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Predicting the performance of large turbine arrays requires the understanding of many
physical factors, such as array geometry, turbine operation, inflow conditions and turbulent
wake mixing. Due to the large parameter space that an array may be optimised over,
low-order models with low computational cost are often employed. This paper extends one
of these models, the inviscid–viscous coupled model, for multi-row turbine modelling.
Firstly, an extension to the inviscid actuator disc theory is presented by removing the
limit on the number of discrete streamtubes computed. The extended model allows
for the quantification of the impact of shear in the bypass and core flows separately.
In particular, it is shown that averaging a sheared bypass flow profile can result in a
substantial over-prediction of the power of a turbine in a laterally bounded flow as the
effective blockage of the flow increases. The model is also used to confirm that an
approximation using a limited number of streamtubes in some previous applications of
the inviscid–viscous approach has a negligible impact on the results. Secondly, we explore
the performance of a multi-row array with either uniform or varying turbine resistance
across different rows. Results suggest that by varying resistance across rows, the array may
outperform the uniform resistance case. The performance gain is dependent, however, on
the arrangement and inter-turbine spacing both in the spanwise and streamwise directions.

Key words: coastal engineering, general fluid mechanics

1. Introduction

Predicting the performance of a turbine array under realistic conditions still remains
a challenge in our attempts to optimise the layout and operation of wind and tidal
farms (Porté-Agel, Bastankhah & Shamsoddin 2020; Adcock et al. 2021). This challenge
encompasses both external factors such as interactions with the atmospheric boundary
layer for wind farms, and internal factors such as turbulent wakes, which impact power
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extraction and fatigue loads (Sanderse, van der Pijl & Koren 2011). Due to the multi-scale
nature of the problem it is practical to split the problem into two sub-problems: the
external (farm-scale) and internal (turbine-scale) problems (Nishino & Dunstan 2020),
and the internal sub-problem will be the focus of this study. The internal sub-problem
is characterised by a range of turbine-scale features; these include local flow boundaries
from neighbouring devices, the sea surface or seabed (for tidal). These boundaries can
constrain the flow (Garrett & Cummins 2007) or even produce additional fluid dynamical
phenomena like surface gravity waves (for tidal) which can have a direct impact on the
turbine-scale flow and wake development (Li et al. 2021). Note that, although gravity
waves can impact wind farms as well (Ollier, Watson & Montavon 2018) they are
considered as part of the external sub-problem for wind (unless they are strong enough to
have a direct impact on the local flow pattern around each turbine). The characteristics of
the inflow are a key consideration for the internal sub-problem; the inflow profile, ambient
turbulence and inflow direction can all have a large impact on the performance and wake
of a turbine as well (Porté-Agel et al. 2020; Adcock et al. 2021). Being able to accurately
model these features is necessary as variations in local boundaries and wake mixing can
have significant impacts on the performance of a turbine (Nishino & Willden 2013a).
Analytical models of the internal sub-problem have traditionally been used to parameterise
the impact of wind farms in meteorological models (Fitch et al. 2012; Abkar & Porté-Agel
2015) or tidal turbine arrays in ocean circulation models (Adcock et al. 2013) and it is the
extension to such analytical models of turbine arrays that this study will approach.

The most fundamental analytical model of turbines comes from the results of
Lanchester, Betz and Joukowsky (van Kuik 2007) which act as a foundational benchmark
for the estimation of turbine performance. Their model, often referred to as the
linear momentum actuator disc theory (LMADT), considers the conservation of linear
momentum and energy in a streamtube which encases a turbine, and replaces the turbine
with a porous actuator disc which exerts uniform streamwise resistance to a uniform inflow.
Extensions to this model have been made to account for various flow types, from laterally
confined inflow for a single turbine (Garrett & Cummins 2007; Houlsby, Draper & Oldfield
2008) and for a single row of turbines (Nishino & Willden 2012b, 2013b), to non-uniform
inflow (Draper, Nishino & Adcock 2014; Draper et al. 2016) and for multi-row systems
(Juniper & Nishino 2020; Ouro & Nishino 2021). Although less accurate than numerical
models based on the Navier–Stokes equations, their low computational cost makes them
ideal for problems with large parameter spaces such as the optimisation of farm layout and
operation control.

The interest in the flow confinement or ‘blockage’ effects encompasses two main
applications, one being the performance of a turbine in a laboratory environment, and the
other being for an array of turbines whose spanwise spacing may alter their performance
due to ‘local’ blockage effects (Nishino & Willden 2012b; Nishino & Draper 2015). A
number of blockage correction methods have been suggested over the years, and a recent
experimental study by Ross & Polagye (2020) compared a range of popular methods. The
methods found to have the greatest agreement with the experiments were those of Houlsby
et al. (2008) and Barnsley & Wellicome (1990). Note, the report of Barnsley & Wellicome
(1990) does not appear to be publicly available; however, it was introduced by Bahaj et al.
(2007) whose outline of the method echoes the approach of Garrett & Cummins (2007)
placing a one-dimensional actuator disc in the middle of a rectangular channel (to consider
additional streamtubes bypassing the disc as well as the ‘core’ streamtube passing through
the disc). Barnsley & Wellicome’s method solves a set of conservation equations with
a given turbine thrust, with Houlsby et al.’s extension allowing for a deformable lateral
boundary. The merit of closing the LMADT system with turbine thrust (instead of other
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Figure 1. Schematic of the flow past three rows of turbines arranged as perfectly aligned (left) and perfectly
staggered (right) arrays, divided into inviscid (inv.) and viscous (visc.) flow zones. The rectangular region
enclosed by the dashed line corresponds to the local flow domain depicted in figure 2.

physical quantities, such as the wake width) is that it can be measured accurately when
utilising these models to correct for blockage in laboratory settings. Extensions to the
thrust closure method are presented in this paper to address a wider range of flow features.

This paper firstly extends LMADT for a single turbine by analytically solving for
a generalised number of bypass streamtubes, followed by a further extension for a
generalised number of streamtubes passing through the turbine as well as in the bypass.
These extensions aim to expand the current capabilities of LMADT to handle non-uniform
inflow profiles along with variations in resistances across the turbine surface, allowing
for a granular exploration of the impact of each of these components on the turbine
performance in isolation. Although such an extension to consider non-uniform inflow has
already been made by Draper et al. (2016), in this paper we present a new formulation
that leads to analytical solutions for any number of bypass streamtubes. This enables very
fast calculations not only for a single turbine but also for a large number of turbines in a
multi-row system.

The paper is structured such that in § 2 the theory and mathematics are presented
along with a discussion of the assumptions made. In § 3 some example solutions for a
single turbine are presented to explore the impact of averaging shear in the bypass and
core flows, respectively, for select sheared inflow cases. In § 4 solutions for a selection
of multi-row turbine arrays are presented and discussed. Discussion and conclusions of
theoretical predictions, are presented in § 5.

2. Extended LMADT

We consider many rows of spanwise equally spaced turbines as depicted in figure 1. The
rows are considered to be infinitely wide (or sufficiently wide to ignore the spanwise
end effect) and evenly spaced; therefore, we can exploit the symmetry in the system to
only consider a local flow domain that is laterally bounded, as shown in figure 2. Note
that the local domain here is constructed for the context of a turbine array, therefore y
represents horizontal direction. However, y can also be defined as the vertical direction
when considering a single turbine in a channel with a rigid lid. The local flow domain is
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Figure 2. Diagram of non-dimensionalised local flow domain with a single streamtube passing through the
turbine.

primarily defined by the blockage ratio B, where the cross-sectional area of the domain
is A/B, with A as the turbines swept area. Note that, for uniform inflow when B → 0 the
system limits to the Lanchester–Betz–Joukowsky case. As the LMADT only considers the
local flow domain, it is assumed that the blockage ratio and inflow profile are both known.

The main assumptions employed in this analysis are that the flow is inviscid,
incompressible and steady. The flow is also assumed to be symmetric about the centre
of the turbine in two-dimensional (2-D) applications of the method and axisymmetric in
3-D applications. The actuator itself is modelled to apply a uniform force on the fluid; this
will be discussed further in § 2.2.

For the 2-D case presented in this paper, A is our reference length defined as the length of
the 1-D actuator strip and u is our reference velocity (e.g. u = 10 m s−1). The inflow profile
is defined by N + 1 segments with velocity φiu and cross-sectional area RiA, where 0 <

Ri ≤ 1/B and φi > 0. All velocity and area values are defined as a real positive scalar times
u and A, respectively, which act as dimensional parameters. At the downstream position
the flow profile is defined by N + 2 segments with velocity βiu and cross-sectional area
RβiA, where 0 < Rβi ≤ 1/B and βi > 0. The velocity through the turbine is αavu, with
αav > 0. We obtain an additional streamtube in the downstream as one of the upstream
streamtubes is split by the turbine. For example, with one upstream streamtube (uniform
inflow) we obtain two downstream streamtubes i.e. the bypass and the wake. Although φ0
is expressed explicitly in the formulations below all computations will be for normalised
flow profiles such that φ0 = 1.

The problem can be split up into two cases that will be solved slightly differently. The
first case is when the flow passing through the turbine has uniform velocity, as depicted in
figure 2. The second case is when the flow velocity is non-uniform across the turbine, as
depicted in figure 3.

2.1. Uniform flow through turbine
For uniform flow through a turbine Bernoulli’s equation is first applied to the streamtubes
which bypass the turbine. This gives

p1 + 1
2ρu2φ2

i = p4 + 1
2ρu2β2

i+1, (2.1)

for i ≥ 0, where ρ is the fluid density, p1 is the static pressure upstream of the turbine,
p2 and p3 are the static pressures immediately upstream and downstream of the turbine,
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Figure 3. Diagram of non-dimensionalised local flow domain with multiple streamtubes passing through the
turbine.

respectively, and p4 is the static pressure downstream of the turbine. It is assumed for p1
and p4 that the pressure has equalised in the spanwise direction. This can be rewritten as

p1 − p4 = 1
2ρu2(β2

i+1 − φ2
i ). (2.2)

As the pressure drop p1 − p4 is constant for all bypass streamtubes we can equate the
right-hand side of (2.2) for two different bypass streamtubes (indexed i and j) to obtain a
relationship between the velocities

βj =
√

β2
i − φ2

i−1 + φ2
j−1, (2.3)

for i, j ≥ 1. We can fix i = 1 so only the downstream bypass flow speed for the streamtube
that immediately bypasses the turbine (β1) is required to know all the other downstream
bypass flow speeds (β2 to βN+1). Furthermore, if the bypass flow speeds are known then
all downstream areas of bypass streamtubes are known via the conservation of mass

Riφi = Rβi+1βi+1, (2.4)

for i ≥ 1. Now considering the momentum balance for the entire domain between the
upstream and downstream locations the thrust of the turbine is obtained as

T
A

=
n∑

i=0

Riφ
2
i u2ρ −

n+1∑
i=0

Rβiβ
2
i u2ρ + 1

B
( p1 − p4). (2.5)

Using (2.2) with i = 0 to remove the pressure terms in the equation

T
A

=
( n∑

i=0

Riφ
2
i −

n+1∑
i=0

Rβiβ
2
i + 1

2B
(β2

1 − φ2
0)

)
u2ρ. (2.6)

Applying the Bernoulli equation upstream and downstream of the disc to obtain a relation
between the pressure drop across the turbine and the velocity of the flow gives

( p1 − p2) + ( p3 − p4) = 1
2ρu2((α2

av − φ2
0) + (β2

0 − α2
av)). (2.7)

Using the static equilibrium across the turbine the thrust is just the pressure drop across
the turbine so from (2.7) we simplify to

T
A

= p2 − p3 = 1
2
ρu2(β2

1 − β2
0 ). (2.8)

957 A10-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.49


M.C.R. Juniper and T. Nishino

We will set the flow speed u, turbine area A and density ρ equal to 1 for simplicity in the
rest of the calculation. Now equating (2.6) and (2.8) gives

1
2
(β2

1 − β2
0 ) =

n∑
i=0

Riφ
2
i −

n+1∑
i=0

Rβiβ
2
i + 1

2B
(β2

1 − φ2
0). (2.9)

From the conservation of mass applied to the streamtube which encompasses the turbine,
the following expression is obtained:

R0φ0 = Rβ1β1 + Rβ0β0

= β1

(
1
B

−
n+1∑
i=2

Rβi − Rβ0

)
+ αav

= β1

(
1
B

−
n+1∑
i=2

Rβi − αav

β0

)
+ αav. (2.10)

This can be rewritten in terms of αav as

αav =
β0

(
R0φ0 − β1

(
1
B

−
n+1∑
i=2

Rβi

))

(β0 − β1)
. (2.11)

Re-arranging (2.9) can give

β2
0 + 2

(
R0φ

2
0 − Rβ0β

2
0 − Rβ1β

2
1 +

n∑
i=1

Riφi(φi − βi+1)

)
+ 1

B
(β2

1 − φ2
0) − β2

1 = 0.

(2.12)

By the conservation of mass of the core flow Rβ0β0 = αav , and along with Rβ1β1 =
R0φ0 − αav equation (2.12) can be rewritten as:

β2
0 − 2αavβ0 + 2β1αav + 2

(
R0φ0(φ0 − β1) +

n∑
i=1

Riφi(φi − βi+1)

)

+ 1
B

(β2
1 − φ2

0) − β2
1 = 0. (2.13)

Let

C1 = 2

(
R0φ0(φ0 − β1) +

n∑
i=1

Riφi(φi − βi+1)

)
+ 1

B
(β2

1 − φ2
0) − β2

1 , (2.14)

and

C2 =
(

R0φ0 − β1

(
1
B

−
n+1∑
i=2

Rβi

))
. (2.15)

Now substitute (2.11) in for αav to obtain

β3
0 − (2C2 + β1)β

2
0 + (2C2β1 + C1)β0 − C1β1 = 0, (2.16)

which is a cubic equation of β0 that can be solved analytically if we fix β1, as C1 and C2
are functions of known terms and downstream bypass flow terms which can be obtained
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from β1 using (2.3) and (2.4). The power generated by the turbine assuming no internal
losses is

P = Tαavu = αav(β
2
1 − β2

0 )
(

1
2ρAu3

)
= CP

(
1
2ρAu3

)
, (2.17)

reintroducing the area, density and velocity terms for clarity. Note that the power
coefficient of the turbine, CP, is a function of αav (2.11), β1 and β0, where only one of these
needs to be given to set the operating condition of the turbine and thus solve the problem.
In LMADT it is common to introduce a disc resistance (or local thrust) coefficient k to
describe the operating condition of the turbine such that

T = 1
2 kρA(αavu)2, (2.18)

therefore k = (β2
1 − β2

0 )/α2
av , by equating (2.17) and (2.18). Hence, the value of CP can be

calculated analytically for a given set of k, B and a given inflow profile (Ri and φi).
The generalised approach means we are not constrained by the number of bypass

streamtubes calculated. This removes, for example, the need to reduce the number of
streamtubes through mixing assumptions used in previous multi-row studies which could
result in substantial differences in the predicted power (Juniper & Nishino 2020).

2.2. Non-uniform flow through turbine
When considering non-uniform flow through a turbine the calculations are much the same
as the uniform case presented in § 2.1. A choice is required, however, on how to model the
actuator disc. For uniform flow through a turbine there is little decision to be made as all
methods considered for the non-uniform case produce equal results. The first method, is
to keep the resistance, k, uniform across the turbine. The second is to define the velocity
profile across the turbine. The final approach considered is to maintain thrust, and therefore
Δp, to be uniform across the turbine.

The first method is often used as it gives a more accurate representation of an ideal
porous disc which is often used as a representation of a turbine in experimental work (e.g.
Myers & Bahaj 2012) and in computational studies (e.g. Nishino & Draper 2015).

Draper et al. (2016) obtain a uniform local resistance coefficient k for an unblocked
turbine; however, this is a consequence of defining the flow velocity across the turbine.
For the blocked case they restrict their attention to the case where αi/φi is constant across
the disc, i.e. the velocity profile through the turbine is self-similar upstream. Here, αi is a
scalar such that αiu is the velocity of the ith streamtube that passes through the turbine.
Draper et al. (2016) note that in flow that is not highly sheared or highly blocked the above
method results in a near uniform resistance.

Chamorro & Arndt (2013) adopted the third method, uniform thrust, constructing a
correction factor to the Lanchester–Betz–Joukowsky limit for a turbine in a neutrally
stratified atmospheric boundary layer. This method will be adopted in our calculation
for non-uniform flow through a turbine. In support of this approach Revaz & Porté-Agel
(2021) found through large-eddy simulation that a model which computes non-uniform
force distributions over the turbine and a model which assumes uniform forces over the
turbine can both make accurate predictions for the flow in the far wake and power of the
turbine. An exploration of the impact of non-uniform force for LMADT is presented in
Appendix A.2.

957 A10-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.49


M.C.R. Juniper and T. Nishino

For non-uniform flow through the turbine we start off as before by applying Bernoulli’s
equation to streamtubes that bypass the turbine

p1 − p4 = 1
2ρu2(β2

i+1 − φ2
i ), (2.19)

which can be equated to obtain a relationship between all the bypass flow velocities

βi+1 =
√

β2
j+1 + φ2

i − φ2
j , (2.20)

for i, j ≥ M, where M is the index of the streamtube that is split by the turbine, as depicted
in figure 3. Applying Bernoulli’s equation to streamtubes that pass through the turbine
gives us

p2 − p3 = Δp = 1
2ρu2(φ2

a − β2
a − φ2

M + β2
M+1), (2.21)

and, as Δp is held constant,

βa =
√

β2
b + φ2

a − φ2
b, (2.22)

for a, b ≤ M. So all streamtube velocities are related once one downstream velocity in the
bypass and one downstream velocity in the core flow are known. Likewise the conservation
of momentum is defined as

0 = (β2
M − β2

M+1) + 1
B

(β2
M+1 − φ2

M) + 2

⎛
⎝M−1∑

i=0

Riφi(φi − βi)

+
n∑

i=M+1

Riφi(φi − βi+1) + R′φM(φM − βM) + R∗φM(φM − βM+1)

⎞
⎠ , (2.23)

where RM = R′ + R∗ with R′ as the upstream area of the streamtube which passes through
the turbine and R∗ being the upstream area of the streamtube which directly bypasses the
turbine.

The power P is calculated as

P =
M∑

i=0

RαiAαiuΔp, (2.24)

where RαiA is the size of the ith streamtube at the turbine plane; however, Rαi is not
calculated in this analysis. Therefore, this is rewritten using the conservation of mass to
obtain an equivalent expression based on known upstream values

P = AuΔp

(
R′φM +

M−1∑
i=0

Riφi

)
. (2.25)

We define the power coefficient as

CP = P
1
2
ρAu3

= P
1
2
ρA

R′ +
M−1∑
i=0

Ri

u3

(
R′φ3

M +
M−1∑
i=0

Riφ
3
i

) , (2.26)

which is the power normalised using the cube of the upstream velocity of the flow that
passes through the turbine, u3. To solve this system, we need to know what portion of
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upstream flow passes through the turbine, allowing M to be determined. For this reason
αav , the average velocity through the turbine, is used as the input parameter, thus allowing
M to be determined by conservation of mass. After αav is selected a range of βM+1 and
βM values are iterated over to find the relevant root. The combinations of all βM+1 and
βM values do not need to be checked. It is possible to solve the system by first solving
a corresponding uniform case and then solving for the non-uniform core flow; this is
done by averaging the flow through the turbine such that it is uniform and has the same
mass as the non-uniform and correcting (2.18) to account for the additional momentum
in the non-uniform case. This fixes βM+1, which will be equal between the uniform and
non-uniform cases. Then βM can be found using (2.21) and the conservation of mass in
the core flow.

3. Single-row results

Now we present some example solutions of the extended LMADT for a single turbine or a
single row of turbines. It is worth noting that common wake models such as Jensen (1983)
assume a ‘top-hat’ profile for turbine wakes with locally uniform velocity instead of the
more realistic sheared profile. The main aim of this section is therefore to investigate the
physical implications of such a simplification of the inflow profile on the performance of
a turbine in a laterally bounded domain.

3.1. Effective blockage with sheared bypass flow
A study into the impact of non-uniform inflow on the power of a turbine has been
conducted by Draper et al. (2014), in which they found that a faster (or slower) bypass
flow, compared with the core flow, could increase (or decrease) the power extracted by a
turbine. This was explained by a change in the ‘effective blockage’ of the turbine, i.e. the
faster (or slower) bypass flow inhibits (or enhances) the expansion of the core flow for a
given geometrical blockage.

The effective blockage of a turbine is the blockage ratio required to attain the same
CP max with a uniform inflow. Since CP max for the case with uniform inflow is known to be
16/(27(1 − B)2) (Garrett & Cummins 2007; Dehtyriov et al. 2021), the effective blockage,
Beff , is calculated as

Beff = 1 −
(

16
27CP max

)1/2

. (3.1)

The results of this work by Draper et al. (2014) was limited by the top-hat inflow profile
shape, as shown in figure 4(a), where r is the width of the core flow and φu is the velocity
of the bypass. It was unclear whether this top-hat inflow profile would accurately predict
the flow induced blockage of sheared bypass flows. Draper et al. (2016) investigated the
effective blockage of a turbine experiencing a variety of sheared inflow profiles. However,
their study considers shear flow across the whole domain so cannot fully clarify the impact
of a sheared bypass compared with a uniform bypass on the power extraction of turbine.

In this study a comparison of the effective blockage was conducted between the cases
with a top-hat inflow profile and a flow profile with a uniform core and linearly sheared
bypass flow, as shown in 4(b). For the sheared case the upstream number of streamtubes is
set at 201, which was found to be sufficient to accurately obtain the values of CP max and
thus Beff (see figure 5). To make a fair comparison, the mass flux in the bypass is held
constant between the uniform bypass and linearly sheared cases.
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Figure 4. Contours of effective blockage ratio, Beff , for (a,c) uniform bypass and (b,d) sheared bypass cases,
for fixed geometric blockage ratios (a,b) B = 0.2 and (c,d) B = 0.1.

The effective blockage for various bypass speeds and bypass sizes is plotted in figure 4
for two different blockage ratios B = 0.2 and 0.1. When φ = 1 we obtain the Garrett
& Cummins (2007) result for a blocked turbine experiencing uniform inflow. Across all
bypass sizes and bypass speeds the uniform bypass scenarios predict a higher effective
blockage than the sheared bypass flow cases. This is more prominent for the lower
blockage case of B = 0.1. The over-prediction by the uniform bypass case occurs as for
a given background pressure gradient the uniform bypass case restricts the expansion of
the core flow more than the sheared bypass case; thus less flow is diverted around the
turbine. The additional constraint from the uniform bypass flow can be illustrated from
the increased effective blockage ratio Beff in the uniform case compared with the sheared
bypass in figure 4.

The reduction in Beff across all r and φ values for the linear shear, in comparison with
the uniform bypass, implies that the performance of a turbine placed in another turbine’s
wake may be consistently over-predicted when the upstream bypass flow is modelled as
uniform instead of sheared. This result has implication for the use and benchmarking of
wake models which maintain a top-hat flow profile in downstream like that of Jensen
(1983) and Frandsen et al. (2006) when applied to the analysis of multi-row turbine arrays.
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Figure 5. Value of CP max plotted against number of bypass streamtubes N for B = 0.2, r = 1 and six
different φ values.

These top hat wake models are popular analytical models for turbine wakes which are still
used today for turbine array optimisation (e.g. Duc et al. 2019).

3.2. Effective blockage with sheared core flow
In the previous section the impact of resolution/flow averaging on the power coefficient of
a laterally bounded turbine with a sheared bypass flow was identified. In this section the
impact of flow averaging for a shear flow passing through a turbine will be explored by
comparing two flow profiles, sheared core and uniform core.

The base inflow profile which spans the domain will be a linear shear profile of the form

φ = (1 − δ) + (2δ)
y
A

, (3.2)

where y/A is the non-dimensional spanwise distance from the centre of the turbine and
δ is a parameter to define the significance of the shear. The portion of the flow which
passes through the turbine will either be kept as a shear profile or be averaged to become
a uniform flow profile, as illustrated in figure 6(b). All results presented below are for
geometric blockage ratios of B = 0.1 and B = 0.2. The spanwise resolution of the flow
was defined by fixing the number of upstream streamtubes which pass through the turbine
at 20, as it was found to be adequate to ensure convergence with a difference of less than
0.2 % compared with calculating 500 streamtubes through the turbine.

The effective blockage is plotted against δ in figure 6 for the case of sheared flow through
the turbine and uniform flow through the turbine. Across all δ values the uniform core
flow case exaggerates the impact of the faster (if δ is positive) or slower (if δ is negative)
bypass flow on the effective blockage. For negative δ values where the slower bypass
leads to effective blockages lower than the geometric blockage ratio, a uniform core flow
will under-predict the power extracted when compared with the sheared core flow case.
Conversely, for positive δ values where the faster bypass increases the effective blockage
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Figure 6. Difference in the effective blockage between the uniform flow through a turbine and the shear flow
through a turbine, for fixed geometric blockage ratios (a) B = 0.1 and (b) B = 0.2.

ratio, a uniform core flow will over-predict the power extracted when compared with the
sheared core flow case.

The theoretical approach detailed in § 2.2 only needs to consider which streamtube
passes through the turbine and which enters the bypass. Hence, the spanwise position
of each streamtube within the core or bypass flow does not impact the results, as long as
the streamtube with velocity φMu is still split by the turbine. Therefore, although simple
linear shears were considered for this analysis, the trends observed here can be expected
in cases with more complicated flow profiles as long as the above condition is satisfied.

4. Multi-row results

The previous section explored the impact of non-uniform inflow on a single turbine in a
laterally bounded domain. This section conducts an analysis of multi-row turbine arrays
modelled with the inviscid–viscous approach.

4.1. Local and global power coefficients
A distinction is made here between what we define as the ‘internal’ and ‘external’
performance of a multi-row array. To demonstrate this distinction in a simple manner,
we first consider a special case of multi-row arrays where the streamwise distance between
each row is large enough for the wake of each turbine to be fully recovered. This special
case has been studied in a tidal turbine array context by Vennell (2010) who combined the
LMADT of Garrett & Cummins (2007) with an analytical tidal channel model (Garrett &
Cummins 2005). We present an equivalent special case in the wind turbine array context
by combining results from the LMADT (with uniform inflow for each turbine) and an
analytical ‘external’ model derived from the two-scale momentum theory for large wind
farms (Nishino & Dunstan 2020).

We define the array-average ‘local’ or ‘internal’ power coefficient as

C∗
P =

n∑
i=1

Pi

1
2
ρu3

avnA
, (4.1)
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where Pi is the power at the ith turbine and n the number of turbines in the array. This
represents the total power of turbines for a given (fixed) mass flux through the local flow
domain. Here, we assume that the average velocity, uav , corresponds to the ‘farm-layer
average’ velocity, UF, in the two-scale momentum theory (as the inflow profile is uniform
for all turbines and thus we cannot define the farm layer in this simple example). By
keeping the mass flux constant through the local flow domain we restrict our attention to
the ‘internal’ performance of the array, which can increase due to local blockage effects.
This is in contrast to ‘global’ performance which can be impacted by wind-farm blockage
effects (Bleeg et al. 2018; Kirby, Nishino & Dunstan 2022) reducing the power of a
wind farm as the mass flux through the whole array decreases. Alongside the local power
coefficient C∗

P, we also define the array-averaged ‘global’ power coefficient as

CG
P =

n∑
i=1

Pi

1
2
ρU3

0nA
, (4.2)

where U0 is undisturbed or ‘natural’ wind speed observed when the whole wind farm does
not exist. Therefore, CG

P is a measure of the ‘overall’ efficiency of the farm, represented by
the ratio of power extracted by the turbines and the power of the undisturbed flow through
the total turbine swept area. Here, CG

P = β3C∗
P, where β = uav/U0. To illustrate the impact

of local blockage on CG
P and C∗

P, we compare how theses power coefficients change as we
vary the lateral turbine spacing in a multi-row turbine array.

We calculate C∗
P directly from LMADT, whereas CG

P is estimated by combining
LMADT results with the two-scale momentum theory of Nishino & Dunstan (2020). To
estimate the unknown velocity ratio, uav/U0, from the theory, we consider that there are
multiple rows of turbines placed equidistantly with a large streamwise spacing of 20D,
where D is the turbine diameter, and assume that this distance is large enough for each
turbine wake to be fully recovered (see e.g. Sedaghatizadeh et al. 2019). This allows us to
calculate the array density λ (which is the ratio of the total turbine swept area to the farm
area) as a function of the lateral turbine spacing L, i.e. λ = πD/80L. We further assume
a simple relationship between B and L as B = πD/20L for convenience, meaning that the
height of the local flow domain (which may be defined when there is a strong capping
layer acting like a rigid lid) is 5D. This means that we assume λ = 0.25B in the following
analysis.

To solve the two-scale coupled problem, we also need to calculate from LMADT the
array-averaged ‘local’ or ‘internal’ thrust coefficient, defined as

C∗
T =

n∑
i=1

Ti

1
2
ρu2

avnA
, (4.3)

where Ti is the thrust at the ith turbine. The two-scale coupled momentum balance
equation from Nishino & Dunstan (2020) is

C∗
T
λ

Cf 0
β2 + βγ = 1 + ζ(1 − β), (4.4)

where the momentum availability factor (right-hand side) has been approximated using a
linear wind extractability model (Patel, Dunstan & Nishino 2021). Here, we also set the
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Figure 7. Contour plots of (a) C∗
P and (b–d) CG

P of a multi-row turbine array without wake interactions between
rows, for (b) ζ = 5, (c) ζ = 15 and (d) ζ = 25 for various blockage ratios (B) and resistance coefficients (k).
Optimal resistance kopt is shown by a red line.

natural bottom friction coefficient as Cf 0 = 0.002 to be typical of an offshore wind-farm
scenario. We set the bottom friction exponent as γ = 2, which is a reasonable value and
allows for the momentum equation (4.4) to be solved analytically. Therefore, β is reduced
to a function of an external (mesoscale) flow parameter ζ . Here, ζ is the momentum
response parameter for the atmosphere, which represents the ability of the atmosphere
to sustain wind speed against the resistance caused by the wind farm, i.e. the extractability
of wind. Typical values of which are expected to be between 5 and 25 for a realistic large
offshore wind farm (Patel et al. 2021).

Figure 7 shows the values of C∗
P and CG

P (for three different atmospheric response
strengths, ζ = 5, 15 and 25) across a range of turbine resistance coefficients and blockage
ratios. In each plot the red line shows the optimal resistance coefficient, kopt, which is
defined as the value of k at which the maximum power coefficient is achieved at each
blockage ratio B. If k is fixed the local power coefficient C∗

P always increases with B,
whereas the global power coefficient CG

P tends to decrease at different rates depending on
ζ . Importantly, the value of kopt for C∗

P increases rapidly with B (from 2 at B = 0 to 5.4 at
B = 0.2) but kopt for CG

P tends to decrease, especially when ζ is small.
Figure 8 shows the maximum C∗

P and corresponding CG
P values obtained with k = k∗

opt
at each blockage ratio B, where k∗

opt is the kopt value for C∗
P. Increasing B (or decreasing the
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Figure 8. Maximum local power coefficient and corresponding global power coefficients of a multi-row
turbine array without wake interactions between rows, plotted against the blockage ratio (B) for a range of
momentum response parameters (ζ ) (with the assumption that λ = 0.25B, Cf 0 = 0.002 and γ = 2).

lateral turbine spacing L) causes C∗
P max to increase, as observed in figure 7(a), however, CG

P
at k = k∗

opt decreases monotonically for all values of ζ between 5 and 25 (as the increase
in C∗

P is not large enough to compensate for the decrease in β3). Note that B = πD/20L
has been assumed in this example and hence B = 0.157 corresponds to L/D = 1, meaning
that blockage ratios of higher than 0.157 are unphysical in this example (unless we allow
for variable turbine hub heights in each row).

Note that, while a streamwise spacing of 20D was selected for the above analysis, larger
spacing may be required for each turbine wake to be fully recovered in a real wind farm
depending on the turbulence intensity. However, the trends in the relationship between the
local and global power coefficients observed in this exploration remain consistent across
choices of spacing.

In the following sections we consider the more general case where the streamwise
distance between rows is not large enough for the wake to be fully recovered. To model this
we use an inviscid–viscous approach, outlined in the next sub-section, but for simplicity no
longer consider the external momentum balance, therefore we only focus on the ‘internal’
performance of the array represented by C∗

P.

4.2. Inviscid–viscous approach
For the following multi-row analysis we utilise the inviscid–viscous approach as described
in Ouro & Nishino (2021). As illustrated earlier in figure 1, this approach treats the region
around the turbine as an inviscid flow region which is modelled with LMADT, followed
by a viscous mixing zone downstream which is modelled separately. This approach is in
line with the results of West & Lele (2020) who, in a large-eddy simulation study of flow
around an actuator disc, showed that inviscid flow processes dominate around the turbine
and viscous processes dominate further downstream. We adopt the same simplification
in this analysis as in Ouro & Nishino (2021) that mixing takes place uniformly across
the viscous mixing zone and will be defined by a single parameter 0 ≤ m ≤ 1 such that

957 A10-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.49


M.C.R. Juniper and T. Nishino

0 2 4 6 8

k k
10 12 14 16

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

One bypass
Two bypass
Three bypass

2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C∗
p

(a) (b)

Figure 9. The C∗
P predictions for four rows of (a) aligned and (b) staggered turbines for various numbers of

upstream bypass streamtubes. Blockage and mixing rate are fixed at B = 0.2 and m = 0.6.

uout = muav + (1 − m)uin, where uin is a streamtubes velocity entering the viscous mixing
zone, uav is the average velocity across the whole domain and uout is the velocity as it exits
the viscous mixing zone. For example when m = 1 the whole flow becomes uniform and
when m = 0 no mixing occurs.

4.3. Instant mixing assumption and its validation
Previous utilisations of the inviscid–viscous approach for an infinitely large array of
turbines (Nishino & Draper 2019; Ouro & Nishino 2021) only calculate a fixed number
of bypass streamtubes. As the number of streamtubes in the system increases at each
turbine row (meaning that an infinite number of streamtubes would be required to model an
infinitely large array), an assumption was made to keep the number of bypass streamtubes
fixed. The assumption is that the bypass flow in the streamtube adjacent to the turbine
(the streamtube with velocity β1 in figure 2) is always fully mixed in the viscous mixing
zone (regardless of the value of the mixing parameter m) with the bypass flow in the
streamtube immediately outside (the streamtube with the velocity β2). In the case with
uniform flow through the turbine the streamtubes with velocity β1u and β2u are mixed to
a single streamtube with the new velocity coefficient

β ′ = Rβ1β1 + Rβ2β2

Rβ1 + Rβ2

, (4.5)

therefore the number of bypass streamtubes remains constant in the upstream and
downstream.

The extended LMADT for a generalised number of bypass streamtubes outlined in § 2
allows for the impact of this instant mixing assumption to be accurately quantified. For
this investigation both an aligned and a staggered turbine arrangement are considered with
the first turbine row experiencing a fully uniform inflow. For a fixed blockage ratio and
mixing rate, B = 0.2 and m = 0.6, the array-averaged power coefficient C∗

P of four rows
of turbines is plotted in figure 9 against resistance coefficient k for three different levels of
instant mixing. Firstly, the ‘one bypass’ case is for instant mixing such that there are only
up to two upstream streamtubes (i.e. the number of streamtubes increases from two to three
in the inviscid zone but decreases from three to two due to the instant mixing between the
two bypass flows in the viscous zone), the ‘two bypass’ case allows for three upstream
streamtubes, and the ‘three bypass’ case allows for four upstream streamtubes. The three
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Figure 10. Contour plots of the maximum C∗
P for a given mixing rate m and blockage B across 12 turbine

rows for (a) aligned and (b) staggered turbine arrangements.

bypass case is therefore the case where no instant mixing occurs for any of the four rows.
The plots show that the only significant difference in predictions occurs in the staggered
case when the upstream number of streamtubes is fixed at two (which is understandable as
we need at least three upstream streamtubes to represent the wake of a staggered turbine
upstream). Therefore as previous studies utilising this method (Nishino & Draper 2019;
Ouro & Nishino 2021) have a minimum of two upstream streamtubes for the aligned case
and at least three for the staggered, their predictions and conclusions are not significantly
impacted by the instant mixing assumption.

4.4. Efficiency of aligned and staggered arrays
Figures 10 and 11 show the maximum C∗

P and the corresponding optimal local thrust
coefficient, C∗

T opt, for an aligned and staggered array of 12 turbine rows, as an example of
a multi-row analysis. The analysis was conducted without employing the instant mixing
assumption. The optimal local thrust coefficient, C∗

T opt, is the C∗
T value at which the array

obtains the maximum C∗
P. These example cases are with a uniform inflow profile at the

first turbine row, a constant k for all 12 rows and it is assumed that mixing rate m also
remains constant. For the aligned case in figure 10(a) we observe that the array achieves
a maximum C∗

P at higher blockage and mixing rates, with m = 1 being optimal for all
blockage ratios. For the staggered case the efficiency of the array can slightly improve
when the mixing rate is less than one. This is because a downstream turbine can take
advantage of the increased speed of flow bypassing upstream turbines. These trends agree
well with the theoretical and computational results of Ouro & Nishino (2021) for infinitely
large arrays of turbines.

In both turbine arrangements the regions of higher C∗
P max are accompanied by higher

C∗
T opt. However, the gradient of increasing C∗

T opt does not exactly match that for
increasing C∗

P max so there are opportunities for improving C∗
P of an array without

increasing C∗
T (meaning that the global power coefficient CG

P could be improved by
finding an optimal balance between increasing C∗

P and decreasing C∗
T for a given ‘external’

condition, as discussed earlier in § 4.1). For example, in a staggered arrangement by using
an array layout with blockage B = 0.2 and m = 0.86 we would obtain a near identical
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Figure 11. Contour plots of the thrust coefficient, C∗
T , required for obtaining maximum C∗

P for a given mixing
rate m and blockage B across 12 turbine rows for (a) aligned and (b) staggered turbine arrangements.

power coefficient as the B = 0.19 and m = 0.6 case with a ∼5.5 % reduction in C∗
T . As

the blockage ratio B is inversely proportional to the spanwise distance between turbines
whereas the mixing rate m is expected to increase with the streamwise distance between
turbines, the above results imply that the optimal staggered array layout (to maximise CG

P )
would depend on a complex interaction between the local blockage, wake mixing and
‘external’ flow conditions (such as the momentum response parameter ζ for the case of
wind farms).

4.5. Varying turbine resistance across multiple rows
The analytic model presented in § 2 allows for more complex explorations of multi-row
turbine array optimisation such as the investigation of varying turbine resistance, k, across
multiple rows, an investigation that would become too computationally expensive with
other modelling techniques. Varying k across multiple rows may provide improvements
in the maximum farm-averaged C∗

P. Let C∗V
P max be the maximum C∗

P for varying k across
multiple rows and C∗F

P max be the optimal C∗
P when k is uniform for all rows. Figure 12

depicts C∗V
P max/C∗F

P max for a range of blockage ratios and mixing rates, for the case of three
rows of aligned or staggered turbines. As can be seen from figure 12 the magnitude of
the improvements and where they are achieved differ between the aligned and staggered
arrangements. The improvements over the uniform k scenario for the aligned case can be
up to 2 % in this example, and these improvements can be best obtained at low mixing
and blockage ratios. For the staggered arrangement the improvements are minor, of less
than 1 % in this example, and are best seen for high blockage ratios and low mixing rates,
scenarios in which the impact of an upstream turbine on the core flow of a downstream
turbine is at its greatest.

For the aligned case we see a peak in potential improvement over the uniform k case
when m is low and B ≈ 0.05. This peak occurs due to the interaction between the flow
speed through the turbine, flow speed in the wake and blockage effects. At low mixing rates
the interaction between upstream and downstream turbines is at its greatest, allowing for
more opportunities to optimise their combined performance. The basic mechanism is that
we can increase the average performance by reducing the resistance of upstream turbines
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Figure 12. Contour plots of C∗V
P max/C∗F

P max, the ratio of the farm-averaged C∗
P max achieved by varying resistance

coefficient, k, across three rows of turbines, to that obtained from the uniform k scenario. (a) Aligned;
(b) staggered.

to obtain more favourable inflow for downstream turbines. At very low B this mechanism
does not allow for much optimisation as changing k (from its optimal value for the uniform
k scenario) has a large negative impact on C∗

P of that turbine and the downstream turbines
cannot compensate for this. As B increases to B ≈ 0.05 a small reduction in k (when k is
less than kopt for the uniform k case) has a much smaller negative impact on αav than a
positive impact it has on β0, allowing us to better optimise the inflow for a downstream
turbine without sacrificing much upstream turbine performance. As B increases further,
varying k has less impact on the flow, meaning that a large change in k is required to alter
the inflow for a downstream turbine in a significant manner, and this would not offset the
great performance reduction the upstream turbine experiences due to large k variations.

All these results are obtained under the assumption that the mixing rate, m, is held
constant across the entire array. In reality, the mixing rate would change as we alter
the resistance coefficient of the turbine, for example. Implementing a more physically
realistic mixing model would provide greater insight on how we should design and
operate multi-row turbine arrays. Nevertheless, the analysis presented above highlights
the opportunity to explore large parameter space using this computationally fast analytic
model, with a single simulation taking less than 1 × 10−6 seconds.

5. Discussion and conclusions

In this study an extended LMADT method was presented which allowed for the use of
an arbitrary number of streamtubes to explore the impact of non-uniform inflow on the
efficiency of single and multiple rows of turbines. For the analysis of multi-row turbines,
the inviscid–viscous modelling approach (Ouro & Nishino 2021) was further extended
upon.

We first investigated the implication of ‘averaging’ either bypass or core part of a
sheared inflow profile for the prediction of single turbine efficiency. The results show
that such an approximation of a sheared bypass inflow profile by a uniform profile will
over-predict the effective blockage ratio and thus the turbine power. This is essentially
because a top-hat inflow profile inhibits the expansion of the core flow more than the
corresponding inflow profile with shear. This suggests that using top-hat wake profiles
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(such as those predicted by Jensen’s model) as an inflow condition for a laterally blocked
turbine may result in a substantial error in the prediction of blockage effect on the turbine
power.

The extended LMADT was also used to validate the predictions made by previous
studies which employed the inviscid–viscous approach that required an ‘instantaneous
mixing’ assumption to maintain a fixed number of streamtubes in their analysis. The results
suggest that the instant mixing assumption employed by previous studies on infinitely large
arrays (Nishino & Draper 2019; Ouro & Nishino 2021) had a negligible impact on the
predictions and thus the conclusions of the studies, as they employed the minimum number
of inflow streamtubes required to avoid substantial errors (two and three for the aligned and
staggered turbine arrangements, respectively).

After clarifying the difference between ‘local’ and ‘global’ efficiencies of multi-row
turbine arrays, the extended LMADT was also utilised to explore the local efficiency (C∗

P)
of twelve and three rows of turbines. In the analysis of three rows of aligned and staggered
turbines, we explored the impact of varying the turbine resistance k across the rows for
various local blockage ratios and mixing rates between rows. The exploration of such a
large parameter space was possible due to the very low computational cost of the model.
This investigation highlighted the possibility of improving C∗

P of a multi-row array by
tuning the operation of the turbines within it. The greatest improvements were predicted for
the aligned case, where improvements occurred when the blockage ratio was not too high
or too low for a small reduction in k of upstream turbines to lead to a sufficient increase of
the power of downstream turbines. The same cannot be said for the staggered arrangement
which was found to obtain negligible increases in C∗

P by varying k across multiple rows.
One limitation in this exploration was that only three turbine rows were considered;
a greater number of rows may allow for further improvements due to varying turbine
operating conditions across rows, especially for the aligned case. Although implementing
more rows to be optimised over is simple, the number of simulations required to find
an optimal solution will grow exponentially with each additional row. It should also be
remembered that, to find an optimal solution to maximise the ‘global’ efficiency (CG

P ) of
multi-row turbine arrays, the present model needs to be coupled with an ‘external’ flow
model (as demonstrated in § 4.1 for a special case without wake interactions between rows).
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Figure 13. Cross-sectional segment of the computational mesh around the actuator half-disc.

Appendix A. Actuator disc with non-uniform thrust

In this appendix we consider an actuator disc with non-uniform thrust and compare
analytical solutions with 3-D Reynolds-averaged Navier–Stokes (RANS) simulations.

The 3-D incompressible RANS equations are solved, modelling the Reynolds stress
terms using the standard k − ε model of Launder & Spalding (1974) (where k is the
turbulent kinetic energy and ε is its dissipation rate, and for clarity the turbine resistance
coefficient previously denoted as k will hereafter be referred to as K). The computations
are conducted using ANSYS FLUENT 2021 R2 and performed as steady state. This RANS
actuator disc method has been utilised successfully in the past (Nishino & Willden 2012a;
Nishino & Draper 2015); in particular, it has been shown to agree well with the classical,
1-D inviscid actuator disc theory when used with low levels of ambient turbulence. The
simulations are carried out with a uniform inflow profile with streamwise velocity of
Uin = 10 m s−1. For the low level of ambient turbulence, we set the turbulence quantities
as k = 0.00015 m2 s−2 and ε = 3.02 × 10−7 m2 s−3 at the inlet, which is located 25D
upstream of the disc (where D = 100 m is the disc diameter). The air density and viscosity
are held constant at 1.225 kg m−3 and 1.78 × 10−5 kg ms−1, respectively. Although a
wind turbine in a real environment may experience blockage effects from an atmospheric
capping layer above, we do not consider the stratification or vertical shear of the inflow
for simplicity. Symmetry conditions are applied to the top, bottom and side boundaries to
mimic the configuration considered by the LMADT, which represents (part of) an infinitely
wide row of turbines.

A.1. Computational mesh
Figure 13 shows an example of a 2-D slice of the computational mesh at the turbine plane.
Only a half of the disc is simulated as the flow field around the disc is symmetric. This 2-D
slice is propagated in the streamwise direction (both upstream and downstream) to make a
3-D mesh consisting of exclusively hexahedral cells. The slices are spaced non-uniformly
with minimum spacing of 0.003D, nearest to the turbine plane.
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Figure 14. Impact of grid resolution on C∗
P for B = 0.349.

A mesh sensitivity study was conducted for the domain of width 0.75D (corresponding
to 1.5D for the domain for a full disc) and height 1.5D. The normal resolution mesh had a
total of 157 200 cells and was compared against a finer resolution mesh of 1 063 200 cells.
This domain was chosen as the high shear present in a highly confined domain would be
sensitive to mesh resolution. As can be seen in figure 14 the two cases are near identical
for all values of the resistance coefficient K, with a difference in C∗

P of less than 0.1 %
for all K values tested, suggesting that the normal resolution mesh is sufficient for this
study.

A.2. Extending LMADT for non-uniform thrust
In § 2.2, Δp was held constant across the disc surface. However, if we allow Δp to vary
we can then create non-uniform thrust. To do this we set the pressure jump across the disc
in each streamtube to ciΔp where ci is a scalar. From Bernoulli’s equation for streamtubes
passing through the disc we get

ciΔp = 1
2ρu2(φ2

i − β2
i − φ2

M + β2
M+1), (A1)

from which we can obtain an updated version of (2.22) which defines the relationship
between the streamtubes passing through the turbine

βj =
√

cj

ci
(φ2

M + β2
i − φ2

i − β2
M+1) + φ2

j − φ2
M + β2

M+1. (A2)

To accurately obtain the varying resistance coefficient Ki we require αi or Rαi , which was
not required for the previous analysis. To obtain these an additional assumption is required.
The assumption used here is that the rate of expansion for each streamtube passing through
the disc is constant between the upstream and wake positions. This allows us to obtain
the area and velocity terms over the disc from the already obtained downstream flow
conditions.
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Figure 15. Variation of local C∗
T across the actuator disc placed in the middle of a square cross-section of
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Figure 16. Theoretical C∗
P vs K for uniform and varied thrust across the actuator disc surface compared with

3-D RANS, for B = 0.196.

A.3. Results
Figure 15 shows RANS results of the variation of local C∗

T across an actuator disc with
resistance coefficient K = 3 in the middle of a domain sized 2D × 2D. The local C∗

T is
greatest in the middle of the actuator disc and reduces as we move towards the tip. By
adding the capability of LMADT to handle variations of thrust across the disc surface,
now we are able to examine the impact of this variation on the theoretical prediction of
(disc-averaged) C∗

P.
To accurately compare the uniform and varying local C∗

T we take the thrust profile from
the 3-D RANS simulations for a range of resistance coefficient K from 1 to 7. We then use
these thrust profiles in the extended LMADT calculations to see if the differences in C∗

P
between LMADT and the 3-D RANS are accounted for by the non-uniform thrust profile.
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As can be observed in figure 16 the inclusion of thrust variations does little to impact
the LMADT results. It is worth noting that, although the thrust variation has little impact,
it does slightly reduce the discrepancies between the uniform thrust LMADT (Garrett &
Cummins 2007) and 3-D RANS. The results here also highlight that although the LMADT
seems an accurate predictor for C∗

P max, the disc resistance value predicted to achieve
C∗

P max is greater than the value predicted from 3-D RANS simulations. To further improve
upon the modelling capabilities of LMADT we would need to consider other physical
features impacting an actuator disc in three dimensional flow. One possible cause of the
discrepancies observed in figure 16 is the geometric differences between the quasi-1-D
and the full 3-D flow domain. As the RANS simulations utilise a square (not circular)
cross-section, the variation in radial blockage (or ‘anisotropy’ of the blockage) may have
an impact especially for these high blockage ratios (Juniper & Nishino 2022).
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available power from tidal stream turbines in the Pentland firth. Proc. R. Soc. A 469, 20130072.

ADCOCK, T.A.A., DRAPER, S., WILLDEN, R.H.J. & VOGEL, C.R. 2021 The fluid mechanics of tidal stream
energy conversion. Annu. Rev. Fluid Mech. 53 (1), 287–310.

BAHAJ, A.S., MOLLAND, A.F., CHAPLIN, J.R. & BATTEN, W.M.J. 2007 Power and thrust measurements
of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing
tank. Renew. Energy 32 (3), 407–426.

BARNSLEY, M.J. & WELLICOME, J.F. 1990 Final report on the 2nd phase of development and testing of a
horizontal axis wind turbine test rig for the investigation of stall regulation aerodynamics. Tech Rep. E.
5A/CON5103/1746.

BLEEG, J., PURCELL, M., RUISI, R. & TRAIGER, E. 2018 Wind farm blockage and the consequences of
neglecting its impact on energy production. Energies 11, 1609.

CHAMORRO, L.P. & ARNDT, R.E.A. 2013 Non-uniform velocity distribution effect on the Betz–Joukowsky
limit. Wind Energy 16 (2), 279–282.

DEHTYRIOV, D., SCHNABL, A.M., VOGEL, C.R., DRAPER, S., ADCOCK, T.A.A. & WILLDEN, R.H.J.
2021 Fractal-like actuator disc theory for optimal energy extraction. J. Fluid Mech. 927, A40.

DRAPER, S., NISHINO, T. & ADCOCK, T.A.A. 2014 Turbine blockage in non-uniform flow. In Proceedings
of the 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, pp. 3–6. Australian Fluid
Dynamics Society.

DRAPER, S., NISHINO, T., ADCOCK, T.A.A. & TAYLOR, P.H. 2016 Performance of an ideal turbine in an
inviscid shear flow. J. Fluid Mech. 796, 86–112.

DUC, T., COUPIAC, O., GIRARD, N., GIEBEL, G. & GÖÇMEN, T. 2019 Local turbulence parameterization
improves the Jensen wake model and its implementation for power optimization of an operating wind farm.
Wind Energy Sci. 4 (2), 287–302.

FITCH, A., OLSON, J., LUNDQUIST, J., DUDHIA, J., GUPTA, A., MICHALAKES, J. & BARSTAD, I. 2012
Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Weath.
Rev. 140, 3017–3038.

FRANDSEN, S., BARTHELMIE, R., PRYOR, S., RATHMANN, O., LARSEN, S., HØJSTRUP, J. &
THØGERSEN, M. 2006 Analytical modelling of wind speed deficit in large offshore wind farms. Wind
Energy 9 (1-2), 39–53.

GARRETT, C. & CUMMINS, P. 2005 The power potential of tidal currents in channels. Proc. R. Soc. A
461 (2060), 2563–2572.

GARRETT, C. & CUMMINS, P. 2007 The efficiency of a turbine in a tidal channel. J. Fluid Mech.
588, 243–251.

HOULSBY, G.T., DRAPER, S. & OLDFIELD, M. 2008 Application of linear momentum actuator disc theory
to open channel flow. Tech Rep. OUEL 2296/08. University of Oxford.

JENSEN, N.O. 1983 A note on wind generator interaction. Risø-M 2411. Risø National Laboratory.

957 A10-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.49


Turbine performance in bounded shear flow

JUNIPER, M.C.R. & NISHINO, T. 2020 Multi-row extension to laterally confined actuator disk model using
a hybrid inviscid-viscous approach. In Proceedings of the 16th EAWE PhD Seminar, pp. 33–40. European
Academy of Wind Energy.

JUNIPER, M.C.R. & NISHINO, T. 2022 A data-informed analytic model for turbine power prediction with
anisotropic local blockage effects. J. Phys.: Conf. Ser. 2265 (2), 022046.

KIRBY, A., NISHINO, T. & DUNSTAN, T.D. 2022 Two-scale interaction of wake and blockage effects in large
wind farms. J. Fluid Mech. 953, A39.

VAN KUIK, G.A. 2007 The Lanchester-Betz-Joukowsky limit. Wind Energy 10, 289–291.
LAUNDER, B.E. & SPALDING, D.B. 1974 The numerical computation of turbulent flows. Comput. Meth. Appl.

Mech. Engng 3 (2), 269–289.
LI, Z., GHIA, K., LI, Y., FAN, Z. & SHEN, L. 2021 Unsteady Reynolds-averaged Navier–Stokes investigation

of free surface wave impact on tidal turbine wake. Proc. R. Soc. A 477 (2246), 20200703.
MYERS, L.E. & BAHAJ, A.S. 2012 An experimental investigation simulating flow effects in first generation

marine current energy converter arrays. Renew. Energy 37 (1), 28–36.
NISHINO, T. & DRAPER, S. 2015 Local blockage effect for wind turbines. J. Phys.: Conf. Ser. 625, 012010.
NISHINO, T. & DRAPER, S. 2019 Theoretical prediction of the efficiency of very large turbine arrays:

combined effects of local blockage and wake mixing. In 7th Oxford Tidal Energy Workshop, pp. 31–32.
University of Oxford.

NISHINO, T. & DUNSTAN, T.D. 2020 Two-scale momentum theory for time-dependent modelling of large
wind farms. J. Fluid Mech. 894, A2.

NISHINO, T. & WILLDEN, R.H.J. 2012a Effects of 3-d channel blockage and turbulent wake mixing on the
limit of power extraction by tidal turbines. Intl J. Heat Fluid Flow 37, 123–135.

NISHINO, T. & WILLDEN, R.H.J. 2012b The efficiency of an array of tidal turbines partially blocking a wide
channel. J. Fluid Mech. 708, 596–606.

NISHINO, T. & WILLDEN, R.H.J. 2013a The efficiency of tidal fences: a brief review and further discussion
on the effect of wake mixing. In Proceedings of the ASME 2013 32nd International Conference on Ocean,
Offshore and Arctic Engineering, vol. 8. The American Society of Mechanical Engineers.

NISHINO, T. & WILLDEN, R.H.J. 2013b Two-scale dynamics of flow past a partial cross-stream array of tidal
turbines. J. Fluid Mech. 730, 220–244.

OLLIER, S.J., WATSON, S.J. & MONTAVON, C. 2018 Atmospheric gravity wave impacts on an offshore wind
farm. J. Phys.: Conf. Ser. 1037 (7), 072050.

OURO, P. & NISHINO, T. 2021 Performance and wake characteristics of tidal turbines in an infinitely large
array. J. Fluid Mech. 925, A30.

PATEL, K., DUNSTAN, T.D. & NISHINO, T. 2021 Time-dependent upper limits to the performance of large
wind farms due to mesoscale atmospheric response. Energies 14, 6437.

PORTÉ-AGEL, F., BASTANKHAH, M. & SHAMSODDIN, S. 2020 Wind-turbine and wind-farm flows: a review.
Boundary-Layer Meteorol. 174, 1–59.

REVAZ, T. & PORTÉ-AGEL, F. 2021 Large-eddy simulation of wind turbine flows: a new evaluation of actuator
disk models. Energies 14, 3745.

ROSS, H. & POLAGYE, B. 2020 An experimental assessment of analytical blockage corrections for turbines.
Renew. Energy 152, 1328–1341.

SANDERSE, B., VAN DER PIJL, S.P. & KOREN, B. 2011 Review of computational fluid dynamics for wind
turbine wake aerodynamics. Wind Energy 14 (7), 799–819.

SEDAGHATIZADEH, N., ARJOMANDI, M., KELSO, R., CAZZOLATO, B. & GHAYESH, M.H. 2019 The effect
of the boundary layer on the wake of a horizontal axis wind turbine. Energy 182, 1202–1221.

VENNELL, R. 2010 Tuning turbines in a tidal channel. J. Fluid Mech. 663, 253–267.
WEST, J. & LELE, S. 2020 Wind turbine performance in very large wind farms: Betz analysis revisited.

Energies 13, 1078.

957 A10-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.49

	1 Introduction
	2 Extended LMADT
	2.1 Uniform flow through turbine
	2.2 Non-uniform flow through turbine

	3 Single-row results
	3.1 Effective blockage with sheared bypass flow
	3.2 Effective blockage with sheared core flow

	4 Multi-row results
	4.1 Local and global power coefficients
	4.2 Inviscid--viscous approach
	4.3 Instant mixing assumption and its validation
	4.4 Efficiency of aligned and staggered arrays
	4.5 Varying turbine resistance across multiple rows

	5 Discussion and conclusions
	Appendix A. Actuator disc with non-uniform thrust
	A.1 Computational mesh
	A.2 Extending LMADT for non-uniform thrust
	A.3 Results

	References

