, t+\varepsilon]] - X \neq \phi$ for every $\varepsilon > 0$, then $t \in \Delta(f)$.

COROLLARY 1. Let $f \in C^*(X)$. If X is locally compact, then $\Delta(f) = f^{\beta}[\beta X - X]$.

Proof. If $t \in f^{\beta}[\beta X - X]$, then $(f^{\beta})^{-1}[[t - \varepsilon, t + \varepsilon]] - X \neq \phi$ for every $\varepsilon > 0$. By Lemma 2, $t \in \Delta(t)$.

Conversely, suppose $t \in \Delta(t)$. Then $(f^{\beta})^{-1}[[t-\varepsilon, t+\varepsilon]] - X \neq \phi$ for every $\varepsilon > 0$. Since X is locally compact, $\beta X - X$ is compact and $f^{\beta}[\beta X - X]$ is closed. If $t \notin f^{\beta}[\beta X - X]$, then there exists $\delta > 0$ such that $[t-\delta, t+\delta] \cap f^{\beta}[\beta X - X] = \phi$. Thus $(f^{\beta})^{-1}[[t-\delta, t+\delta]] - X = \phi$, which is a contradiction. Hence $t \in f^{\beta}[\beta X - X]$.

LEMMA 3. Let $f \in C(X)$ such that $|\Delta(f)| = n$ where n is a positive integer. Then there exists $g \in C^*(X)$ such that $\Delta(g) = \{1, 2, ..., n\}$.

Proof. Let $\Delta(f) = \{a_1, a_2, \dots, a_n\}$ where $a_1 < a_2 < \dots < a_n$. Let h be a function in $C^*(R)$ defined by

$$h(x) = \begin{cases} \exp(x - a_1) & \text{if } x \le a_1 \\ \left(\frac{x - a_i}{a_{i+1} - a_i}\right) (i+1) + \left(\frac{a_{i+1} - x}{a_{i+1} - a_i}\right) i, & \text{if } a_i < x \le a_{i+1}, \quad i = 1, 2, \dots, n-1, \\ n+2 - \exp(a_n - x) & \text{if } x > a_n. \end{cases}$$

48

March

Then h is a homeomorphism from R onto the open interval (0, n+2). Let $g = h \cdot f$. Then $g \in C^*(X)$ and $\Delta(g) = \{1, 2, ..., n\}$.

There may not exist any function $f \in C^*(X)$ such that $\Delta(f)$ is finite. The following theorem gives a topological criterion for the existence of $f \in C^*(X)$ satisfying $|\Delta(f)| = n$.

THEOREM 1. Let n be a positive integer. There exists $f \in C^*(X)$ such that $|\Delta(f)| = n$ if and only if there exist n mutually disjoint closed non-compact subsets A_1, A_2, \ldots, A_n of X such that $X - \bigcup_{i=1}^n A_i$ has compact closure.

Proof. (\Rightarrow) Let $f \in C^*(X)$ and $|\Delta(f)| = n$. By Lemma 3, we may assume that $\Delta(f) = \{1, 2, ..., n\}$. The sets $A_i = f^{-1}[[i - \frac{1}{3}, i + \frac{1}{3}]]$, i = 1, 2, ..., n are mutually disjoint closed non-compact subsets of X. For each $\gamma \in Cl_R f[X] - \bigcup_{i=1}^n (i - \frac{1}{3}, i + \frac{1}{3})$, there exists a real number $\varepsilon(\gamma) > 0$ such that $f^{-1}[[\gamma - \varepsilon(\gamma), \gamma + \varepsilon(\gamma)]]$ is compact. By the compactness of the set $Cl_R f[X] - \bigcup_{i=1}^n (i - \frac{1}{3}, i + \frac{1}{3})$, there exist $\gamma_1, \gamma_2, \ldots, \gamma_k$ such that $Cl_R f[X] - \bigcup_{i=1}^n (i - \frac{1}{3}, i + \frac{1}{3})$ is contained in $\bigcup_{i=1}^k (\gamma_i - \varepsilon(\gamma_i), \gamma_i + \varepsilon(\gamma_i))$. Thus $X - \bigcup_{i=1}^n f^{-1}[(i - \frac{1}{3}, i + \frac{1}{3})]$ is contained in $\bigcup_{i=1}^k f^{-1}[[\gamma_i - \varepsilon(\gamma_i), \gamma_i + \varepsilon(\gamma_i)]]$ which is a compact set, being a finite union of compact sets. Hence $X - \bigcup_{i=1}^n A_i$ has compact closure.

 (\Leftarrow) Let A_1, A_2, \ldots, A_n be *n* mutually disjoint closed non-compact subsets of X and $X - \bigcup_{i=1}^{n} A_i \subset K$ where K is a compact subset of X. For each $i = 1, 2, \ldots, n$, let g(x) = i for each $x \in A_i \cap K$. Then g is a continuous function on $(\bigcup_{i=1}^{n} A_i) \cap K$. K is compact and thus is a normal space. Since $(\bigcup_{i=1}^{n} A_i) \cap$ K is a closed subset of K, hence g has a continuous extension $h \in C^*(K)$. Let f(x) = h(x) for each $x \in K$ and f(x) = i for each $x \in A_i$, $i = 1, 2, \ldots, n$. Then $f \in C^*(X)$ and $|\Delta(f)| = n$.

THEOREM 2. Suppose $g \in C^*(X)$ and $\Delta(g)$ is finite. Then there exists $h \in C^*(X)$ such that $\Delta(g) = \Delta(h) = \{\gamma \in R : h^{-1}(\gamma) \text{ is not compact}\}$

Proof. By Lemma 3, we may assume that $\Delta(g) = \{1, 2, ..., m\}$. Let f be a function in $C(\mathbf{R})$ defined by

$$f(x) = \begin{cases} x + \frac{1}{3} & \text{if } x < \frac{2}{3} \\ i & \text{if } i - \frac{1}{3} \le x \le i + \frac{1}{3}, \\ 3x - 2i - 1 & \text{if } i + \frac{1}{3} < x < i + \frac{2}{3}, \\ x - \frac{1}{3} & \text{if } x > m + \frac{1}{3} \end{cases} \quad i = 1, 2, \dots, m - 1$$

It is easily seen that f is a homeomorphism from $(\bigcup_{i=1}^{m-1} (i+\frac{1}{3}, i+\frac{2}{3})) \cup (-\infty, \frac{2}{3}) \cup (m+\frac{1}{3}, \infty)$ onto $R-\{1, 2, \ldots, m\}$. Then $h=f \cdot g \in C^*(X)$. For each $i=1, 2, \ldots, m, h^{-1}(i) = g^{-1}[f^{-1}(i)] = g^{-1}[[i-\frac{1}{3}, i+\frac{1}{3}]]$ is not compact since $i \in \Delta(g)$. Then $\Delta(g) = \{1, 2, \ldots, m\} \subset \Delta(h)$. Let $\gamma \in R - \Delta(g)$. Then there exists a real number $\varepsilon > 0$ such that $[\gamma - \varepsilon, \gamma + \varepsilon] \cap \Delta(g) = \phi$. Thus

4

 $\begin{aligned} f^{-1}[[\gamma - \varepsilon, \gamma + \varepsilon]] \cap [i - \frac{1}{3}, i + \frac{1}{3}] &= \phi \quad \text{for each} \quad i = 1, 2, \dots, m. \quad \text{Hence} \\ h^{-1}[[\gamma - \varepsilon, \gamma + \varepsilon]] &\subset X - \bigcup_{i=1}^{m} g^{-1}[[i - \frac{1}{3}, i + \frac{1}{3}]]. \text{ From the proof of Theorem 1,} \\ \text{we know that } X - \bigcup_{i=1}^{m} g^{-1}[(i - \frac{1}{3}, i + \frac{1}{3})] \text{ is compact. Therefore, } h^{-1}[[\gamma - \varepsilon, \gamma + \varepsilon]] \\ \text{being a closed subset of a compact set is itself compact. Hence } \gamma \notin \Delta(h). \\ \text{Consequently, } \Delta(h) = \Delta(g) = \{\gamma \in R : h^{-1}(\gamma) \text{ is not compact}\}. \end{aligned}$

COROLLARY 2. If $f \in C^*(X)$ and $\Delta(f)$ is finite, then there exists an opening covering $\{O_i : i \in I\}$ of X such that

$$\Delta(f) = \bigcap \{ f[X - \bigcup_{i \in F} O_i] : F \text{ is a finite non-empty subset of } I \}$$

Proof. By previous theorem, there exists $g \in C^*(X)$ such that $\Delta(f) = \{\gamma \in R : g^{-1}[\gamma] \text{ is not compact}\}$. For each $\gamma \in \Delta(f)$, by the non-compactness of $g^{-1}[\gamma]$, there exists an open covering $\{O_i : i \in I_\gamma\}$ such that $g^{-1}[\gamma]$ has no finite subcover. Let $O_{\tau} = X - \bigcup_{\gamma \in \Delta(f)} g^{-1}[\gamma]$ and $I = \{\tau\}[\bigcup_{\gamma \in \Delta(f)} I_{\gamma}]$. Then $\{O_i : i \in I\}$ is an open covering of X and

$$\Delta(f) = \bigcap \{ f[X - \bigcup_{i \in F} O_i] : F \text{ is a finite non-empty subset of } I \}.$$

In [1], it is proved that the set D(X) of all functions $f \in C(X)$, where f[A] is finite for every closed discrete subset of A of X, is a subring of $C^*(X)$. The next theorem shows that we can restrict ourselves to D(X) in searching for functions with a finite set of accumulation points.

THEOREM 3. Let $g \in C^*(X)$ where $\Delta(g)$ is finite. There exists $h \in D(X)$ such that $|\Delta(h)| = |\Delta(g)|$.

Proof. By Lemma 3, we may assume that $\Delta(g) = \{1, 2, ..., m\}$. Let f be the function defined in the proof of Theorem 2 and let $h = f \cdot g$. Then $h \in C^*(X)$ and $|\Delta(h)| = |\Delta(g)|$. It follows from the proof of Theorem 1 that $X - \bigcup_{i=1}^{m} g^{-1}[(i-\frac{1}{3}, i+\frac{1}{3})]$ is compact. For every closed discrete subset A of X, since $X - \bigcup_{i=1}^{m} g^{-1}[(i-\frac{1}{3}, i+\frac{1}{3})]$ is compact, $A - \bigcup_{i=1}^{m} g^{-1}[(i-\frac{1}{3}, i+\frac{1}{3})]$ is a finite set. Thus h[A] is finite. Hence $h \in D(X)$.

From here onwards, X is assumed to be a locally compact space. The proofs of the following two theorems can be found in [5]. For any two compactifications X_1, X_2 , of X, we write $X_1 \cong X_2$ if there exists a homeomorphism h from X_1 onto X_2 such that h(x) = x for every $x \in X$.

THEOREM 4. Let $f \in C^*(X)$. For every open set Q in R and compact subset K of X, let $Q_k = [Q \cap \Delta(f)] \cup [f^{-1}[Q] - K]$. If the disjoint union $X^f = X \cup \Delta(f)$ has the topology generated by the base consisting of all open sets of X and all sets Q_K , then X^f is a Hausdorff compactification of X in which f has a continuous extension which is one-one on $\Delta(f)$.

THEOREM 5. Let $f \in C^*(X)$. If \overline{X} is a Hausdorff compactification of X such that f has a continuous extension which is one-one on $\overline{X} - X$, then $\overline{X} \cong X^f$.

Magill [6] has proved some necessary and sufficient conditions for a space X to have an *n*-point compactification. We will show that such compactifications are of type X^{f} .

THEOREM 6. If \overline{X} is an n-point compactification of X, then $\overline{X} \cong X^{f}$ for some $f \in C^{*}(X)$.

Proof. Let $\overline{f} \in C(\overline{X})$ such that \overline{f} is one-one on $\overline{X} - X$. If f is the restriction of \overline{f} on X, then $f \in C^*(X)$. By Theorem 4 and Theorem 5, we conclude that $X^f \cong \overline{X}$.

The following corollary follows immediately from Theorem 1 and Theorem 6.

COROLLARY 3. A space X has an n-point compactification if and only if there exist n mutually disjoint closed non-compact subsets A_1, A_2, \ldots, A_n of X such that $X - \bigcup_{i=1}^{n} A_i$ has compact closure.

THEOREM 7. Let $f \in C^*(X)$ and $|\Delta(f)| \leq \aleph_0$. For every positive $n \leq |\Delta(f)|$, there exists $g \in C^*(X)$ such that $|\Delta(g)| = n$.

Proof. Suppose $\Delta(f)$ is finite. By Lemma 3, we may assume that $\Delta(f) = \{1, 2, ..., m\}$. Given any positive integer $n \le m$, let $\phi(\gamma) = \gamma$ for each $\gamma \le n$ and $\phi(\gamma)$ for $\gamma > n$. Then $\phi \in C(R)$. Let $g = \phi \cdot f$. Then $g \in C^*(X)$ and $|\Delta(g)| = n$.

Suppose now that $\Delta(f)$ is countably infinite. Then X has a countably infinite compactification. It follows from Theorem 2.1 in [9] that X has an *n*-point compactification, for each positive integer *n*. Thus by Theorem 6, there exists $g \in C^*(X)$ such that $|\Delta(g)| = n$, for each positive integer *n*.

It follows from Theorem 4.3.2 in [2] that there is no *n*-point compactification of R for $n \ge 3$. Thus there is no function $f \in C^*(R)$ such that $\Delta(f)$ is finite and $|\Delta(f)| \ge 3$. In [1], it is shown that for $n \ge 2$, $D(R^n) = \{f \in C(R^n):$ there exists a positive integer k such that f is constant on $\{x \in R^n : ||x|| \ge k\}$. Therefore there is no function $f \in C^*(R^n)$, such that $\Delta(f)$ is finite and $|\Delta(f)| \ge 2$. We note that the continuous function $g(x) = \sin x$ for each $x \in R$ satisfies $\Delta(g) = [-1, 1]$. Thus $|\Delta(g)| = c$. This shows that the condition $|\Delta(f)| \le \aleph_0$ in Theorem 7 is essential.

EXAMPLE 2. The space N of positive integers has the discrete topology. Let f(4n) = 0 for each $n \in N$ and f(n) = 1/n for each n which is not a multiple of 4. Let g(n) = 0 for each even $n \in N$ and g(n) = 1/n for each odd $n \in N$. Then $f, g \in C^*(N)$ and $\Delta(f) = \Delta(g) = \{0\}$. The open set $\Delta(f) \cup \{4n : n \in N\}$ in X^f is not open in X^g . Therefore, $X^f \notin X^g$.

Finally, an equivalent condition for $X^f \cong X^g$ is given where we use only the function values of f and g.

THEOREM 8. Let f, $g \in C^*(X)$. $X^f = X^g$ if and only if there is an one-one

correspondence Φ between $\Delta(f)$ and $\Delta(g)$ satisfying

(1) $\forall \epsilon > 0_{\exists} \quad \delta > 0$ s.t. $g^{-1}[[\Phi(\gamma) - \delta, \quad \Phi(\gamma) + \delta]] - f^{-1}[\gamma - \epsilon, \quad \gamma + \epsilon)]$ is compact and

(2) $\forall \epsilon > 0_{\exists} \quad \delta > 0 \quad \text{s.t.} \quad f^{-1}[[\gamma - \delta, \gamma + \delta]] - g^{-1}[(\phi(\gamma) - \epsilon, \phi(\gamma) + \epsilon)]$

is compact for every $r \in \Delta(f)$.

Proof. (\Rightarrow) Let *h* be a homeomorphism from X^f onto X^g such that h(x) = x for each $x \in X$. Then the correspondence defined by *h* satisfies (1) and (2) for every $\gamma \in \Delta(f)$.

(\Leftarrow) Suppose there is an one-one correspondence Φ which satisfies (1) and (2). Let h(x) = x for each $x \in X$ and $h(y) = \Phi(y)$ for each $y \in \Delta(f)$. Then h is an one-one function from X^{f} onto X^{g} . Obviously, h is continuous at each $x \in X$. Let $\gamma \in \Delta(f)$ and $t = h(\gamma) \in \Delta(g)$. Given $\varepsilon > 0$ and a compact subset K of X, $[(t-\varepsilon, t+\varepsilon)\cap\Delta(g)]\cup(g^{-1}[(t-\varepsilon, t+\varepsilon)]-K)$ is a basic neighborhood of t in X^{g} . By (2), there exists $\delta > 0$ such that $f^{-1}[[\gamma - \delta, \gamma + \delta]] - g^{-1}[(t - \varepsilon/2, t + \varepsilon/2)]$ is compact. Let $u \in (\gamma - \delta, \gamma + \delta) \cap \Delta(f)$. Suppose $h(u) \notin (t - \varepsilon, t + \varepsilon) \cap \Delta(g)$. There exists $\beta > 0$ such that $[h(u) - \beta, h(u) + \beta] \cap [t - \varepsilon/2, t + \varepsilon/2] = \phi$. By (2) again, there exists $\eta > 0$ such that $f^{-1}[[u-\eta, u+\eta]] - g^{-1}[(h(u)-\beta, h(u)+\beta)]$ is compact. Let $\alpha > 0$ be sufficiently small so that $[u - \alpha, u + \alpha] \subset (\gamma - \delta, \gamma)$ $(\gamma + \delta) \cap (u - n, u + \eta)$. Now, $f^{-1}[[u - \alpha, u + \alpha]] - g^{-1}[(t - \varepsilon/2, t + \varepsilon/2)]$ and $f^{-1}[[u-\alpha, u+\alpha]] - g^{-1}[(h(u)-\beta, h(u)+\beta)]$ are compact and $[h(u)-\beta, h(u)+\beta]$ $\beta] \cap [t - \varepsilon/2, t + \varepsilon/2] = \phi$. Hence $f^{-1}[[u - \alpha, u + \alpha]]$ is compact. But this contradicts the assumption that $u \in \Delta(f)$. Thus $h(u) \in (t - \varepsilon, t + \varepsilon) \cap \Delta(g)$ for each $u \in (\gamma - \delta, \gamma + \delta) \cap \Delta(f)$. This means that h maps the basic neighborhood $[(\gamma - \delta, \gamma + \delta) \cap \Delta(f)] \cup (f^{-1}[\gamma - \delta, \gamma + \delta)] - K$ of γ into $[(t - \varepsilon, t + \varepsilon) \cap \Delta(g)] \cup$ $(g^{-1}[(t-\varepsilon, t-\varepsilon)]-K)$. Therefore h is continuous. Since X^f is compact and h is one-one, onto and continuous, hence h is a homeomorphism and $X^f \cong X^g$.

REFERENCES

1. E. U. Choo, Admissible Subrings of Real-valued Functions, Doctoral Thesis, The University of British Columbia, Canada. 1971.

2. P. A. Firby, Lattice and Compactifications, III. London Mathematical Society Proceedings Ser. 3, Vol. 27 (1973), 61-68.

3. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrant, N.Y., 1960.

4. P. A. Loeb, Compactifications of Hausdorff Spaces, Proc. Amer. Math. Soc. 22 (1969), 627-634.

5. P. A. Loeb, A Minimal Compactification for Extending Functions, Proc. Amer. Math. Soc. 18 (1967), 282-283.

6. K. D. Magill, Jr., N-point Compactifications, Amer. Math. Monthly 72 (1965), 1075-1081.

7. K. D. Magill, Jr., Countable Compactifications, Canad. J. Math. 18 (1966), 616-620.

DEPARTMENT OF MATHEMATICS,

UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, B.C.