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THE EMBEDDING OF COMPACT CONVEX
SETS IN LOCALLY CONVEX SPACES

JAMES W. ROBERTS

1. Introduction. In studying compact convex sets it is usually assumed that
the compact convex set X is contained in a Hausdorff topological vector space
L where the topology on X is the relative topology. Usually one assumes that
L is locally convex. The reason for this is that most of the major theorems such
as the Krein-Milman, Choquet-Bishop-de Leeuw, and most of the fixed point
theorems require that there be enough continuous affine functions on X to
separate points. A natural question then is the following: When can a compact
convex set X be embedded in a locally convex space L? One result has been
obtained by Jamison, O'Brien, and Taylor in [3]. If X is a convex subset of a
real vector space, 7: X X X X [0, 1] = X is defined by 5(x, y, a) = ax +
(1 — @)y, and X has a Hausdorff topology on it so that » is continuous, then X
is called a topological convex set. If for every x € X and U open with x € U,
there exists a convex neighborhood K of x such that X C U, then X is called
weakly locally convex. Note that the neighborhood K need not be open. If an
open convex neighborhood K can always be chosen, then X is called strongly
locally convex. Two topological convex sets X and Y are affinely homeomorphic
if there exists a homeomorphism % from X onto ¥ such that for every x,y € X
and a € [0, 1], klax 4+ (1 — a)y) = ak(x) + (1 — a)k(y). In [3], the authors
prove that if X is a compact topological convex set that is strongly locally
convex, then X is affinely homeomorphic to a compact convex subset of a
locally convex topological vector space. They indicate that the same result
with strongly locally convex replaced by weakly locally convex is not known.
The purpose of this paper is to prove that the above result holds for weakly
locally convex sets.

2. The embedding theorem. The method of proof is similar to [3], i.e. we
shall construct a barycenter map and from the existence of such a map the
theorem will follow. Suppose now that X is a compact topological convex set
which is weakly locally convex. We shall denote the regular Borel probability
measures on X by @(X). For each x ¢ X we let e(x) denote the point mass
measure at x. A continuous map y from Q(X) to X is called a barycenter map if

(i) ¢ is affine, ie. Yy(ap + (1 — a)y) = ap () + (1 — a)¢(v) for every u,
v € Q(X) and « € [0, 1] and
(i) Y(e(x)) = «x for every x € X.
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If X possesses a barycenter map, then by Theorem 3.5 of [5] or by Proposi-
tion 8 of [3], it follows that X is affinely homeomorphic to a compact convex
subset of a locally convex topological vector space. To produce the map ¢ we
first define a map S: Q(X) — Q(X) by

en [ asw = [0+ 1)dut) X ).

for every f € C(X) and u € Q(X). Note that the right hand side of (2.1)
defines a norm one positive linear functional on C(X). This corresponds to a
measure in ©(X) which we have called S(u). Note further that S is continuous
because the map (x, y) — 3x + 3y is continuous. We shall show that for every
p € QX), there exists x € X such that (S"(n)) weak* converges to e(x). We
then define ¢ (u) = x and show that ¢ is a barycenter map. To show that ¢ is
a barycenter map there are three major points that must be established. (1) We
show that for u ¢ Q(X), (S"(u)) weak* converges to a measure y(y is a fixed
point of S). (2) We show that the fixed points of S are precisely the point mass
measures. (3) Finally we must show that ¢ is continuous.

A function f: X — R is convex if for every x, y € X and « € [0, 1], f(ax +
(1 —a)y) £af(x) + (1 —a)f(y). We let C denote the convex Borel mea-
surable functions on X. To obtain (1), (2), and (3) it will be necessary to prove
that the class C is fairly large. To do this we apply the assumption of local
convexity. If x ¢ X and O is an open set containing x, then there exists an open
neighborhood 17 of x such that cl (17) C 0. If K is a convex neighborhood of x
such that K C 17, then ¢l (K) C O. It is easily verified that cl (K) is also
convex. Thus every point of X has a neighborhood base consisting of closed
convex sets. Now let v € X and let K be a closed convex neighborhood of x.
We define the Minkowski functional p for x and K as in the classical case by

py) = inf{l/a:ay + (1 —a)x € K,a > 0}

for every y € X. Notice that since K is a neighborhood of x and lim, ,o ay +
(I — a)x = & there existsa > O such thatay + (1 — a)x ¢ K. We now prove
the embedding theorem by a sequence of lemmas.

LeMyMa 1. Suppose x € X, K is « closed convex neighborhood of x, und p is the
Minkowski functional of K and x. T hen
(i) p is bounded and convex;
(1) pis lower semicontinuons; und
(i) if x € K, then p(x) < lifundonlyifx ¢ K.

Proof. The proof that p is convex is the same as in the classical case. For
every a ¢ (0, 1], define ¢.(y) = (1 — a)x + ay. Each ¢, is continuous. Ilence
{#a(X): @ € (0, 1]} is a monotone collection of closed convex sets with inter-
section {x}. Since X is compact and x € K° there exists « > 0 such that
¢ (K) C K° Thus 0 < p < 1/a. The proof of (ii) and (iii) is straightforward.
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LEMMA 2. C — C is a vector lattice and if E and I are disjoint closed sets, then
there exists f € C — C such that

fX) Co, 1), f(E) = {0}, and [(F) = {1}.

Proof. It is clear that C — (' is a vector space since C is a cone. Also, if f, g ¢
C, then max {f, g} € C. Thusif f1, g1, f2, g2 € C, then max {f1 — g1, fo — g2} =
max {f1 + g f2+ @} — (@1 + g2) € C — C. Therefore C — C is a vector
lattice. Now suppose £ and [ are closed with £/ I/ = ¢ and & € E. Let K,
be a closed convex neighborhood of x such that K M I = @. If p, is the
Minkowski functional of x and K, then sup p.(K,) = 1 < inf p.(F). The
collection { K, x ¢ E} is an open cover of E and therefore has a finite subcover
(K% ..., K,% If welet ¢; = max {p,;, 1} and ¢ = min {qi, ..., g,}, then
g€ C—C, g(E)={1}, and inf g(F) > 1. Let h = g — 1, and let « = inf
h(F) > 0. Now define [ by f = 1/a min {k, a}. It is clear that f € C — C,
f(E) = {0}, and f(F) = {1}.

LemMA 3. C(X) is contained in the uniform closure of C — C.

Proof. Suppose [ € C(X) and for convenience of notation suppose inf f(X) =
0 and sup f(X) = 1. Let N be a positive integer. For 0 £ n £ N define
E, = -0, n/N]) and I', = f[~'(n/N, 1]). By Lemma 2 there exists f, ¢
C — Csuch that f,(E,—1) = {0}, f,(F,) = {1},and f,(X) C [0,1]for1 £ n <
N. Now let

1 N
§= N "; Jue
Theng € C — Cand ||f — ¢g|| < 1/N.

Levva 4. If p € Q(X) and § € C, then [ fdS(u) < [ fdu.

Proof. Let u’ be the restriction of u to the Baire sets on X. Then ' X u’ is
a Baire measure on X X X. This may be extended to a regular Borel measure
wX pon X X X. If fis a bounded Borel measurable function on X, it is
clear that

ff(x)dn(x) = ff(x)du—x—#(x, )

Let ¢: X X X — X Dbe defined by ¢(x, y) = 3x + %y. Since ¢ is continuous
u X poe¢t =S(u) by [2, Theorem 12-46, p. 180]. Hence for f € C,

ffd5<ﬂ) = ff(%x + 3¥)du X p(x, y)

I\

[ 169 + o catn )

[

i
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Recall now that if u € Q(X), then the support of u, denoted supp g, is
defined by

supp p = N {E C X: E is closed, p(E) = 1}.
The support of p has the following properties:

(1) u(supp p) = 1; and
(2) if O is open and O M supp p # @, then p(0) > 0.

We shall use Property (2) in the following lemma.
LeMMA S, If p € Q(X), then S(u) = pif and only if uis « point mass measure.

Proof. If w = e(x) for some x € X, then it is clear that S(u) = p. Suppose
now that u is not a point mass measure. Let «, b € supp p with « # 0. Then by
Lemma 1, there exist open disjoint sets U and 1" with « € U, b € 17 and a
Minkowski functional f such that sup f(U) £ 1 < 8 < inf f(17). Since f = 0,
¢ = f*isconvex. If u € Uand v € V, then

3g() + 3g() — g(3u + v)
@) + 3f @) — fGu + 30)°
sf(u)? + 5f (@) — (5f(u) + 5f(v))?
TfG) = f@)2 =z 18— 1)

vV

Il

But then

fgdS(u)

fg(%llf + 3v)dp X u(u,v)

f %g(u) + %g(’v)dm(”y 'i))

(U X 1)*

lIA

[ 3600 + 16) — 18— 1V aiKEG 0
UXVTV

[ e = 16— 1w,

Since U and 1" meet supp u, p(U) > 0 and u(17) > 0. We have thus shown
that S(u) # u.

LEMMA 6. If u € Q(X), then there exists x € X such that (S"(u)) weak* con-
verges to e(x).

Proof. 1f f € C, then (fde"u> is monotone decreasing and bounded and
therefore convergent. IHence (fde”y) is convergent for f € C — C. An easy
approximation argument shows that (fde"p) is convergent for every function
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fin the uniform closure of C — C and thus for every continuous function. But
then there exists ¥ € Q(X) such that (S"(u)) weak* converges to vy. By the
continuity of S we have

S(y) = Slim S"(w) = lim S"(u) = ~.

By Lemma 5 there exists x € X such that y = e(x).

We now define y: Q(X) — X by ¢(u) = «x if (5"(u)) converges to e(x) in
the weak* topology on Q(X).

LEMMA 7. If u € Q(X) and p is « Minkowski functional, then for every positive
integer k,

p(¥W) = fpdSk(y).

Proof. Define g(p) = fpdu for every u € Q(X). Since p is lower semicon-
tinuous p = sup {f € C(X): [ = p}. By [1, Lemma 114, p. 180] g(u) =
sup {ffdu: f€ CX), f=p}. Thus ¢ is also lower semi-continuous. Since
S*(u) weak* converges to e(y(u)),

PP W) = gle(¥w)) = }liigg(S"(#)) £ deS"(u)

for every k.

LEMMA 8. ¢ s continuous.

Proof. Suppose that O is open, x € O, p € Q(X), and ¢ (u) = x. Let K be
a closed convex neighborhood of x such that KX C O and let U be the interior
of K. Let p be the Minkowski functional for x and K. Then sup p(K) =1 <
inf p(0°). Choose a such that 1 < « < inf p(0°). It is easily shown that there
exists ¢ > 0 such that if y € Q(X) and y(K) > 1 — ¢, then fpdy < a. Since
(S"u) weak* converges to e(x), there exists V such that for n = N, S"(u) (U) >
1 — e We let

V=1{y € 2X): SN()(U) > 1 — ¢.

It is easily verified that 17is weak* open in Q(X). If y € 17, then fpdS‘V('y) < a.
Hence by Lemma 7, p (¥ (y)) < a. Therefore ¢ (V) C Oand u € V. This proves
that ¢ is continuous.

THEOREM. If X is « compact topological convex set that is weakly locally convex,
then there is an affine homeomorphism mapping X onto a compact convex subset of
a locally convex topological vector space.

Proof. Let x1. . . ., x; € X, let L be the linear span of these points, and let ¥
be their convex hull. By Proposition 1 of [3] V is compact and the topology on
Y is stronger than the usual topology on L restricted to Y. Thus the two topolo-
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gies coincide since both are compact Hausdorff. Now suppose thatay, ..., =
Oand 4 1 a; = 1. Let p = Y%5_1 ase(x;). Then supp S"(x) C Y for every n.
If f is a linear functional on L, then since f and —f are both convex fde” (W) =
ffdu for every n. Since S"(u) — e(¢(n)) in the weak* topology on (V) and
f is continuous on Y,

K
f(Zl ax) ~ lim f S () = FW).
1= n-oo

Since the linear functionals on L separate points, ¢ (u) = >y . We let F/
denote the probability measures on X with finite support. The above argument
proves that ¢ coincides with the usual barycenter map on /. But then ¢ is
an affine map when restricted to I, i.e. for every a € [0, 1] and u, v € I,
Viap + (1 — a)y) = a(u) + (1 — a)y¥(y). But since Fis dense in 2(X) and
¥ is continuous, ¥ is affine on Q(X). By Theorem 3.5 of [5] or P’roposition § of
(3], X is affinely homeomorphic to a compact convex subset of a locally convex
topological vector space.
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