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Silllulation of ice accretion on a cylinder due to 
freezing rain 

KRZYSZTOF SZILDER 
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ABSTRACT. A hybrid analytical and random-walk model has been developed 
to predict the shape of ice accreted on a horizontal cylindrical insulator due to 
freezing rain. The freezing rain occurs with the temperature of the vertically falling 
raindrops above the freezing point and the air temperature below freezing. The 
analytical model calculates the angular distribution of the water-film temperature 
and the location where freezing begins. The random-walk model predicts the 
accretion shape. The two random-walk model parameters, the freezing probability 
and the shedding parameter, are expressed as functions of the atmospheric 
conditions. The model predicts a variety of realistic accretion shapes from cylindrical 
to icicle-like. Model verification based on comparisons with other models and with 
experimental results demonstrates quantitatively and qualitatively the credibility of 
this new modelling approach. 

INTRODUCTION 

When warm raindrops encounter an obstacle in their 
path, ice may accrete on the object (if the atmospheric 
temperature is sufficiently low) . Numerical models which 
are based on differential forms of the conservation of 
momentum, energy and mass equations have been used to 
predict the accretion shape. These models are called 
continuous, since they are based on the assumption of 
continuous changes of all the physical parameters. Two 
main categories of such models can be distinguished: 
time-independent and time-dependent. In time-indepen­
dent models (e.g. Lozowski and others, 1983), the 
ice-shape calculations are based on the assumption that 
the initial growth rate remains unchanged during the 
simulation. The time-dependent models try to take into 
account, to varying degrees, the fact that the growing 
accretion changes the fluid flow around the object, the 
trajectories of the incoming droplets and the heat-transfer 
conditions (e.g. Makkonen, 1984; Baker and others, 1986; 
Szilder and others, 1987; Poots and Skelton, 1990). 

In spite of significant progress in their development, 
continuous models seem to provide reasonable results only 
when the initial shape does not undergo substantial 
alterations. The most demanding cases occur when the 
accretion is very wet and has a complex geometry which 
changes with time. In this paper, instead of using a 
continuous approach, a random-walk model is developed 
to simulate the formation of an ice accretion, including 
cases when liquid moves along the surface of the ice 
accretion before freezing. 

Monte Carlo models have been used in ice-accretion 
research as an alternative to continuous models. In this 
method, the motion of each drop or of drop ensembles is 
examined discretely. This approach has been applied 
successfully to predict accretion under riming conditions 
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when impinging small droplets freeze on impact. Gates 
and others (1988) examined accretion on a fixed cylinder 
and Personne and others (1990) on a rotating cylinder. 
A certain mobility of the droplets after impact was 
proposed by Lozowski and others (1991) in the simul­
ation of hailstone growth. Szilder (1993) introduced the 
random-walk method into ice-accretion research, allow­
ing simulation of wet cases when liquid water flows along 
the surface of an ice accretion before freezing. The 
random-walk model allows the efficient representation of 
water flow along an accretion surface, since the fluid 
elements can move considerably away from the location 
of their initial impact. The random-walk model also adds 
some stochastic variability to accretion shapes in keeping 
with experimental observations. 

Most of the cases of ice accretion investigated in the 
literature are for droplet temperature below the freezing 
point. This is a reasonable assumption when the droplets 
are falling through cold air for a sufficient period of time. 
However, in some instances, there may not be enough 
time for the droplets to reach thermal equilibrium with 
the cold air. Two examples are sea spray and freezing 
rain. When drops freeze on impact, the maximum 
accretion thickness is usually located in the vicinity of 
the stagnation point unless droplets of small size are 
considered. On the other hand, for wet cases and warm 
drops, freezing may not occur at all at the forward 
stagnation point. The amount of heat provided by the 
warm droplets could be large enough to prevent freezing. 
At some distance from the stagnation point, where fewer 
drops impinge, the temperature of the liquid flowing 
along the cylinder surface may reach the freezing point 
due to heat loss to the cold air and the freezing process 
begins. A relation for the distribution of water-film 
temperature along the cylinder surface will be derived 
in this paper. 
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During wet icing conditions, when there is a lot of 
available water, a pendant-ice formation may also be 
found below the cylinder. Due to the limitations of 
continuous models, the formation of such large accretions 
above and below a cylinder has not so far been simulated 
successfully. However, continuous models of icicle form­
ation have been developed . Makkonen (1988), for 
example, has presented a model for fresh-water icicles 
and Chung and Lozowski (1990) a model of marine-icicle 
growth. 

The objective of this paper is to develop a model 
which will predict the shape and mass of ice accretions on 
an insulated cylinder due to freezing rain as a function of 
atmospheric conditions. The first part of the model 
consists of an analytical relation used to establish the 
point where water freezing begins. The second part of the 
model consists of a random-walk algorithm used to 
predict the accretion shape in the region whose 
boundaries have been established by the first part of the 
model. 

ANAL YTICAL MODEL TO PREDICT THE 
LOCATION OF INITIAL FREEZING 

A horizontal cylinder, of zero heat capacity and thermal 
conductivity, is exposed to vertically falling raindrops. 
The air temperature is below freezing and the droplet 
temperature is above freezing. If the air or drop 
temperature is sufficiently high, the freezing process 
may not begin at the upper stagnation line of the 
cylinder. The resulting film of water flowing down around 
the cylinder surface will gradually cool as a result of 
convective heat loss to the air, and at some location ice 
may begin to form. In this section of the paper, the region 
where the liquid film cools without freezing is examined. 
Due to the influence of impinging drops on the upper half 
of the cylinder, the mass- and heat-balance equations for 
the upper and lower halves of the cylinder are considered 
separately. 

Let us consider the mass-balance equation written for 

Fig. 1. A cylinder exposed to vertical!; falling freezing 
rain. 
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the upper half of the cylinder (Fig. 1). We assume that the 
droplets fall vertically following parallel straight lines and 
that, once they hit the cylinder without splashing, they 
flow along its surface. The rate of change of the mass flux 
of water flowing along the cylinder surface is therefore 
determined by the local vertical flux of the rain: 

dm 
cis= Wcos() (1) 

where m is mass flux of water flowing along the cylinder 
(kg m-I S-I); s is distance along the surface, ds = Rde 
(m); R is cylinder radius (m); e is the angle measured 
from the upper stagnation point (rad); W is rainfall rate 
(kgm- 2 s- I). Integration of the above relation gives 

m = WRsin {I where 0 $ {I $ 7r/2. (2) 

We will assume in this section that all of the water which 
reaches e = 7r /2 flows along the lower half of the cylinder 
and, if unfrozen, is shed only at the lower stagnation 
point. 

If we assume that there is no radial temperature 
gradient inside the water film, the heat-balance equation 
for water flowing along the upper half of the cylinder may 
be written simply. It states that the rate of change of the 
water's internal energy is due to the sensible heat of warm 
droplet impingement and to the convective heat loss to 
the cold air: 

cwmdTs = CWW(TD - Ts)Rcos()d() 

+ h(TA - Ts)Rd{l (3) 

where CW is specific heat capacity of water U kg-1 K-1
); Ts 

is local surface temperature (QC); TD is droplet temper­
ature (QC); h is the heat-transfer coefficient which 
includes the combined effects of convection, evaporation 
and radiation (W m-2 K-1

). For simplicity, it is assumed 
that all heat exchange between the cylinder'S surface and 
the surrounding air may be combined into a single linear 
term which is proportional to the temperature difference 
between the surface and the air (Poots and Skelton, 
1992). It is also assumed that the heat-transfer coefficient 
is not a function of location. These approximations allow 
for ease of solution. They could be relaxed in future 
provided sufficient experimental information on heat 
transfer under these two-phase flow conditions is 
available. 

In order to non-dimensionalize the model, the heat­
balance equation is first written for the upper stagnation 
point: 

0= CWW(TD - Tso) + h(TA - Tso) (4) 

where Tso is the surface temperature at the upper 
stagnation point (QC). Using Equations (2) and (4), one 
may write Equation (3) in the following dimensionless 
form: 

where 

. dT 
smO d() + (A + cos())T = (A + 1) cos() 

where 0 $ () ~ 7r/2 

T= Ts -TA; 
Tso - TA 

h 
A=-- . 

cwW 

(5) 

(6) 
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The solution of Equation (5) provides the distribution of 
film temperature over the upper half of the cylinder. 
Equation (5) has an analytical solution for integer values 
of the parameter A: 

T(O) = In(l + cos 0) - cos 0 + 1 - In2 
0.5(1 - cos 0) 

when A = 1. (7) 

If freezing does not begin by e = 7r/2, it is necessary to 
consider the heat exchange beyond this poin t. Because of 
the absence of heat flux due to impinging drops, the heat­
balance equation for the lower half of the cylinder may be 
written using a simplified form of Equation (3): 

cwWRdTs = h(TA - Ts)RdO 

where 7r /2 ~ 0 ~ 7f. (8) 

Integration of Equation (8) gives an exponential decrease 
of the film temperature with angular position: 

T(O) = e-A(6-(1r/2)) where 7r/2::; 0 ~ 7r. (9) 
T(7f/2) 

Equations (5) and (9) determine the distribution of the 
dimensionless surface temperature around the cylinder 
(Fig. 2) . An increase of the parameter A leads to a more 
rapid decrease of the dimensionless water-film temper­
ature with distance along the cylinder surface. High 
values of A correspond to rapid heat exchange with the 
cold air stream or to a small mass flux of impinging 
raindrops . I t should be stressed that this temperature 
distribution is only valid in the region where the surface 
temperature remains above the freezing point. 

To calculate the location where the film temperature 
reaches the freezing point and the freezing process begins, 
more information than the distribution of the dimension­
less surface temperature is needed. Consider first the 
limiting case when the sensible heat of the run-back water 
is neglected. The freezing process then begins at e = Bc, 
where the heat loss to the air is in balance with the 
sensible-heat flux provided by the impinging warm 
droplets: 
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Fig. 2. The dimension less surface temperature of the water 
film on a cylinder (Equation (6)), as a function of 
location . 
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Fig. 3. The freezing angle as a function of the two 
parameters a (Equation (11)) and A (Equation (6)). 
The solution of Equation (11) is also shown. 

1.0 

In this case, the location on the cylinder where freezing 
begins is given by the critical freezing angle: 

Oc = cos-1 a where 

If the heat-ratio parameter a is greater than unity, the 
freezing begins at the upper stagnation point (Fig. 3) . In 
this case, the heat loss to the cold air exceeds the 
maximum sensible-heat flux ~f the warm drops. On the 
other hand, when a is very small, the location of the 
initial freezing point approaches 7f/2. 

Since the water flowing along the cylinder surface has 
a non-zero heat capacity, the ice will begin to form 
further downstream than the location predicted by 
Equation (11) . This location may be determined as 
follows. Consider the dimensionless freezing temperature: 

T'F = TF - TA . 
Tso - TA 

It can be easily shown that 

T
• _ a+aA 
F- a+A · 

(12) 

(13) 

Knowing A and a , one can calculate T' F using Equation 
(13) and then the location where this temperature is 
reached using Figure 2. Consequently, the freezing angle 
can be expressed as a function of the two parameters A 
and a (Fig. 3). Due to the heat capacity of the run-back 
water, the location of the freezing point is moved 
downstream in comparison with the simplified case of 
zero heat capacity (Equation (11) ). This location 
difference is less pronounced for large values of the 
parameter A. For small values of both a and A, freezing 
may not occur on the cylinder at all. 

The algorithm described above predicts the distrib­
ution of the water-film temperature on the cylinder and 
the location where ice begins to form. Downstream from 
this location, the film temperature remains at the freezing 
point and freezing occurs. This freezing process is 
simulated by the random-walk model, described in the 
next section. 
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RANDOM-WALK MODEL TO PREDICT THE 
SHAPE OF THE ICE ACCRETION 

The model which is used to predict the shape of the ice 
accretion is a combination of a ballistic trajectory and a 
random-walk model. The ballistic model determines the 
location of impact of fluid elements and the random-walk 
model predicts their motion along the surface of the ice 
already formed on the cylinder. These fluid elements may 
be imagined as consisting of a single raindrop or as part of 
a raindrop. However, they maintain their identity as they 
flow along the surface and freeze. The details of this 
model have been described by Szilder (1993) and Szilder 
and Lozowski (1993). However, for completeness, the 
highlights of the model are given below. 

To simplify the calculations, the accretion domain is 
defined by a two-dimensional lattice. Fluid elements are 
fired along straight vertical lines from a random position 
along a horizontal line on the upper edge of the lattice. 
An element impinges directly on to the existing ice 
accretion when it reaches a lattice location just above or 
to the immediate right or left of a lattice box which is 
already occupied by an ice element. A fluid element could 
also hit part of the cylinder where freezing does not occur 
according to the analytical model. If this happens, the 
element is moved along the cylinder surface to the 
location of the initial freezing angle. From there, the 
element begins its random walk. 

At each time step during random walk, there are four 
possibilities for a fluid element: it may move one cell to 
the right, left or down, or it may freeze. Probabilities of 
occurrence of those four events are introduced. In the 
next section, the freezing probability will be expressed as 
a function of atmospheric conditions using a simple 
analytical approach. To simplify the dynamics, the 
probabilities of motion in the three allowed directions 
are assumed to be the same. Since the sum of all four 
probabilities is unity, the probability of motion in any of 
three permitted directions is therefore one-third of the 
difference between unity and the freezing probability. 

A fluid element's random walk may end in one of two 
ways. The first is by freezing. If this happens, a "cradle" 
location is sought for the element in the neighbourhood of 
its present location. The size of this area is determined by 
the freezing-range parameter, n . The neighbourhood is a 
square centred on the initially determined freezing point 
with side length (in cells) equal to 2n + 1. The freezing 
particle is moved to the empty cell within this area where 
it will have the maximum number of occupied neigh­
bours. If there is more than one such location, the final 
site is chosen randomly from among them. In the 
following calculations, the freezing-range parameter is 
assumed to be 4. This value gives good correspondence 
between observed and measured porosity of the ice 
accretion (Szilder, 1993). 

A second possibility for terminating the fluid element's 
motion occurs ifit is shed from the ice structure. This may 
occur in the model only if the element reaches the lowest 
level of the accretion. If the element remains at the lowest 
level without freezing for more time steps than a critical 
value called the shedding parameter, it then drips from 
the structure. Once a fluid element's motion is term-
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inated, either by freezing or by dripping, the next element 
is released. 

In the following sections the freezing probability and 
the shedding parameter will be related to the atmospheric 
conditions and the geometry of the problem, using a 
simple analytical approach. 

The freezing probability 

The freezing probability may be expressed as follows: 

Lls 
f1F = O.5SPc (14) 

where Lls is step length measured along the accretion 
surface (m); S is the distance along the cylinder surface at 
which all the water has frozen (m); Pc is the probability 
of motion along the accretion surface. Equation (14) may 
be examined by considering a simple case where the fluid 
element at each time step moves one cell downward along 
a vertical wall and consequently Pc = 1. In this case, the 
freezing probability is the ratio of the distance covered in 
one step to the mean length of the element's motion 

before freezing, i.e. half the distance required for all the 
water to freeze. When motion around a cylinder is 
considered, there are two problems which complicate this 
simple picture. First, fluid elements do not move along the 
cylinder surface in only one direction at each time step. 
Secondly, the step length along the cylinder surface does 
not correspond to the lattice spacing. 

In order to estimate the probability of motion along a 
cylinder surface, a series of 1000 numerical experiments 
was performed. In each experiment, the freezing 
probability was set to zero and the probabilities of left, 
right and downward motion were each one-third. A fluid 
element was released from the top of a cylinder whose 
radius was 20 times the grid cell size. In the experiment, 
the average number of time steps required to reach the 
bottom of the cylinder was 449. The number of grid steps 
over the same distance is 84. Consequently, the 
probability of motion along the cylinder surface, for the 
assumed values of the directional probabilities, is 0.187 . 

The relationship between the step length measured 
along the cylinder surface Lls and the grid spacing Lll is 
simply: 

(15) 

This can be seen as follows. Since a fluid element is 
constrained to travel in either horizontal or vertical steps, 
it must travel a total distance 4R in order to get half-way 
round the circumference, namely 7r R. In order to do this 
in an equal number of steps, Equation (15) must be 
fulfilled. 

The distance over which all of the flowing water 
freezes may be determined using an energy-balance 
equation. The sum of the heat loss to the air and the 
sensible heat brought by the impinging drops is 
proportional to the amount of freezing water: 

h(TF - TA)S - CW WCTn - TF)R 

= (mo - ms)LF where s ~ (7r/2)R (16) 

where s is the distance measured along the cylinder 
surface from the upper stagnation line (8 = 0) to 
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e = 7r/2, and from there vertically downward (m); mo 
is total mass flux of impinging drops on to the cylinder, 
= WR (Equation (2)) (kg m- I s-I); ms is the mass flux of 
water at location s (kg m-I S-I). Equation (16) takes a 
simpler form when the location S where all the water has 
frozen is considered. If s = S, then ms = 0 and so 

1 + St 
S = -S-R where 

0: t 
(17) 

Using Equations (15) and (17), the freezing prob­
ability may be expressed as: 

(18) 

Thus, the freezing probability is seen to be a function of 
the following variables: atmospheric conditions, com­
bined in the form of the 0: parameter and the Stefan 
number, St, the ratio of the grid size and the cylinder 
radius, and the probability of motion along the cylinder 
surface which, in turn, depends upon the directional 
probabilities of motion. This expression for the freezing 
probability has been derived for a bare cylinder but, for 
convenience, it is also used during growth of the ice 
accretion. 

The shedding parallleter 

The shedding parameter, which emulates the behaviour 
of a pendant drop, may also be expressed as a function of 
the atmospheric conditions. The pendant drop is assumed 
to be three-dimensional even though the accretion itself is 
two-dimensional. Hence, the mass-balance equation for 
the pendant drop may be written: 

lMCR 

dM = lT 2msdt . (19) 

The pendant drop starts to form at t = 0 and, after a 
period T, its mass reaches a critical value MeR, at which 
point it drips off the accretion and the process repeats. 
The factor of 2 in Equation (19) allows for the fact that 
water flows into the pendant drop from both sides of the 
accretion. In view of Equation (16), ms may be written in 
the form 

s 
ms = (1 + St)(1 - S)mo. (20) 

Since the pendant drop forms at a well-defined location 
(s = constant) for a given time interval, this mass flux is 
independent of time. This means that the average time 
interval for a fluid element to stay at the tip of the 
accretion, as part of the pendant drop, is half the drip 
period. 

The shedding parameter is defined as the average 
number of time steps, Llt, during which a model drop 
stays at the tip of the accretion before dripping. Hence 

Sh= O~~. (21) 

Calculating the period of dripping from Equation (19) 
and using Equation (20), the shedding parameter may be 
written: 
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Sh = Sho where 
1-! 

Sh _ MeR 
0- 4LltWR(1 + St) 

(22) 

and Sho is the initial shedding parameter (when s = 0). 
Thus, the shedding parameter increases with in­

creasing length of the accretion. This result can be 
explained by the fact that, as the accretion grows, an 
increasing amount of water freezes on the sides of the 
accretion and there is a decrease in the water flux 
reaching the tip of the accretion. Consequently, more 
time is required to reach the critical mass. As the 
accretion length approaches the maximum length, 
s -+ S, the shedding parameter tends to infinity. 

The critical mass of the pendant drop can be 
estimated from experimental data. The measurements 
show (e.g. Maeno and Takahashi, 1984; Chung and 
Lozowski, 1990) that the diameter of a pendant drop is 
approximately 5 mm, and hence its mass is 6.5 X 10-5 kg. 
The distance between pendant drops formed under a 
horizontal cylinder is approximately 20 mm (Makkonen 
and Fujii, 1993) . Consequently, the critical mass MeR is 
estimated as 3.2 x 10-3 kg m-I. In the next section, the 
following values are assumed: cylinder radius 20 mm, grid 
size 1 mm, velocity of the fluid elements moving along the 
accretion surface 10 mm s-I (and hence a time step of 0.1 s). 

MODEL RESULTS AND DISCUSSION 

A combination of the analytical model and the random­
walk model is used to predict accretion on a cylinder 
under freezing-rain conditions. The analytical model 
determines the location where freezing begins and the 
random-walk model predicts the accretion shape. The 
random-walk simulations are performed on a two­
dimensional lattice consisting of lOO by 150 cells. 

Using the model, the influence of external heat flux 
and the rainfall rate on the accretion process is 
investigated. In general, the external heat flux consists 
of convective, evaporative and radiative terms. However, 
for convenience, we will simply refer to all of these as the 
convective heat flux. Model calculations show that a 
change in the temperature of the drops within a realistic 
range does not substantially influence the accretion shape. 
In the results presented here, the drop temperature is 
assumed to be 2°C. 

The random-walk model's prediction of the thickness 
of the uniform part of the ice layer on the upper half of the 
cylinder may be compared quantitatively with that 
predicted by a simple heat-balance model. The mass 
mL of ice which forms during a time interval t is 
proportional to the difference between the convective­
heat flux from the cylinder and the sensible-heat flux of 
the warm raindrops: 

t 
mL = [27rRh(TF - TA) - 2RCWW(TD - TF)] LF· (23) 

The thickness of the ice layer is 

(24) 

where PI is ice density (920kgm-3
) . Equations (23) and 

(24) will be used in the discussion to check the validity of 
the random-walk model. 
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Fig. 4. The influence of the convective-heat flux on the 
accretion process. The following values have been assumed: 
the rainfall rate 5 mm h-1, the drop temperature ;t>C, the 
simulation time 5 h and the cylinder radius 20 mm. 
a. Changes of the three characteristic masses. The solid 
line represents the ice-layer mass predicted by Equation 
(23). The dashed line shows the total mass of impinging 
drops, if the horizontal cross-section of the structure had not 
changed. b. Changes of the three characteristic distances. 
The solid line represents prediction of the ice-layer 
thickness by Equations (23) and (24). 

Influence of the convective-heat flux 

The influence of the convective-heat flux on the 
distribution of the mass in the ice accretion is shown in 
Figure 4a. The total impinging rainfall mass increases 
slowly with the heat flux, since the horizontal cross­
section of the accretion which intercepts the rain increases 
with external heat flux. The total accretion mass increases 
rapidly with the heat flux and it eventually reaches the 
total impinging rainfall mass. Thereafter, all of the 
impinging water freezes somewhere on the accretion. 
The "uniform ice-layer mass", calculated as twice the 
mass accreted on the upper half of the cylinder, increases 
almost linearly with heat flux. When the accretion mass 
on the upper half of the cylinder exceeds the accretion 
below the cylinder, the uniform ice-layer mass is not 
displayed. 
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Various linear measures of the ice-shape geometry are 
shown in Figure 4b. These are: the thickness of the 
uniform ice layer, the vertical coordinate of the 
accretion's centre of mass measured upward from the 
centre of the cylinder and the pendant accretion length, 
defined as the distance between the bottom of the cylinder 
and the lowest part of the accretion. For very small values 
of the convective-heat flux, ice forms only on the lower 
part of the cylinder. When the convective-heat flux 
reaches 11.7 W m -2, the accretion covers the whole 
cylinder and the centre of mass moves slightly down­
ward. A further increase of the convective-heat flux leads 
to upward motion of the centre of mass, which moves to 
locations above the axis of the cylinder at a heat flux of 
approximately 170 W m-2

• Small values of the convective­
heat flux are associated with a small accretion length. 
Initially, an increase of the heat flux leads to an increase 
of the accretion length. However, for larger values of the 
convective-heat flux, more freezing occurs on the upper 
part of the cylinder and there is less water available to 
freeze below the cylinder. Thus, the accretion length 
decreases. 

The accretion shapes for different values of the 
convective-heat flux are shown in Figure 5. An example 
of an accretion shape, when the ice covers only part of the 
cylinder surface, is shown in Figure Sa. In this case, it has 
been assumed that a = 0.5 (Equation (11)), and con­
sequently the convective-heat flux is S.8S W m-2• From 
Figure 3, it is clear that the value of parameter A must be 
known in order to determine the freezing angle. It has 
been assumed that the value of parameter A (Equation 
(6)), is unity (this means that h = 5.85Wm-2 K-1 and 
TA =-1 cC) and the resulting freezing angle is equal to 
7r/2. The drops freeze only under the cylinder and the 
accretion grows gradually with time. However, only 7.7% 
of the impinging drops freeze. When there is enough heat 
lost to the cold air, the ice layer covers the whole cylinder 
surface. Figure Sb is for a convective-heat flux of 
11. 7 W m- 2 when a = 1. In this region, the centre of 
mass of the accretion reaches its highest location (Fig. 4b), 
because the ice forms a uniform layer around the cylinder 
and the mass accreted below the cylinder is comparatively 
small. 

When the convective-heat flux is 30Wm-2 (Fig. Sc), 
the heat and water availability below the cylinder leads to 
a substantial accretion there. For a convective-heat flux of 
about 70Wm-2 (Fig. 5d), almost all of the liquid 
impinging on to the accretion is incorporated into the ice 
structure and, at the same time, the accretion length 
reaches a maximum. At higher values of the convective­
heat flux, the accretion mass on the upper half of the 
cylinder increases and hence the overall length of the 
accretion decreases, and the centre of mass moves 
upward. This process may be seen in Figure Se. Still 
further increases of the convective-heat flux lead to in 
accretion which is larger above than below the cylinder 
(Fig. Sf and g). A substantial increase of the horizontal 
cross-section of the accretion leads to an increase in the 
number of drops impinging on to the accretion during 
accretion growth. 

Since appropriate experimental data are not avail­
able, a partial verification of the model based on a 
comparison with existing experimental data, and with 
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• 0-100 min 

o 100-200 min 

• 200-300 min 

Fig. 5. The influence of the convective-heat flux on the shape of the ice accretion. Consecutive ice layers formed during 
100 min time intervals are distinguished. The diamond shapes represent the cylinder-surface approximation. The values of 
the parameters are the same as in Figure 4 and only the convective-heat flux varies. a. 5.85 W m-2

; b. 11.7 W m-2
; 

c. 30.0 W m-2; d. 70.0 W m-2; e. 120.0 W m-2; f 170.0 W m-2; g. 250.0 W m-2 • 

https://doi.org/10.3189/S0022143000012478 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000012478


existing models which simulate some aspects of the process 
examined, has been achieved. The prediction of the 
uniform ice-layer mass and thickness has been compared 
with the simple continuous-model prediction of Equations 
(23) and (24). As can be seen in Figure 4a and b, there is 
a good quantitative agreement between the random-walk 
model prediction and the values given by the simple 
model. Of course, the advantage of the random-walk 
model is that it predicts not only the uniform ice layer on 
the cylinder but also the entire accretion shape. The 
accretion below a cylinder has been compared qualit­
atively with the formation of icicles. Experimental data 
(Maeno and Takahashi, 1984) show that a decrease of the 
air temperature leads to longer icicles. The same type of 
behaviour is exhibited by the proposed model for 
increasing convective-heat flux. In addition, the model 
suggests that, after reaching a maximum length, a further 
increase of the heat flux, or a decrease of the air 
temperature, leads to shortening of the pendant accretion. 
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Fig. 6. The influence of the rainfall rate on the accretion 
process. The following values have been assumed: the 
convective-heat flux 30 W m-2, the drop temperature 2"C, 
the simulation time 5 h and the cylinder radius 20 mm. 
a. Changes of the three characteristic masses. The solid 
line represents the ice-layer mass predicted by Equation 
(23). The dashed line shows the total mass of impinging 
drops, if the horizontal cross-section of the structure had not 
changed. b. Changes of the three ,characteristic distances. 
The solid line represents prediction of the ice-layer 
thickness by Equations (23) and (24). 
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Szilder: Ice accretion on a cylinder due to freezing rain 

Influence of the rainfall rate 

The influence of the rainfall rate on the accretion has also 
been examined (Fig. 6). At rainfall rates smaller than 
I mm h -I, the sensible heat brought by the warm rain is 
small and the convective-heat flux is large enough to 
freeze quickly all the impinging liquid. Consequently, 
most of the accretion occurs on the upper half of the 
cylinder and there is no dripping. 

When the rainfall rate is 1 mm h -I, there is a sufficient 
liquid flux to cover the whole cylinder. A further increase 
of the rainfall rate does not substantially change the 
amount of accretion on the upper half of the cylinder. 
Consequently, the mass and thickness of the uniform ice 
layer remains approximately constant. However, as the 
rainfall rate grows, the accretion below the cylinder 
increases, the centre of mass moves downward and some 
of the drops begin to fall from the tip of the structure. At a 
rainfall rate of 3 mm h- I

, the accretion length reaches a 
maximum. The existence of two competing processes can 
explain the occurrence of this maximum. On the one 
hand, a low impinging-water flux means that there is the 
potential for more water to freeze. On the other hand, a 
large impinging flux means that more sensible heat is 
brought by the warm drops and the pendant drops drip 
faster. 

Further increase in the rainfall rate leads to a gradual 
decrease in the accretion length below the cylinder. 
Consequently, the centre of mass of the accretion moves 
upward. The process of diminishing accretion below the 
cylinder and more-or-less constant accretion on top of the 
cylinder continues until the rainfall rate reaches 
12.8mmh- l

. At this point, the parameter et becomes 
unity. A further increase in the rainfall rate leads to the 
disappearance of ice from the top of the cylinder, Cl < I 
(see Fig. 3) . Since such a rainfall rate seems to be 
unrealistically high for freezing rain, these results are not 
shown in this paper. 

A comparison between the random-walk model 
prediction of the uniform ice layer and the simple 
continuous model (Equations (23) and (24)) is promising 
(Fig. 6). The random-walk model prediction has also 
been compared qualitatively to the results of the icicle­
growth model proposed by Makkonen (1988). The 
Makkonen model shows that, initially, an increase in 
the water-supply rate leads to an increase in the icicle 
length. However, after the maximum icicle length is 
reached, a further increase in the supply rate makes the 
icicle shorter. The same type of relation is found in the 
random-walk model for accretion below the cylinder. 
Despite differences in details between the processes, which 
these various models simulate, this qualitative agreement 
is encouraging. In addition, the same type of influence of 
the amount of supplied water on icicle geometry has been 
observed experimentally (Maeno and Takahashi, 1984) . 

CONCLUSIONS 

A random-walk model has been successfully used to 
simulate ice accretion due to freezing rain on a horizontal 
thermally insulated cylinder. The following aspects of 
accretion growth predicted by the random-walk model 
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have been verified. The thickness of the uniform ice layer 
compares well with that predicted by a simple analytical 
model. The growth of the accretion below the cylinder is 
in qualitative agreement with experimental results and 
model predictions for icicle growth. In the future, three­
dimensional simulations of accretion growth with a 
spatial distribution of the heat flux should lead to even 
more realistic predictions. 
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