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THE EMBEDDING OF COMPACT CONVEX 
SETS IN LOCALLY CONVEX SPACES 

JAMES W. ROBERTS 

1. I n t r o d u c t i o n . In studying compact convex sets it is usually assumed tha t 
the compact convex set X is contained in a Hausdorff topological vector space 
L where the topology on X is the relative topology. Usually one assumes tha t 
L is locally convex. The reason for this is tha t most of the major theorems such 
as the Krein-AIilman, Choquet-Bishop-de Leeuw, and most of the fixed point 
theorems require tha t there be enough continuous affine functions on X to 
separate points. A natural question then is the following: When can a compact 
convex set X be embedded in a locally convex space L? One result has been 
obtained by Jamison, O'Brien, and Taylor in [3]. If X is a convex subset of a 
real vector space, 77: X X X X [0, 1] —> X is defined by r)(x, y} a) = ax + 
(1 — a)y, and X has a Hausdorff topology on it so tha t 77 is continuous, then X 
is called a topological convex set. If for every x G X and U open with x G U, 
there exists a convex neighborhood K of x such tha t K Ç_ U, then X is called 
weakly locally convex. Note tha t the neighborhood K need not be open. If an 
open convex neighborhood K can always be chosen, then X is called strongly 
locally convex. Two topological convex sets X and F are affinely homeomorphic 
if there exists a homeomorphism h from X onto F such tha t for every x, y G X 
and a G [0, 1], h(ax + (1 — a)y) = ah(x) + (1 — a)h(y). In [3], the authors 
prove tha t if X is a compact topological convex set tha t is strongly locally 
convex, then X is affinely homeomorphic to a compact convex subset of a 
locally convex topological vector space. They indicate tha t the same result 
with strongly locally convex replaced by weakly locally convex is not known. 
T h e purpose of this paper is to prove tha t the above result holds for weakly 
locally convex sets. 

2. T h e e m b e d d i n g t h e o r e m . The method of proof is similar to [3], i.e. we 
shall construct a barycenter map and from the existence of such a map the 
theorem will follow. Suppose now tha t X is a compact topological convex set 
which is weakly locally convex. We shall denote the regular Borel probabili ty 
measures on X by 12(X). For each x G X we let e(x) denote the point mass 
measure a t x. A continuous map ^ from £L(X) to X is called a barycenter map if 

(i) \p is affine, i.e. \p(an + (1 — a)y) = a\p(/ji) + (1 — a)\f/(y) for every /x, 
y G Q(X) and a G [0, 1] and 

(ii) \l/(e(x)) = x for every x (z X. 
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If X possesses a barycenter map, then by Theorem 3.5 of [5] or by Proposi­
tion 8 of [3], it follows tha t X is affinely homeomorphic to a compact convex 
subset of a locally convex topological vector space. T o produce the m a p \p we 
first define a map S: Q(X) - * Q(X) by 

(2.1) ffdSQi) = ffihx + hy)d»(x) X n(y). 

for every / G C ( Z ) and /x G fl(X). Note t ha t the right hand side of (2.1) 
defines a norm one positive linear functional on C(X). This corresponds to a 
measure in $l(X) which we have called S(n). Note further t ha t S is cont inuous 
because the m a p (x, y) —> \x + \y is continuous. W e shall show tha t for every 
/x G tt(X), there exists x G X such tha t (Sn(n)) weak* converges to e(x). We 
then define ^(/x) = # and show tha t \p is a barycenter map . T o show tha t ^ is 
a barycenter map there are three major points t ha t mus t be established. (1) We 
show tha t for /x G fi(X), (Sn(/x)) weak* converges to a measure 7 ( 7 is a fixed 
point of S). (2) We show tha t the fixed points of S are precisely the point mass 
measures. (3) Finally we must show tha t \j/ is continuous. 

A function / : X -+ R is convex if for every x, y £ X and a G [0, 1], f(ax + 
(1 — a)y) ^ af(x) + (1 — a)f(y). We let C denote the convex Borel mea­
surable functions on X. T o obtain (1), (2), and (3) it will be necessary to prove 
tha t the class C is fairly large. T o do this we apply the assumption of local 
convexity. If x G X and 0 is an open set containing x, then there exists an open 
neighborhood T of x such tha t cl (T) C 0. If K is a convex neighborhood of x 
such tha t K C. V, then cl (K) C. 0. I t is easily verified t ha t cl (K) is also 
convex. T h u s every point of X has a neighborhood base consisting of closed 
convex sets. Now let x G X and let K be a closed convex neighborhood of x. 
\Ne define the Minkowski functional p for x and K as in the classical case by 

p(y) = inf {l/a: ay + (1 — a)x G K,a > 0} 

for every y G X. Notice tha t since K is a neighborhood of x and l im a^0 ay + 
(1 — a)x = x there exists a > 0 such tha t ay + (1 — a)x G K. We now prove 
the embedding theorem by a sequence of lemmas. 

LEMMA 1. Suppose x G X, K is a closed convex neighborhood oj x, and p is the 
Minkowski junctional of K and x. Then 

(i) p is bounded and convex; 
(ii) p is lower semicontinuous; and 

(iii) if x G K, then p(x) ^ 1 if and only if x G K. 

Proof. The proof tha t p is convex is the same as in the classical case. For 
every a G (0, 1], define 4>a(y) = (1 — a)x + ay. Each <j)a is continuous. Hence 
{<t>a(X): a G (0, 1]} is a monotone collection of closed convex sets with inter­
section {x}. Since X is compact and x G K°, there exists a > 0 such tha t 
4>a(K) C K°. T h u s 0 ^ p :g l / a . T h e proof of (ii) and (iii) is s traightforward. 
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LEMMA 2. C — C is a vector lattice and if E and F are disjoint closed sets, then 
there exists f G C — C such that 

f(X)C[0,l], / ( £ ) = {0}, and f(F) = {1}. 

Proof. It is clear that C — C is a vector space since C is a cone. Also, if f, g G 
C, then max {/, g\ G C. Thus if/i, gi,/2, £2 G C, then max {/i - gi,/2 - g2) = 
max {/i + g2, /2 + gi} — (gi + £2) (i C — C. Therefore C — C is a vector 
lattice. Now suppose £ and F are closed with E C\ F = 0 and x G £. Let Kx 

be a closed convex neighborhood of x such that K r\ F = 0. If £.r is the 
Minkowski functional of x and i£.r then sup px(Kx) = 1 < inf px(F). The 
collection {i£,°: # G £} is an open cover of E and therefore has a finitesubcover 
{KX1°, . . . , i£ rm

0}. If we let qt = max { .̂n, 1} and g = min {qu . . . , qn}, then 
g G C - C , g(£) = {1}, and inf g(F) > 1. Let h = g - 1, and let a = inf 
^(T7) > 0. Now define f by f = I/a min {fe, a). It is clear that / G C — C, 
f(E) = {0}, and / (F ) = {1}. 

LEMMA 3. C(X) is contained in the uniform closure of C — C. 

Proof. Suppose/ G C{X) and for convenience of notation suppose mif{X) = 
0 and sup f(X) = 1. Let N be a positive integer. For 0 ^ n ^ N define 
En = /" 1 ( [0 , w/iV]) and Fw. =f~l{[n/Ny 1J). By Lemma 2 there exists f„ G 
C - C such that/n(£n_i) = i0j,/„(/%?) = {l j ,and/ n (X) C [0, 1] for 1 £ n S 
N. Now let 

1 ^ 

* = # 5fn' 
Then g G C - C and | | / - g|| g 1/7V. 

LEMMA 4. / / M G fi(X) rmrf; G C, thenj fdS(n) ^ J/rf/x-
Proof. Let M' be the restriction of /x to the Baire sets on X. Then p! X /x' is 

a Baire measure on X X X. This may be extended to a regular Borel measure 
/x X M on X X X. If / is a bounded Borel measurable function on X, it is 
clear that 

ff(x)dMx) = / f(x)dn X M(*, ?)• 

Let $: X X X —> X be defined by 4>(x, y) = \x + \y. Since <t> is continuous 
M X M o (/)"' = 5(M) by [2, Theorem 12-46, p. 180]. Hence for/ € C, 

J/dSGO = J f($x + fcy)d„ x /«(*, y) 

è J hf{x) + hf(y)dnXn(x,y) 
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Recall now that if M £ Œ(X), then the support of /u, denoted supp /x> is 
defined by 

supp M = 0 {£ C -X": £ is closed, JU(£) = 1}. 

The support of /x has the following properties: 

(1) /x(supp /x) = 1; and 
(2) if 0 is open and 0 H supp /x ^ 0, then /x(O) > 0. 

We shall use Property (2) in the following lemma. 

LEMMA O. If H G tt(X), then S (n) = jiif and only if /x is a point mass measure. 

Proof. If /x = e{x) for some x G XT, then it is clear that S{p) = /x. Suppose 
now that n is not a point mass measure. Let a, b £ supp /x with a ^ b. Then by 
Lemma 1, there exist open disjoint sets U and V with a Ç U, b £ V and a 
Minkowski functional / such that sup/(f / ) ^ 1 < /3 ^ inf / (T) . Since/ ^ 0, 
g = P is convex. If u Ç [/ and u G F, then 

kOO + kdO - g(i" + k) 
= hfW + \f{vy - f{\u + \vy 

^ hfW + ifW2 - (è/00 + ifW)2 

But then 

J gd5(/x) = J g(i** + k)^M X /i(/*,i>) 

(C/X F) c 

+ J kOO + k W - H/3 - i?dir><rji(ii%v) 

ux v 

= J gdn- i ( / J - l)2/z (£/)/* 0 0 • 

Since £/ and T meet supp pi, /x(£7) > 0 and /x(L) > 0. We have thus shown 
that S(n) ?* ix. 

LEMMA 6. / / / i f fi(X), /feen //^re exists x G X SZ<C/Î //M/ (Sn(n)) weak* con­
verges to e(x). 

Proof. If / £ C, then (JfdSnn) is monotone decreasing and bounded and 
therefore convergent. Hence (ffdSnn) is convergent f o r / G C — C. An easy 
approximation argument shows that (jfdSnn) is convergent for every function 
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/ in the uniform closure of C — C and thus for every continuous function. But 
then there exists y G ̂ (X) such that (Sn(ju)) weak* converges to 7. By the 
continuity of S we have 

S(y) = Slim 5n(/x) = lim Sn+\») = y. 
W->oo W->oo 

By Lemma 5 there exists x £ X such that 7 = e(x). 

We now define \p: il(X) - > X by \p{\x) = x if (Sn(ix)) converges to e{x) in 
the weak* topology on tt(X). 

LEMMA 7. If /JL G tt(X) and p is a Minkowski functional, then for every positive 
integer k, 

M*G0) ^ f pdS*Qi). 

Proof. Define g(/x) = J£d/x for every /x G 12(X). Since p is lower semicon-
tinuous p = sup {/ G C(X): f S p}. By [1, Lemma 11.4, p. 180] g(/x) = 
sup {ffdfx: f G C(X), f S p)> Thus g is also lower semi-continuous. Since 
5n(/x) weak* converges to e(\j/(ix)), 

P(+(n)) = gWQi))) ^ limg(5"0*)) ^ f A ^ ( M ) 
n->oo ^ 

for every fe. 

LEMMA 8. \j/ is continuous. 

Proof. Suppose that 0 is open, x G 0, M £ Œ(^0, and ^(/x) = x\ Let K be 
a closed convex neighborhood of x such that K C_ 0 and let £/ be the interior 
of K. Let p be the Minkowski functional for x and i£. Then sup p{K) = 1 < 
inf p(Oc). Choose a such that 1 < a < inf p(Oc). It is easily shown that there 
exists e > 0 such that if 7 G fi(X) and y(K) > 1 — e, then J ^ 7 < a. Since 
(SnjLt) weak* converges to e(x), there exists TV such that for n ^ TV, 5w(/x) (U) > 
1 - e. We let 

F = {76 Î2 (^ ) :5^ ( 7 ) ( t / ) > 1 - e}. 

It is easily verified that Fis weak* open in Q(X). If 7 G F, then jpdSN(y) < a. 
Hence by Lemma 7, p(\p{y)) < a. Therefore \p(V) C. 0 and /x G F. This proves 
that \p is continuous. 

THEOREM. If X is a compact topological convex set that is weakly locally convex, 
then there is an affine homeomorphism mapping X onto a compact convex subset of 
a locally convex topological vector space. 

Proof. Let x\. . . . , xh: G X, let L be the linear span of these points, and let F 
be their convex hull. By Proposition 1 of [3] F is compact and the topology on 
Fis stronger than the usual topology on L restricted to F. Thus the two topolo-

https://doi.org/10.4153/CJM-1978-038-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-038-0


454 JAMES W. ROBERTS 

gies coincide since both are compact Hausdorff. Now suppose that «i, . . . , ak è 
0 and Y,ki=i «j = 1. Let /i = £*Li a ^ (#,-). Then supp SW(M) C F for every n. 
If / is a linear functional on L, then since/ and — / are both convex j fdSn(n) = 
Jfdn for every n. Since Sn(/x) —> e(\p(n)) in the weak* topology on 12(F) and 
/ is continuous on F, 

/ ( È «<*<) = I™ f/dS"G0 = /(tf(/z)). 
\ 1=1 I n-yoo J 

Since the linear functional on L separate points, \//(n) = £*=!. atXi. We let / ; 

denote the probability measures on X with finite support. The above argument 
proves that \f/ coincides with the usual barycenter map on F. But then \J/ is 
an affine map when restricted to F, i.e. for every a Ç [0, 1] and /x, y G F, 
\I/(OLJJL + (1 — a) y) = a\p(ii) + (1 — a)\p{y). But since F is dense in il(X) and 
yp is continuous, \p is affine on 12(X). By Theorem 3.5 of [5] or Proposition S of 
[3], X is affinely homeomorphic to a compact convex subset of a locally convex 
topological vector space. 
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