
JFP 31, e27, 62 pages, 2021. c© The Author(s), 2021. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.
doi:10.1017/S0956796821000071

Relational cost analysis in a
functional-imperative setting

W E I H A O Q U
Boston University, Computer Science Department, Boston, MA 02215, USA

(e-mail: weihaoqu@bu.edu)

M A R C O G A B O A R D I
Boston University, Computer Science Department, Boston, MA 02215, USA

(e-mail: gaboardi@bu.edu)

D E E P A K G A R G
Max Planck Institute for Software Systems, Saarbrücken, Germany

(e-mail: dg@mpi-sws.org)

Abstract

Relational cost analysis aims at formally establishing bounds on the difference in the evaluation costs
of two programs. As a particular case, one can also use relational cost analysis to establish bounds
on the difference in the evaluation cost of the same program on two different inputs. One way to
perform relational cost analysis is to use a relational type-and-effect system that supports reasoning
about relations between two executions of two programs. Building on this basic idea, we present
a type-and-effect system, called ARel, for reasoning about the relative cost (the difference in the
evaluation cost) of array-manipulating, higher order functional-imperative programs. The key ingre-
dient of our approach is a new lightweight type refinement discipline that we use to track relations
(differences) between two mutable arrays. This discipline combined with Hoare-style triples built
into the types allows us to express and establish precise relative costs of several interesting programs
that imperatively update their data. We have implemented ARel using ideas from bidirectional type
checking.

1 Introduction

Standard cost analysis aims at statically establishing an upper or a lower bound on the
evaluation cost of a program. The evaluation cost is usually measured in abstract units,
for example, the number of reduction steps in an operational semantics, the number of
recursive calls made by the program, the maximum number of abstract units of memory
used during the program’s evaluation, etc. Cost analysis has been developed using a vari-
ety of techniques such as type systems (Grobauer, 2001; Danielsson, 2008; Dal Lago &
Gaboardi, 2011; Hoffmann et al., 2012b; Avanzini & Dal Lago, 2017), term rewriting and
abstract interpretation (Hermenegildo et al., 2005; Sinn et al., 2014; Brockschmidt et al.,
2014), and Hoare logics (Atkey, 2010; Carbonneaux et al., 2015; Charguéraud & Pottier,
2015).

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796821000071
https://orcid.org/0000-0003-1027-6556
mailto:weihaoqu@bu.edu
mailto:gaboardi@bu.edu
https://orcid.org/0000-0002-0888-3093
mailto:dg@mpi-sws.org
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796821000071&domain=pdf
https://doi.org/10.1017/S0956796821000071

2 W. Qu et al.

Relational cost analysis, the focus of this paper, is a more recently developed problem
that aims at statically establishing an upper bound on the difference in the evaluation costs
of two related programs or two runs of the same program with different inputs (Çiçek et al.,
2017; Ngo et al., 2017; Radicek et al., 2018). This difference is called the relative cost of
the two programs or runs. Relational cost analysis has many applications: It can show
that an optimized program is not slower than the original program on stipulated inputs; in
cryptography, it can show that an algorithm’s run time is independent of secret inputs, and
hence that there are no leaks on the timing side channel; in algorithmic analysis, it can help
understand the sensitivity of an algorithm’s cost to input changes, which can be useful for
resource allocation.

There are two reasons for examining relational cost analysis as a separate problem, as
opposed to performing standard unary cost analysis separately on the two programs and
taking a difference of the established costs. First, in many cases, relational cost analysis
is easier than unary cost analysis. For example, consider a programmer who would like
to update a piece of code of a distributed system, where the cost is local memory and this
resource is limited. A unary cost analysis of the overall system may be impractical, while it
may be easy to perform an analysis of the local difference memory consumption between
the original piece of code and the updated one. Second, in many cases, a direct relational
cost analysis may be more precise than the difference of two unary analyses, since the
relational analysis can exploit relations between intermediate values in the programs that
the unary analyses cannot. As an example, the relative cost of two runs of merge sort on
lists of length n that differ in at most k positions is in O(n · (1+ log(k))). This relative cost
can be established by a relational analysis as shown by Çiçek et al. (2017), but two separate
unary analyses can only establish the coarser relative cost O(n · log(n)).

Hitherto, the literature on relational cost analysis has been limited to functional lan-
guages. However, many practical programs are stateful and use destructive updates,
which are more difficult to reason about. Consequently, our goal in this work is to
develop relational cost analysis for functional languages with mutable state (i.e., for
functional-imperative programs).

To this end, we propose a refinement type-and-effect system, ARel, for relational cost
analysis in a functional, higher order language with mutable state. The first question we
must decide on is what kind of state to consider. One option could be to work with standard
references as found in many functional languages like ML. However, from the perspective
of cost analysis it is often more interesting to consider programs that operate on entire
data structures (e.g., a sorting algorithm), not just on individual references. Consequently,
we consider mutable arrays, the standard data structure available in almost all imperative
languages. This makes our type system more complicated than it would be with standard
references but allows us to verify more interesting examples.

Second, we must decide how to treat state in our functional language. Broadly, we have
two choices: State could be a pervasive effect as in ML, or it could be confined to a monad
as in Haskell, which limits side effects to only those sub-computations that actually access
the heap. In ARel, we choose the latter option since this separates the pure and impure
(state-affecting) parts of the language at the level of types and reduces the complexity of
our typing rules.

The primary typing judgment of ARel, � t1 � t2 � r : τ , states that the programs t1
and t2 are related at type τ , which can specify relational properties of their results, and

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 3

importantly, that their relative cost (cost of t1 minus the cost of t2) is upper bounded by r.1

To reason about array-manipulating programs in the relational setting, we also need to
express relations between corresponding arrays across the two runs of the two programs.
For this reason, our monadic type (the type of impure computations that can access state)
has a refinement that specifies how arrays are related across the two runs before and after

a heap-accessing computation. Specifically, our monadic type has the form
diff(r)

{P} ∃ �γ .τ {Q}.
This type represents a pair of computations, which when starting from arrays related by
the relational precondition P, end with arrays related by the relational postcondition Q,
return values related at τ , newly generated arrays referred by static names �γ , and have
relative cost at most r. This design is inspired by relational Hoare logics (Benton, 2004;
Nanevski et al., 2013), but there are two key differences: (1) Our pre- and postconditions
are minimal—they only specify the indices at which a pair of corresponding arrays differ
across the two runs, not full functional properties. This suffices for relational cost analysis
of many programs and simplifies our metatheory and, importantly, the implementation.
(2) Our monadic types carry a relative cost, and the monad’s constructs combine costs.

Additionally, ARel supports establishing lower and upper bounds on the cost of a
single expression, and falling back to such unary analysis in the middle of a proof of
relative cost. Improving over previous type-and-effect systems for relational cost analysis,
ARel permits combinations of these two kinds of reasoning in the definition of recursive
functions. Specifically, ARel provides typing rules for the fix-point operator that allow
one to simultaneously reason about the cost in the unary and relational setting. This is
useful for the analysis of several programs that we show later.

To prove that our type system is sound, we develop a logical relations model of our
types. This model combines unary and binary logical relations and it supports two different
effects, cost and state, that are structurally dissimilar. For the state aspect, we build on
step-indexed Kripke logical relations (Ahmed, 2004; Ahmed et al., 2009). Specifically, our
logical relations are indexed by a “step”—a standard device for inductive proofs that counts
how many steps of computation the logical relation is good for Ahmed (2006), Appel &
McAllester (2001). Owing to the simplicity of our pre- and postconditions, we do not need
state-dependent worlds as in some other work (Neis et al., 2011; Turon et al., 2013).

To show the effectiveness of our approach, we implement a bidirectional type checker
for ARel. Thanks to the simplified form of our pre- and postconditions, we can solve the
constraints generated by the type checker using SMT solvers. The type checker also uses
a restricted number of heuristics to address some of the non-determinism coming from the
relational reasoning, and the array operations. In order to evaluate the performance of our
implementation, we consider a broad set of examples showcasing different challenges for
relational cost analysis in programs manipulating arrays.

Our overarching contribution lies in extending relational cost analysis to higher order
functional-imperative programs. Our specific contributions are as follows:

• ARel, a type system for relational cost analysis of functional-imperative programs
with mutable arrays.

• A design for lightweight (relational) refinements of array-based computations.

1 This judgment is inspired by Çiçek et al. (2017) proposing a type-and-effect system for relational cost analysis
of functional programs without state. Notice that one can use this typing judgment also to reason about lower
bounds on the relative cost, by exchanging t2 and t1 and considering a negative cost −r.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

4 W. Qu et al.

• A soundness proof for our type system via a new step-indexed logical relation.
• An implementation of ARel, based on bidirectional type checking, which we use to

type check several functional-imperative examples.

Improvement with respect to the conference version. This paper is an extended version
of a paper published at the ICFP 2019 conference. The main additions to the conference
version are as follows:

• A comprehensive presentation of the logical relations (Section 4) used to prove
soundness, along with a full definition of the type interpretation. Additionally, rep-
resentative cases of the proof of the fundamental theorem (Section 4.3) are included.

• Two new examples (Section 5). The first one is Mergesort. This example further
illustrates the expressiveness of ARel. The second example is Loop unswitching,
a common technique used in compiler optimization. This example aims at giving
our readers insights about how ARel handles two programs that are not structurally
similar.

• A comprehensive presentation of the algorithmic version of ARel (Section 6). This
section briefly introduces bidirectional type checking along with the difficulties of
directly applying this technique to ARel. This motivates the introduction of a core
language, ARelCore, as a theoretical midway point, for the algorithmization of
ARel (Section 6.1). The concrete algorithmic type system BiARel works on the core
language (Section 6.3). This section also shows the soundness and completeness
of ARelCore with respect to BiARel and the soundness and completeness of the
elaboration from ARel to ARelCore (Section 6.2).

• An annotated example mapi used to show how the type checker works and the extent
of the required annotations (Section 7.3). This section also include an in-depth
discussion of the limitations of our implementation and directions for improvement.

• The code of the type checker as well as the examples used in Section 7 have been
released publicly at https://github.com/haddyclipk/ICFP2019_BiArel. An
appendix with full proofs is also available in the repository.

2 ARel through examples

In this section, we illustrate the key ideas behind ARel through two simple examples.

Inplace Map. Consider the following imperative map function, named mapi, taking as
input a pure function f , a mutable array a, an index k, and the array’s length n. For all
i ∈ [k, n], the function replaces the current value in the ith cell of a with f (a[i]), thus
performing a destructive update.

fix mapi (f).λa.λk.λn.
if k ≤ n then

let {x} = read a k in
let {_} = updt a k (f x) in
mapi f a (k + 1) n

else
return ()

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://github.com/haddyclipk/ICFP2019_BiArel
https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 5

The expression read a k returns the element at index k in the array a, and updt a k v
updates the index k in a to v. Our language uses a state monad to isolate all side effects like
array reads and updates, so read a k and updt a k v are actually expressions of monadic
types, also called computations. The construct let {x} = t1 in t2 is monadic sequencing,
often called “bind”.

Consider the problem of establishing an upper bound on the relative cost of two runs
of mapi that use the same function f but two different arrays a. Intuitively, the relative
cost should be upper bounded by the product of the maximal variation in the cost of the
function f (across inputs) and the number of indices in the range [k, n] at which the two
arrays differ.

To support reasoning about two runs as in this example, ARel supports relational types
that ascribe a pair of related values or related expressions in the two runs. Relational types
are written τ . In general, when we say x : τ , we mean that the variable x may be bound
to two different values in the two runs, but these two values will be related by the type
τ . Specifically, x : τ1 → τ2 means that x can be bound to two different functions f1, f2 in
the two runs, satisfying the property that for any two arguments v1, v2 of relational type
τ1, the two expressions f1 v1, f2 v2 have relational type τ2. Naturally, ARel also supports
unary types, denoted A, that ascribe only one value or expression in a single run, but we
will have no occasion to use unary types in this example, so we postpone their discussion.

To establish the relative cost of mapi, we first need a way to represent that the same
function f will be given to mapi in both runs. To this end, ARel offers the type annotation
�. The type �τ relates expressions in two runs that are (syntactically) equal and are addi-
tionally related at the relational type τ . Note that � is a relational refinement: It refines
the relation defined by the underlying type τ . Specifically, the relational typing assump-
tion f :�(τ1 → τ2) means that, in the two runs, f will be bound to two copies of the same
function, say f , that given arguments v1, v2 related at type τ1, give expressions f v1 and
f v2 related at type τ2. In our example, if the array’s elements have type τ , the type of f
would be �(τ→ τ).

Next, we need to represent the maximum possible variation in the cost of applying f . The
possible variation in the cost can be seen as an effect, and the cost of applying a function
can be seen as the effect associated with the body of the function, in particular. Hence, as is
common in effect systems (Nielson & Nielson, 1999), we can record the possible variation
in cost by means of a refinement of the function type. ARel offers a refinement of this kind.

We write
diff (r)

τ1 −→ τ2 to represent two functions of relational type τ1 → τ2, the relative cost
of whose bodies is upper bounded by r. Accordingly, if f ’s cost can vary by r, its type can

be further refined to �(
diff (r)
τ −→ τ).

Next, we need a way to specify where the arrays given as inputs to mapi in the two runs
differ. There are various design choices for supporting this. One obvious but problematic
option would be to refine the type of an array itself, to specify where the two ascribed arrays
differ across two runs. However, this design quickly runs into an issue: An update on the
arrays might be different in the two runs, so it might change the arrays’ type. This would be
highly unsatisfactory since we don’t expect the type of an array to change due to an update;
in particular, this design would not satisfy (semantic or syntactic) type preservation.

Consequently, we use a different approach inspired by relational Hoare logics: We pro-

vide a relational refinement type
diff(r)

{P} ∃ �γ .τ {Q} for monadic expressions that manipulate

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

6 W. Qu et al.

arrays. The number r is an upper bound on the relative cost of the computations in two
runs, similar to the one we have in function types, and τ is the relational type relating
the pair of pure values returned by the computations. The precondition P specifies for
each pair of related arrays in scope where (at which indices) these corresponding arrays
are allowed to differ before the execution of the computations, while the postcondition Q
specifies where these arrays may differ after the completion of the computations. More
specifically, P and Q are lists of annotations of the form γ → β, where γ is a static name
identifying a pair of related arrays and β is a set of indices where this pair of arrays may
differ in the two runs. In other words, at any index not in β, the corresponding arrays must
be the same in the two runs. Note that even at indices in β, the corresponding values must
be related at τ , but our type system includes types that do not force equality of the related
values. One such type is U(A, B) that only insists that the left and right values have (unary)
types A and B, without requiring any other relation between them. (The existentially quan-

tified �γ in
diff(r)

{P} ∃ �γ .τ {Q} is the list of static names of arrays that are allocated during the
computation.)

To be more concrete, let us consider an example: If x :�τ (i.e., x is the same in
two runs) and b represents a pair of arrays associated with the static name γ , then
two equal update operations (updt b 5 x) can be given the relational monadic type

diff(0)
{γ → β} ∃_.unit {γ → (β \ {5})}, for any β.2 This type means that if the two correspond-
ing arrays b differ at most in the set of indices β before updt b 5 x executes, then afterwards
the arrays can still differ in the indices β except at the index 5, which has been overwritten
by the same value x (indicated by the box type �τ). If we replace the assumption x :�τ
with x : τ , so that x may differ in the two runs, then the type of updt b 5 x relative to itself

would be
diff(0)

{γ → β} ∃_.unit {γ → (β ∪ {5})}, indicating that the arrays may differ at index
5 after the update (even if they did not differ at that index before the update).

In order to make this reasoning formal, we need a way to tie the static names γ appearing
in computation types to specific arrays. To this end, we refine the type of arrays to include
γ . In fact, we also refine the type of arrays to track the length of the array. This doubly
refined type is written Arrayγ [l] τ—a pair of arrays of length l each, identified statically by
the name γ , and carrying elements related pointwise at type τ . Finally, we refine integers
very precisely: The type int[n] is the singleton type containing only the integer n in both
runs. The n in the type is a static representation of the runtime value the type ascribes.

With all these components we can now represent the relative cost of mapi by the
following judgment:

�mapi�mapi� 0 :
∀r :: R.�(

diff (r)
τ −→ τ)→∀k, n, γ , β.(k ≤ n)⊃

Arrayγ [n] τ→ int[k]→ int[n]→
(

diff(|β∩[k,n]|∗r)
{γ → β} ∃_.unit {γ → β}

)

This typing means that mapi relates to itself in the following way. Consider two runs

of mapi with the same function f of relative cost r (type �(
diff (r)
τ −→ τ)), two arrays of static

length n, statically named γ (type Arrayγ [n] τ), two indices, both k (type int[k]), and two
lengths, both n (type int[n]). Then, the two runs return computations with the following
relational property: If the two arrays differ at most at indices β before they are passed to

2 As usual, _ represents a variable whose name is unimportant.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 7

mapi, then they differ at most at the same positions after the computations, and the relative
cost of the two computations is upper bounded by |β ∩ [k, n]| ∗ r, that is, the number of
positions in the range [k, n] at which the arrays may differ times r. This is exactly the
expected relative cost because at positions where the arrays are equal, f will have the same
cost in the two runs (we are assuming language-level determinism here). Note that the
variables r, k, n, γ , and β are universally quantified in the type above. Also, note how γ

links the input array to the β in the pre- and postcondition of the computation type.
As is usual in effect systems, when we apply mapi, we have two kinds of costs. For

example, suppose that we provide arguments f , a, k, and n. Then, we have some cost D
such that:

�mapi f a k n�mapi f a k n�D :
diff(|β∩[k,n]|∗r)

{γ → β} ∃_.unit {γ → β}
Here, we can think of D as a bound on the relative cost of the computation before we get
to the array evaluation, while |β ∩ [k, n]| ∗ r is a bound on the relative cost bounds for the
part of the computation involving arrays.

Consider now a slightly different situation where different functions f may be passed to
mapi in the two runs. Suppose that the relative cost of the bodies of the two f s passed is

upper bounded by r, that is, f has the type
diff (r)
τ −→ τ (without the prefix �). In this case, the

relative cost of the two runs of mapi can only be upper bounded by |[k, n]| ∗ r, since even
at indices where the arrays agree, the cost of applying the two different f s may differ by as
much as r. Moreover, the final arrays may differ in all positions in the range [k, n]. This is
formalized in the following, second relational type for mapi.

�mapi�mapi� 0 :
∀r :: R.(

diff (r)
τ −→ τ)→∀k, n, γ , β.(k ≤ n) ⊃

Arrayγ [n] τ→ int[k]→ int[n]→
diff((n−k)∗r)

{γ → β} ∃_.unit {γ → β ∪ [k, n]}

BooleanOr. Next, we describe how high-level reasoning about relative cost is internalized
in the typing. ARel supports two kinds of typing modes: relational typing as shown in
the imperative map example above, and unary typing which supports traditional (unary)
min- and max-cost analysis for a single run of a program. We will introduce these modes
formally in the next section, but here we want to show with the following example how
they can be meaningfully combined via an extended fix rule r-fix-ext.

fix BoolOr (a). λk.λn.
if k < n then

let {x} = read a k in
if x then

return true
else

BoolOr a (k + 1) n
else

return false

This function, given as input an array of booleans a, an index k and the array’s length n
says whether there exists an element in a with index ≥ k and value true.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

8 W. Qu et al.

Given two arbitrary arrays a in two runs, a simple upper bound on the relative cost
of BoolOr is (n− k) ∗ c where c is the cost of one iteration. This is because in one run
we can find an element with value true in position k, and so the computation can return
immediately, while in the other run, we may not find any such element, and would need
to visit every element of the array with its index greater than k. This kind of high-level
reasoning corresponds to a worst-case, best-case analysis of the two individual runs. ARel
supports this kind of reasoning by supporting worst-case, best-case (unary) cost analysis in
unary mode, and by means of a rule r-switch, presented formally in Section 3, allows us to
derive a relational typing from two unary typings, with relative cost equal to the difference
between the max and the min costs of the unary typings.

However, this kind of reasoning does not account for the case where the two input
arrays have a meaningful relation, for example, they may be equal in some positions. In
such cases, a better upper bound on the relative cost would be expressed in terms of the
first index i (if any) where the two arrays differ. That is, we could have the upper bound
(n− i) ∗ c. Showing this upper bound in a formal way is more involved. We first need
to proceed by case analysis on whether the element x we are reading at each step is the
same in the two runs or not. Case analysis in ARel is provided by the rule r-split, pre-
sented in Section 3. Using this rule we can consider the two cases separately in typing the
subexpression: if x then return true else BoolOr a (k + 1) n.

If x is the same in the two runs, there is no difference in cost because we either
return true in both runs, or we perform the recursive call in both runs. In case the two
x’s differ, we must switch to the unary analysis of the two individual runs since in one run
we will return immediately while in the other we will make a recursive call, so there is no
way to continue reasoning relationally. Hence, in order to derive the required upper bound
on the overall relative cost we need to have information about the unary type of BoolOr.
However, since we started by trying to type the body of BoolOr relationally, the standard
fixpoint rule only allows us to assume its relational type.

One solution to this impasse is to automatically transform relational types of variables in
context to unary types when switching from relational to unary reasoning. This approach
was adopted by Çiçek et al. (2017) for analyzing pure functional programs but it provides
only trivial lower and upper bounds (0 and ∞) on the costs of function variables in the
context during the unary analysis. In our example here, this approach yields the trivial
upper bound ∞, which is not what we want.

To allow for more precise analysis, ARel includes a new rule r-fix-ext which we intro-
duce formally in Section 3. This rule allows us to assume unary typing of two recursive
functions, when typing their bodies relationally. With this rule, we can use the (assumed)
relational type of BoolOr and its unary type in typing the subexpression BoolOr a (k + 1) n.
With this, we can conclude the inductive step and assign the precise relative cost (n− i) ∗ c
to BoolOr.

3 ARel formally

In this section, we present the syntax, semantics, and the type system of ARel. We can think
about ARel as composed of two parts, a pure part, inspired by Çiçek et al. (2017), which
allows one to reason about the difference in the execution costs of two pure programs and

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 9

an impure part, which allows one to reason about the difference in the execution costs of
two programs involving array operations. In our paper, we will mostly focus on the impure
part, giving details of the pure part as needed.

3.1 Syntax

We summarize ARel’s syntax in Figure 1. The term language underlying ARel is a simply
typed λ-calculus with recursion and constructs for mutable arrays. Most of the pure con-
structs (the ones in black in Figure 1) are similar to the ones one can find in a pure standard
functional language. We have variables x, natural numbers n, and real numbers r, unit (),
lambda abstraction λx.t, and recursion fix f (x).t. and application t1 t2. We have the intro-
duction and elimination constructs for product, sum, and inductive list. Additionally, we
have some constructs to deal with type level information. We have term constructs�.t and
t [], pack t and unpack t1 as x in t2 corresponding to the introduction and elimination of
universal and existential types over index terms, respectively, and a term construct celim t,
which is used to eliminate type-level constraints. We discuss these constructs further when
we introduce types.

The impure part at the term level consists of constructs to deal with arrays, which
we highlight with blue underlines in Figure 1. We have constructs for allocating arrays
(alloc t1 t2, where t1 specifies the number of array cells to be allocated, and t2 the initial
value to be stored in each array cell), for reading from arrays (read t1 t2, where t1 specifies
the array to read from, and t2 the position in the array to read from), and for updating arrays
(updt t1 t2 t3, where t1 specifies the array to be updated, t2 the position in the array to be
updated, and t3 the value to be used for the update). All imperative (array-manipulating)
constructs are confined to a monad. The constructs return t and let {x} = t1 in t2 are the
usual return and bind of the monad. We do not distinguish between impure expressions
and pure expressions at the syntactic level; this distinction is enforced by types. Impure
expressions (expressions of monadic types) are values, but can be forced using a special
forcing semantics that we describe below. Finally, arrays are referenced through locations,
l ∈ Loc, where Loc is a fixed set of heap locations. Although locations do not appear in
programs, they are needed for the evaluation, so they are included in the syntax.

Types can contain index terms. We use iVar to denote the set of index term variables,
and iLoc to denote the set of index term variables that refer to locations statically. These
static identifiers for locations are denoted γ and belong to a specific sort written L. We
discuss index terms in detail in Section 3.3.

3.2 Operational semantics

We define a cost-annotated, big-step operational semantics for our language. Part of this
semantics is based on manipulation of heaps, also described in Figure 1. We represent
heaps as mappings H = [l1 → z1, . . . , ln → zn] from memory locations to concrete arrays
z= [v1, . . . , vn]. The notation H(l)[n]= v expresses that the value v is stored in the heap
H in the array pointed by the location pointer l at the index n. The notation H(l)[n]← v

represents an update to the heap H : The array pointed by l in H is updated with the value v

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

10 W. Qu et al.

Fig. 1. Syntax of ARel where n ∈N, r ∈R, x ∈ Var, i ∈ iVar, γ ∈ iLoc, l ∈ Loc.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 11

Fig. 2. Selection of rules for pure evaluation t ⇓c,k v, and forcing evaluation t; H ⇓c,k
f v; H ′.

at index n. The notation H1 �H2, in the spirit of separation logic, denotes a disjoint union
of the heaps H1 and H2.

We have two kinds of evaluation judgments: pure evaluation t ⇓c,k v states that the
(pure) expression t evaluates to the value v with cost c, using k steps, while forcing evalu-
ation t; H ⇓c,k

f v; H ′ states that the impure expression t can be forced in the heap H to the
value v and to the updated heap H ′ with cost c, consuming k steps. We give a selection of
the evaluation rules in Figure 2. We include all the rules for the impure part and a selection
for the pure part, all the other rules can be found in the Appendix.

Steps k are a proof artifact, needed only in our soundness proof that relies on a step-
indexed logical relation (Section 4). We count a unit step for every elimination and
monadic construct. Readers may ignore steps for now. The costs c are what we seek to
upper bound (relatively) using our type system. At every elimination form or monadic con-
struct, the semantics adds a construct-dependent cost. For example, the cost capp appearing
in the rules stands for the cost of the function application operation. By changing these
costs and setting some of them to 0, we can get different cost models. In other words, our
type system is parametric in the costs of individual constructs.

The pure evaluation rules are mostly standard. They track how the cost and the steps
change when a pure expression evaluates. The rule e-val says that a value v evaluates to
itself with no cost and in zero steps. The rules e-inl and e-casel describe the evaluation of

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

12 W. Qu et al.

the introduction and elimination terms for the sum type (we only show the rule for inlas the
rule for inr is similar), where in addition we record the cost ccase for the case elimination,
and we increment the steps. Rules a-app and e-fix are similar but for the two application
cases, the latter one includes recursion.

The forcing evaluation rules are used to evaluate impure (monadic) expressions manip-
ulating heaps (arrays). The rule f-ret forces the evaluation of an expression return t,
representing the unit of the monad, by evaluating the underlying pure expression t using
the pure evaluation semantics. The cost consists of the cost of the pure evaluation of t
and the constant cost cret for the monadic return. As one would expect, the unit of the
monad wraps a pure expression into a monadic computation, and it accounts for the cost
of this operation by means of the cost cret. The rule f-bind combines pure and forcing
evaluations in order to fully evaluate a monadic let. This rule shows how an impure com-
putation (involving arrays) is evaluated in our semantics. We first evaluate an expression
t1 to a value v using the pure evaluation semantics. Then, we force evaluate this value v
to a value v1 of the underlying type. We can then perform the substitution and evaluate
the resulting expression t2[v1/x] to a value v2 using the pure evaluation semantics. The
resulting value v2 is then force evaluated to another value v3 which is also the result of
the overall let expression. The heap also changes accordingly. clet accounts for additional
costs associated with the bind operation itself.

The rule f-read forces the evaluation of a read expression in the heap H by first evalu-
ating the heap location l from which to read, then the index of the element n to read, and
then returning the value stored in l at index n. The rule f-updt forces the evaluation of an
update expression in a similar way; it returns a unit value. Finally, the rule f-alloc forces
the evaluation of an alloc expression by creating a new array with the length specified by
the first argument and initial values specified by the second argument, and by allocating it
in the heap at a new location l, which is returned.

It is worth noticing that, in the forcing evaluation rules, all the subexpressions evaluate
using the pure semantics to values of base types, since in our language we only allow
arrays of base types.

3.3 Index terms and constraints

In the spirit of DML (Xi & Pfenning, 1999), types are indexed using static index terms that
are defined in Figure 1. Index terms include natural numbers and real numbers, which we
use to express size and cost information, respectively. We equip index terms with several
operations including ceiling, floor, log, min, and max. Moreover, we have special index
terms denoting (potentially infinite) sets of natural numbers, representing sets of array
indexes, and operations over them (we identify these with blue underlines in Figure 1).
We denote elements of this class with the letter β. These sets can be used to represent
at the type level different information on arrays. In relational types, they represent where
two related arrays may differ (as explained earlier), while in unary types, they represent
the write permissions for the array. We will return to this point later after we explain the
types. We can explicitly form a set through an indexed set comprehension of the form
{Ii}i∈K , where K ⊆N, and we can take the union β1 ∪ β2 or the difference β1 \ β2 of two
sets β1, β2. We use index terms also in the relational type for lists to specify the number of

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 13

values that differ pointwise in the lists across two runs. We denote index terms with this
specific meaning with the metavariable α.

We consider only well-sorted index terms. To this end, we have a sorting judgment of
the form �� I :: S where � is a sort environment, assigning sorts to index variables, and
S is a sort. Our language has five sorts: N for natural numbers, used for sizes of arrays,
lists, and other data structures; R for real numbers, used to express costs; B for booleans;
P for sets of natural numbers as just described; and L for static names of arrays (sorting
rules can be found in the Appendix). As a convention, we use L, U to represent the unary
minimum and maximum costs, and D to denote a maximum relational cost (L, U , and D are
always of sort R). Index terms can also appear in constraints C, which express equalities
and inequalities over index terms and can are used to represent conditional typing.

3.4 Unary and relational types

In ARel, we have two typing modes: unary and relational. This separation is also reflected
at the type level where we have two different type grammars: unary types A and relational
types τ .

Unary types describe values (expressions) in a single run. They use index terms to
represent size information, as in the case of the type list[I] A where I represents the size

of the list, and costs, as in the case of the type
exec(L,U)

A−→ A′ where L and U represent lower
and upper bounds on the cost of the body of the function being typed. The cost can also be
seen as an effect. We also have other basic types, as well as types for products and sums.
Index terms are also used for size in basic types like integers, booleans, etc., for costs in
universal quantifications, and in constraints.

Besides the pure types we just discussed, we have a type for arrays and a type for impure
computations (with blue underlines in Figure 1). The type Arrayγ [I] A is the type of arrays
of length I containing objects of type A. We limit A to base types like int, bool, etc., to
simplify our technical development. In particular, we do not support arrays of arrays here.
The annotation γ associates a static name to the array that is typed. This static name can
be used to refer to the array in other types.

Impure expressions are typed with monadic types. In our case, a monadic unary type is

a cost-annotated Hoare-triple type of the shape
exec(L,U)

{P} ∃ �γ .A {Q}, which is inspired by Hoare
Type Theory (Nanevski et al., 2008). Assertions P, Q are sets {γ1 → β1, . . . , γn → βn}
assigning to each static location γi a set of natural numbers βi describing (writing) permis-
sions. The idea is that the array named γi can be written only at indices in βi (although
it may read anywhere). The domain of Q may be larger than the domain of P, to account
for newly allocated arrays. The index terms L and U are lower and upper bounds on the
execution cost of the (forcing) evaluation of the typed expression.

Additionally, index terms are used in constraints which can appear in types of the shape
C ⊃ A, which reads as “the constraint C implies A”, and of the shape C&A, which reads as
“A and the constraint C is true”. These constraints support conditional typing and they are
quite useful to restrict the properties of arrays. For example, the type I > 0 & Arrayγ [I] A

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

14 W. Qu et al.

ascribes non-empty arrays, and the constraint C in the type C ⊃ A can be used to restrict
array index bounds, as we will see in the examples in Section 5.

Relational types ascribe pairs of expressions, and as we will see in Section 4, they are
actually interpreted as sets of pairs of values in our model. In relational types, index terms
carry not just size information but also information about the relation between the two
expressions, between their inputs, and between their outputs. The type listα[I] τ ascribes
a pair of lists, each of length I , whose elements are pointwise related at the type τ .
Importantly, the relational refinement α specifies an upper bound on the number of posi-
tions at which the corresponding elements may differ. In other words, the two lists must
have equal elements in at least I − α positions, even if τ allows them to be unrelated.
The type int[I] represents pairs of integers both of which are equal to I . In arrow types

diff (D)

τ −→ τ ′, the index term D represents an upper bound on the relative cost of the execution
of the underlying pair of functions on two inputs related at τ .

Given a pair of unary types A1, A2, the relational type U(A1, A2) represents arbitrary
pairs of expressions of types A1, A2, respectively. This offers a way to trivially relate two
“unrelated” values. As explained in Section 2, we also have a comonadic relational type
�τ which represents pairs of expressions of type τ which are syntactically equal, and we
have corresponding subtyping rule s-r-T and s-r-D in Figure 9. In particular, �U(A1, A2)
is the diagonal sub-relation of U(A1, A2), that is, �U(A1, A2) is the subset of U(A1, A2)
where the left and right components are equal.

The relational type Arrayγ [I] τ is similar to the unary array type but it represents two
arrays, each of length I , containing values related at τ pointwise. The static name γ is the
name for both arrays. As we will see in Section 4, our logical relation relates γ to two
arrays in two different heaps. Related impure computations, illustrated in the imperative
map example of Section 2, are typed using a relational cost-annotated monadic type of

the form
diff(D)

{P} ∃ �γ .τ {Q}. This looks similar to the unary type
exec(L,U)

{P} ∃ �γ .A {Q} but it means
something different. In the relational type, the pre- and postconditions P, Q of form {γ1 →
β1, . . . , γn → βn} have a relational interpretation, namely, that (for all i) the two arrays
named γi must carry equal values at all positions not in β (and the values must be related
at τ). At positions in β, the values must still be related at τ , but they need not be equal
(unless τ forces this, e.g., with a prefix �). D is an upper bound on the relative cost of
forcing the evaluation of the two impure expressions.

As usual, we consider only types that are well-formed. We have well-formedness judg-
ments 	;�;
� A wf for unary types, and 	;�;
� τ wf for relational types. Here, 	 is
a location environment listing the locations that can appear in the rest of the judgment, �
is a sort environment listing all free index variables and
 is a constraint environment to
support conditional typing. Well-formedness rules are provided in the Appendix.

3.5 Unary and relational typing

Unary Typing Judgment. ARel’s unary typing uses the judgment form

	;�;
;��U
L t : A

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 15

Fig. 3. Selection of pure unary typing rules.

where t is an expression, 	 is a location environment, � is a sort environment listing all
the free index variables as mentioned before,
 is a constraint environment, � is a unary
type environment assigning unary types to variables, A is a unary type, and L and U are
index terms representing a lower bound and an upper bound on the cost of evaluating t,
respectively. We give a selection of the typing rules for deriving unary typing judgments
in Figures 3 (for the pure constructs) and 4 (for the impure part).

We first show the rules for pure expressions in Figure 3. These rules are similar to the
ones proposed by Çiçek et al. (2017). The main difference is that our rules have one more
environment 	, used to store the locations in the heap. Rules u-int and u-var are relatively
self-explanatory. Rules u-fix and u-app are similar to the ones available in classical effect
systems, where the lower bound and upper bound of the cost of the (recursive) function
body is recorded in the function type. The cost of application considers also the cost of
executing the function body. Rules u-inl and u-inr are dual. Notice that the introduction of
the sum type A1 + A2 requires well-formedness for the type that is introduced in the sum.
Rule u-case for eliminating the sum type requires the same upper and lower bound in both
branches. Rules u-nil and u-cons are similar and specify sizes of lists. Finally, rule u-sub,
internalizes weakening for the upper and lower bounds and subtyping.

The rules for the unary typing of impure expressions are presented in Figure 4. Since
costs of operations like reading and writing memory are variable on most architectures,
these rules rely on given upper- and lower bounds on the cost of each operation. For exam-
ple, Lread and Uread denote the minimum and maximum cost of reading a heap location,
respectively. The costs Ulet, Ualloc, Lread, Lupdt are similar.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

16 W. Qu et al.

	;�;
;��U
L t : A 	;�� P wf

	;�;
;��0
0 return t :

exec(L,U)
{P} ∃γ .A {P}

u-ret

	;�;
;��U1
L1

t1 :
exec(L,U)

{P} ∃ �γ1.A {P′} 	;�, �γ1;
;�, x : A�U2
L2

t2 :
exec(L′,U ′)

{P′} ∃ �γ2.B {Q}

	;�;
;��0
0 let {x} = t1 in t2 :

exec(L+L′+L1+L2+Llet,U+U ′+U1+U2+Ulet)

{P} ∃ �γ1, �γ2.B {Q}
u-bind

	;�;
;��U1
L1

t1 : int[I] 	;�;
;��U2
L2

t2 : A γ fresh 	;�� P wf

	;�;
;��0
0 alloc t1 t2 :

exec(L1+L2+Lalloc,U1+U2+Ualloc)

{P} ∃γ . Arrayγ [I] A {P � γ →N}
u-alloc

	;�;
;��U1
L1

t1 :Arrayγ [I] A

γ ∈ dom(P) 	;�;
;��U2
L2

t2 : int[I ′] �;
 � I ′ ≤ I 	;�� P wf

	;�;
;��0
0 read t1 t2 :

exec(L1+L2+L read ,U1+U2+Uread)

{P} ∃_.A {P}
u-read

	;�;
;��U1
L1

t1 :Arrayγ [I] A 	;�;
;��U2
L2

t2 : int[I ′]
	;�;
;��U3

L3
t3 : A �;
 � I ′ ≤ I 	;�� P wf �;
 � I ′ ∈ β

	;�;
;��0
0 updt t1 t2 t3 :

exec(L1+L2+L3+Lupdt,U1+U2+U3+Uupdt)

{P � γ → β} ∃_.unit {P � γ → β}
u-updt

Fig. 4. Selection of impure unary typing rules.

Rules u-ret and u-bind type the unit and the bind of the monad, respectively. They
combine the different costs and assertions in the monadic type, using a style similar to
separation logic. For example, the assertion P1 � P2 corresponds to disjoint parts of the
heap. The rule for allocations, u-alloc, introduces a new static location γ and creates a new
monadic type whose postcondition assigns to γ all the natural numbers (N), indicating that
the continuation has the permission to write all positions of the array. Additionally, like all
other rules, this rule also adds a cost accounting for the forcing of the allocation. Finally,
note that the upper and lower bounds on the judgment are 0. This is because alloc t1 t2 is a
value. Cost arises only when the impure expression alloc t1 t2 is forced; this is accounted
for in the cost annotations of the monadic type. The rule for reading, u-read, merely checks
that the index being read is within the array bounds. The rule for updating, u-updt, also per-
forms a similar check but, in addition, it also requires that the updated index is contained
in the permissions available for the array in the precondition.

Relational Typing Judgment. ARel’s relational typing uses the judgment form

	;�;
;
 � t1 � t2 �D : τ

Here, t1 and t2 are two expressions, 	,�, and
 are environments similar to the ones used
by unary typing judgments,
 is a relational type environment assigning relational types
to variables, τ is a relational type for t1, t2, and D is an index term representing an upper
bound on the relative cost of evaluating t1 and t2, that is, cost(t1)− cost(t2).

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 17

	;�;
;
 � n� n� 0 : int[n]
r-int

(x)= τ
	;�;
;
 � x� x� 0 : τ

r-var

	;�;
;
 � t1 � t′1 �D1 :
diff (D)

τ1 −→ τ2 	;�;
;
 � t2 � t′2 �D2 : τ1

	;�;
;
 � t1 t2 � t′1 t′2 �D+D1 +D2 : τ2

r-app

	;�;
; x : τ , f :
diff (D)
τ −→ σ ,
 � t1 � t2 �D : σ

	;�;
;
 � fix f (x).t1 � fix f (x).t2 � 0 :
diff (D)
τ −→ σ

r-fix

	;�;
;
 � t� t′ �D : τ1 	;�;
� τ2 wf

	;�;
;
 � inl t� inl t′ �D : τ1 + τ2

r-inl

	;�;
;
 � t� t′ �D : τ2 	;�;
� τ1 wf

	;�;
;
 � inr t� inr t′ �D : τ1 + τ2

r-inr

	;�;
;
 � t� t′ �D1 : τ1 + τ2

	;�;
;
, x : τ1 � t1 � t′1 �D2 : τ 	;�;
;
, y : τ2 � t2 � t′2 �D2 : τ

	;�;
;
 � case (t, x.t1, y.t2)� case (t′, x.t′1, y.t′2)�D1 +D2 : τ
r-case

	;�;
;
 � t� t�D : τ ∀x ∈ dom(
).	;�;
 |=
(x)��
(x)

	;�;
;
 � t� t� 0 :�τ
r-nc

	;�;
, C;
 � t1 � t2 �D : τ 	;�;
,¬C;
 � t1 � t2 �D : τ

	;�;
;
 � t1 � t2 �D : τ
r-split

	;�;
;�� t� t�D : τ 	;�;
 |= τ � τ ′ 	;�;
 �D≤D′

	;�;
;
 � t� t�D′ : τ ′
r-sub

	;�;
; x : τ1, f :
diff (D)

τ1 −→ τ2,
, f : U(A1, A2)� t1 � t2 �D : τ2

	;�;
; |
|1 �0
0 fix f (x).t1 : A1 	;�;
; |
|2 �0

0 fix f (x).t2 : A2

	;�;
;
 � fix f (x).t1 � fix f (x).t2 � 0 :
diff (D)

τ1 −→ τ2

r-fix-ext

Fig. 5. Selection of pure relational synchronous typing rules.

That the relational judgements relates two programs naturally leads to two kinds of
relational typing rules: synchronous rules that relate two structurally similar programs,
and asynchronous rules for arbitrary programs. We first present a selection of the pure
typing rules, both synchronous (Figure 5) and asynchronous (Figure 6). These rules are
again inspired by the work of Çiçek et al. (2017). Then, we present a selection of impure
typing rules, which support relational cost analysis for arrays. Again, we distinguish
synchronous rules (Figure 7) from asynchronous rules (Figure 8). A complete set of typing
rules can be found in the Appendix.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

18 W. Qu et al.

	;�;
; |
|1 �U1
L1

t1 : A1 	;�;
; |
|2 �U2
L2

t2 : A2

	;�;
;
 � t1 � t2 �U1 − L2 : U(A1, A2)
r-switch

	;�;
; |
|1 �U1
L1

t1 : A1 	;�;
;
, x : U(A1, A1)� t2 � t′2 �D2 : τ

	;�;
;
 � let x= t1 in t2 � t′2 �U1 +D2 + clt : τ
r-lt-e

	;�;
; |
|2 �U1
L1

t′1 : A′
1 	;�;
;
, x : U(A′

1, A′
1)� t2 � t′2 �D2 : τ ′

	;�;
;
 � t2 � let x= t′1 in t′2 �D2 − L1 − clt : τ ′
r-e-lt

	;�;
; |
|1 �U1
L1

t1 :
exec(L,U)

A1 −→ A2 	;�;
;
 � t2 � t′2 �D2 : U(A1, A′
2)

	;�;
;
 � t1 t2 � t′2 �U1 +U +D2 + capp : U(A2, A′
2)

r-app-e

	;�;
; |
|1 �U1
L1

t : A1 + A2 	;�;
;
, x : U(A1, A1)� t1 � t′ �D2 : τ
	;�;
;
, y : U(A2, A2)� t2 � t′ �D2 : τ

	;�;
;
 � case (t, x.t1, y.t2)� t′ �U1 +D2 + ccase : τ
r-case-e

	;�;
; |
|2 �U1
L1

t′ : A1 + A2 	;�;
;
, x : U(A1, A1)� t� t′1 �D2 : τ
	;�;
;
, y : U(A2, A2)� t� t′2 �D2 : τ

	;�;
;
 � t� case (t′, x.t′1, y.t′2)�D2 − L1 − ccase : τ
r-e-case

Fig. 6. Selection of pure relational asynchronous typing rules.

Pure Synchronous Rules. We present selected synchronous rules for pure expressions in
Figure 5. The rule r-int relates two copies of the same integer n the singleton type int[n].
The rules r-var, r-fix, and r-app are the relational counterpart of the rules for variables,
function abstraction, and application we saw in the unary part. The main difference is that
we give an upper bound to the relative cost, rather than lower and upper bounds on the
execution cost of a single expression. The rules r-inl, r-inr, and r-case type the introduction
and elimination of the relational sum type. In the elimination rule r-case, notice that we
require the relative cost D2 of the two branches to be the same. Rule r-split allows reasoning
by cases on any constraint in the constraint environment. Rule r-sub is the relational version
of the rule u-sub. It allows weakening the upper bound on the relative cost D as well as
subtyping.

Rule r-nc is the introduction rule for �-ed types. Briefly, t can be related to itself at
the type �τ when t relates to itself at type τ and, additionally, all variables in the context
morally have�-ed types. The latter ensures that variables can only be substituted by equal
terms. In this case, the relative cost is 0. This rule allows us to assume that given a pair of
functions whose type is refined with �, if we apply them to the same argument, we have
two executions following the same path, and at the same cost. We discussed this intuition
behind the rule r-nc in Section 2 when we looked at the first relational type of mapi.

Rule r-fix-ext types fixpoint expressions relationally. This rule also requires unary typ-
ing for the two functions, which are established in separate premises. We require these

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 19

additional premises so that we can use the information provided by the unary typing to
establish the relative cost. In other words, this rule introduces a weak form of intersec-
tion types in the environment which can be used in combination with the rule r-switch
(Figure 6) to give precise bounds on relative cost.

Pure Asynchronous Rules. We present a selection of the pure asynchronous rules in
Figure 6. Rule r-switch allows switching from relational reasoning about t1 and t2 in the
conclusion, to unary reasoning about the two terms independently in the premises. Notice
that the relational type in the conclusion is the embedding of the two unary types with-
out any meaningful relation (U(A1, A2)). The rule uses an erasure map |
|i from relational
environments to unary environments (i= 1 for left and i= 2 for the right), whose defini-
tion can be found in the Appendix. Importantly, the relative cost in the conclusion is the
difference of the unary costs in the premises.

Rule r-lt-e relates a pure let binding expression to an arbitrary expression. In this rule,
we use the metavariable clt to denote the cost of a pure let construct. (This is different
from the cost clet of the monadic bind, which we discussed earlier.) Notice that one of the
assumptions in this rule, the one for the expression t1, is a unary typing judgment. This
is needed in order to provide guarantees on the typability of t1 and to provide the cost of
evaluating it, which is used in the bound on the relative cost in the conclusion of the rule.

The rule r-e-lt is dual to r-lt-e—it relates an arbitrary expression with a standard let.
Notice that while the rule r-lt-e uses the upper bound on the unary cost of t1, the rule r-e-lt
uses the lower bound.

Rule r-app-e relates a function application to an arbitrary expression, while rule r-case-e
relates a case expression with an arbitrary expression and r-e-case does the opposite. Also
in these rules, we use some unary typing assumptions to guarantee typability and to provide
unary costs that are used in giving upper bounds on the relative costs.

Impure Synchronous Rules. Figure 7 shows a selection of relational synchronous typing
rules pertaining to monadic constructs and arrays. Rules r-ret and r-bind relationally type
the return and bind of our monad. The rules introduce the trivial relational Hoare-triple
and combine two relational Hoare triples by sequencing, respectively. In particular, the
rule r-bind uses the style of separation logic.

For each operation on arrays, we have two rules, one that is general and the other that
works under some assumption about equality of arguments in the two runs. Consider, for
example, the rules r-alloc and r-allocb for relationally typing the alloc construct. The rules
are similar, for example, both create a new static name γ for the two allocated arrays,
and both account for relative costs very similarly. However, r-allocb applies only when the
expressions initializing the two arrays are related at a�-ed type (the second premise). As a
result, it is guaranteed that the arrays allocated in the two runs will have equal values in all
positions. This is reflected in the assertion γ →∅ in the postcondition of the monadic type
in the rule, which says that there are no locations where the newly allocated arrays (named
γ) can differ. In contrast, the rule r-alloc does not require the initializing expressions to be
related at a �-ed type, but it has γ →N in the postcondition, meaning that the two arrays
may differ anywhere after the allocation.

A similar difference between the rules r-read and r-readb for relationally typing the
construct read. In r-readb, the read index I ′ must not be in the β of the array being read

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

20 W. Qu et al.

Fig. 7. Selection of monadic synchronous relational typing rules.

in the precondition; as a result, the values read must be equal in the two runs. Hence, the
resulting type has a � on it. r-read is similar, but, here, there is no requirement that I ′ is
not in the β, so two different values may be read, and there is no � on the result type.

The rules r-updt and r-updtb for updt follow the principle of alloc: In r-updtb, the values
being written in the two runs are known to be equal (via a �-ed type), so the index I ′ that
is updated is removed from β in the postcondition. This is not the case in r-updt, where it
must be added to β, since the two values at index I ′ might differ after the update. In all
these rules, the premise �;
 � I ′ ≤ I denotes constraint entailment, which means that for
any substitution of all index variables in the index environment �, if all constraints in

hold, then the constraint I ′ ≤ I holds. We omit the rules for deriving this judgment since
they are standard.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 21

Fig. 8. Selection of monadic asynchronous relational typing rules.

Finally, note that all monadic rules “propagate” relative costs from the premises to the
monadic types. This is similar to the unary rules; the difference is that the costs propagated
here are relative, whereas the unary type system propagates unary lower and upper bounds.

It is worth emphasizing that the set of γ s in any pre- or postcondition must be written
down explicitly, that is, we have not introduced sophisticated constructors (like set com-
prehension) for pre- and postconditions. This means that we cannot meaningfully specify
monadic computations that allocate a data-dependent number of arrays. This has not been
a problem for our examples, and we believe an extension to lift this restriction is possible
by adding language-level constructors and elimination rules for assigning γ . While this
change would make our approach more flexible and more expressive, it would also put an
additional burden on the programmer.

Impure Asynchronous Rules. Figure 8 shows the two asynchronous rules r-bind-e and
r-e-bind, relating a monadic binding construct and an arbitrary expression. We explain
only the rule r-bind-e, which relates the monadic binding construct let {x} = t1 in t2 to an
arbitrary expression t′2 (the rule r-e-bind is its dual and it can be understood similarly).
The first premise of the rule r-bind-e requires unary typing for the monadic expression t1.
This typing has two kinds of costs: the lower bound L1 and upper bound U1 for the unary
execution cost of t1, and the lower bound L and upper bound U for the execution cost of
the resulting monadic computation. The second premise requires a unary typing for the
monadic expression t′2. This gives us an upper bound U2 on the cost of evaluating this
expression. The premise dom(P)= dom(P1) requires that the execution of the computation
resulting from the expression t1 can only affect arrays that appear in both P1 and P. Finally,
the last premise requires relating the subexpression t2 to t′2 with the relative cost upper
bound D2 under the assumption that the values substituted for the variable x are related at
the type U(A1, A1). Notice that this is the weakest requirement in terms of types that we
can have.

Additionally, this typing judgment also gives us the upper bound D′ on the relative cost
for executing the two computations resulting from evaluating the two expressions t2 and t′2.
To put the information of the unary and relational typing together we use the precondition
P � P1 in this premise, where the operation � lifts set union pointwise to partial maps
(preconditions P are partial maps from locations γ to sets of indices). The precondition in

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

22 W. Qu et al.

the unary monadic type of t1 in the first premise provides the indices where the computation
associated with t1 has write permission. So, intuitively, P1 provides the indices that may
be overwritten when executing t1. Hence, we want to use this information when relating
expressions t2 and t′2 because t1 is supposed to be executed by then. The conclusion of the
rule uses all the cost information we discussed to compute an upper bound on the relative
cost of the two expressions, where, as usual, we use the metavariable clet to denote the
cost of the monadic binding construct. The bounds on the relative cost here deserve some
discussion. Following the definition, and observing that monadic let is a value, we have
that the relative cost of the two expressions is bound by −L2. However, we want also to
have a bound on the relative cost of forcing the evaluation of the two expressions, since
this must be recorded in the monadic type. The upper bound is U1 +U + (D2 +U2)+
D′ + clet, where U1 +U upper bounds the cost of forcing the evaluation of t1, D2 upper
bounds the difference in cost of evaluating t2 and t′2 to values, U2 upper bounds the cost
of evaluating t2 to its value, and D′ upper bounds the difference in the costs of forcing the
evaluation of the values obtained by evaluating t2 and t′2, respectively.

One can also design similar asynchronous rules for the other monadic constructs.
However, the syntactic forms of the other constructs considerably constrain their asyn-
chronous typing rules, making the scope of application of such rules rather narrow. For
this reason, we do not commit to the design of such rules here.

Subtyping. Subtyping is important in ARel. It serves several purposes. First, as in all
refinement type systems, subtyping equates types up to constraints, for example, it allows
replacing int[2+ i] with int[5] under the constraint i= 3. Second, specific to cost analysis,

subtyping allows weakening costs, for example, the relational type
diff (D)

τ1 −→ τ2 can be sub-

typed to
diff (D′)

τ1 −→ τ2 when D≤D′ since the D on the arrow is an upper bound on relative
cost. Third, subtyping allows “massaging” of modalities� and U , for example,�τ can be
subtyped to τ . Finally, specific to the monadic types, subtyping allows weakening of pre
and postconditions in monadic types. The first three purposes of subtyping in ARel are rel-
atively standard (e.g., see Çiçek et al., 2017) and we will only introduce them briefly. We
describe the last use here at length. The unary and relational subtyping judgments have the
forms 	;�;
 |= A1 � A2 and 	;�;
 |= τ1 � τ2, respectively. Figure 9 shows selected
subtyping rules. The notation P⊆ P′ means that P= {γ1 → β1, γ2 → β2, . . . , γn → βn},
P′ = {γ1 → β ′1, γ2 → β ′2, . . . , γn → β ′n}, and ∀i ∈ {1, . . . , n}.βi ⊆ β ′i .

The rules s-u-arrow and s-r-arrow subtype unary and relational function types, respec-
tively. The rule s-r-w allows weakening from the relational type τ to its weak version
U(|τ |1, |τ |2), where | · |i is used to convert from a relational type to a unary type. When
i= 1, this construct projects the left side of the relational type; when i= 2 it projects its
right side (see the Appendix for the definitions of these projections). The rules s-r-list and
s-r-array subtype relational list and array types, respectively. They impose requirements
on lengths. Rule s-r-ua allows weakening the relational type U(A1, A2) to U(A′

1, A′
2) if we

know that A1 and A2 are subtypes of A′
1 and A′

2, respectively. As we have seen before, the
modality � applied to a relational type τ requires the two components related by the type
τ to be identical. In fact, � has a comonadic flavor and it follows the standard comonadic
rules s-r-T and s-r-D. Rule s-r-bd can be read as follows: When two equal functions (of

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 23

Fig. 9. Selection of subtyping rules.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

24 W. Qu et al.

the �-ed relational function type �(
diff (D)

τ1 −→ τ2)) are given equal arguments (type �τ1), the
results are equal and the relative cost is 0. We used this rule implicitly in the mapi example
in Section 2.

Next, we present the subtyping rules for monadic types. The first rule, s-um, allows
subtyping on the unary monadic type. It says that we can subtype by weakening the costs,
adding more (write) permissions to the precondition and removing permissions from the
postcondition, as manifest in the premises P⊆ P′ and Q′ ⊆Q. Rule s-rm similarly allows
subtyping on the relational monadic type. This rule says that we can subtype by weakening
the relative cost, making the precondition more precise and the postcondition less precise,
where P′ is more precise than P when P′ tells us more about which values are equal. In
particular, γ → β is more precise than γ → β ′ when β ′ ⊆ β. This is why the premises of
s-rm check P′ ⊆ P and Q⊆Q′. Note that the checks on P, P′ and Q, Q′ are dual in the two
rules. This is because the meanings of the pre(post)condition in the unary and relational
monadic types are completely different. Finally, rule s-rum allows subtyping from the
modality U applied to two unary monadic types to a single relational monadic type. This
rule is best read as follows: If we have two computations that modify an array (associated
with the static name γi) at positions in Ti and T ′

i , respectively, (left side of �), then running
them on two arrays that agree at all positions outside the set β will result in two arrays
that agree at all positions outside the set β ∪ Ti ∪ Ti’ (right side of �). This is because the
indices in the set Ti ∪ Ti’ may be overwritten during at least one of the two executions.

4 Logical relations

To prove the soundness of ARel we build a step-indexed logical relation for its types. We
give two interpretations—one unary and one relational, that interact at the type U(A1, A2).

4.1 Unary interpretation

The value interpretation �A�g,k of a unary type A is, as usual, a set of values. Also, as usual,
this interpretation is indexed by a “step-index” k ∈N, which is merely a proof device for
induction (Appel & McAllester, 2001; Ahmed, 2006). The step-index counts the “steps”
in our operational semantics. Importantly, the interpretation is also indexed by a world g
mapping from static names γ to triples (l, n, A) specifying the location, the length of the
array, and the syntactic type of the elements of the array named γ . Technically, we are
defining a Kripke logical relation, and the world g is a so-called Kripke world (Neis et al.,
2011; Turon et al., 2013). We give the clauses defining the value interpretation of unary
types in Figure 10.

The value interpretations of standard type constructors like pairs and functions are also
standard. The value interpretation of an array type, �Arrayγ [I] A�g,k , is a set of locations.
A location l is in this set if g(γ) is (l, A, I), that is, the element type and length for γ in the
world g match those in the array type and the location l corresponds to γ .

The value interpretation of monadic types relies on a heap relation H |=g,k P, which is
defined in Figure 12. This heap relation means that the assertion P—which could be a pre-
or postcondition from a unary monadic type—holds for the heap H at world g at step k. The

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 25

Fig. 10. The interpretation of the types and contexts.

relation checks that for every (l, A, n) in the range of g, every element of the array named
l in H is in the interpretation of type A. To break the cyclicity between the definition of
the heap relation and value interpretation, A is interpreted at the smaller step index k − 1
in the heap relation.

Back to the unary monadic type, the value interpretation �
exec(L,U)

{P} ∃ �γ .A {Q}�g,k is a set of
monadic values v that when forced in a heap H validating the precondition P, yield a heap
H1 validating the postcondition Q. Additionally, the interpretation only allows those com-
putations v that update arrays at locations for which the precondition P asserts permissions.
We note that the interpretation quantifies universally over worlds g1 that extend g (g1 ⊇ g)
and step-indices k1 less than or equal to k. This is standard in step-indexed Kripke logical
relations and makes the interpretation “monotonic”, that is, closed under larger worlds and
smaller step indices (Lemma 1).

Next, we extend the value interpretation to an expression interpretation:

�A�e
g,k,(L,U) = { t | ∀v, k′. k′ ≤ k∧ t ⇓c,k′ v⇒ v ∈ �A�g,k−k′ ∧ L≤ c≤U }

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

26 W. Qu et al.

Compared to the value interpretation, the expression interpretation, which we identify by
the superscript e, accounts for lower and upper bound costs L and U . The expression inter-
pretation requires that if the expression t evaluates to value v with the step index k′ and
cost c, then the cost satisfies the constraint L≤ c≤U and the resulting value v is in the
value interpretation of the type A with the remaining step index k − k′.

Next, we extend our interpretation to open terms. For this, we first extend our value
interpretation to unary contexts: Given a substitution σ , we say that σ ∈ ���g,k if σ maps
every variable in � to a value in the interpretation of its unary type. We write σ t to denote
the application of the substitution σ to the term t. With this, we can extend our interpreta-
tion to typed open terms, that is, typing judgments, as in the statement of the fundamental
theorem (Theorem 2).

4.2 Relational interpretation

Next, we interpret relational types. Figure 11 shows the value and expression interpreta-
tions of relational types, and the interpretation of relational contexts. As in the case of the
unary interpretation, we use Kripke worlds. Relational Kripke worlds are denoted G and
they map static array names γ to 4-tuples (l1, l2, n, τ). If G(γ)= (l1, l2, n, τ), then l1, l2 are
the locations where the arrays statically named γ are stored in the two runs, n is the length
of each of these two arrays, and τ is the type at whose relational interpretation the two
arrays’ corresponding elements should be related.

The value interpretation of a relational type τ is written �τ �G,k . It is a set of pairs
of related values. Most of the clauses of this definition are straightforward. Somewhat
unusually, the interpretation of a function type contains a pair of (recursive) functions that
satisfies not one but two conditions: (i) Given related values as arguments, the functions
return related results and (ii) Each of the two functions, when given an argument in the
(unary) interpretation of the argument type’s unary projection, returns a result in the
(unary) interpretation of the result type’s unary projection. The first condition is standard.
The second condition is needed to make our relational-to-unary projections of types sound.

To define the interpretation of the relational monadic types we need a relational heap
relation (H1, H2) �G,k P, defined in Figure 12. The relation says when the heaps H1, H2

from two runs satisfy a relational assertion P, which could be a pre- or postcondition from
a relational monadic type. Intuitively, this relation holds when for every γ → β in P, G(γ)
is also defined, and if G(γ)= (l1, l2, τ , n), then for every index up to n, the two arrays l1, l2
in heaps H1, H2, respectively, have elements within the relational interpretation of τ , and
every index where the two elements differ is in β. This formalizes the intuitive meaning
of β from earlier sections.

Note that the condition on elements differing is a one-way implication: We do not insist
that at every index in β, the two elements necessarily differ. In fact, depending on τ , in
some cases, even elements at indices in β might be forced to be equal. For example, when
τ is int[m] (for some m) or even ∃i.int[i], this forces corresponding elements to be equal at
all indices since the relational interpretation of int[m] is the singleton {(m, m)}. However,
when τ =U(A1, A2), elements at indices in β can be arbitrary values of types A1, A2 since
the relational interpretation of U(A1, A2) is morally A1 × A2.

Like the unary heap relation, the relational heap relation is well-founded by induction
on the step index.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 27

Fig. 11. The interpretation of relational types and contexts.

The relational interpretation for a monadic type
diff(D)

{P} ∃ �γ .τ {Q} (Figure 11) is the set of
pairs of values (v1, v2) that when forced starting from heaps H1, H2 satisfying the precon-
dition P, result in heaps H ′

1, H ′
2 satisfying the postcondition Q. The relative cost of forcing

must be upper bounded by D.
Next, we extend the value interpretation of relational types to pairs of expressions:

�τ �e
G,k,D =

{
(t1, t2)

∣∣∣∣ ∀k1 ≤ k, ∀k2, v1, v2. (t1 ⇓c1,k1 v1 ∧ t2 ⇓c2,k2 v2)⇒
(v1, v2) ∈ �τ �G,k−k1 ∧ c1 − c2 ≤D

}

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

28 W. Qu et al.

Fig. 12. Unary and relational heap relation.

The intepretation simply says that two expressions e1, e2 are in the interpretation of type τ
if they both evaluate to some values v1, v2 and those values are in the value interpretation
of τ . Additionally, the costs c1, c2 of these two evaluations satisfy c1 − c2 ≤D. Note that
the step index counts steps of only the left evaluation, not both. We could, alternatively,
have set up the interpretation to count steps of only the right evaluation or both.

Next, we extend our value interpretation to relational contexts (as for the unary case),
and the statement of our fundamental theorem (Theorem 4.3) contains the interpretation of
typed open terms, that is, the relational typing judgment.

Note. For readers familiar with Kripke logical relations, we note that our worlds g and G
are not step-indexed (only our logical relations are step-indexed). This is unlike some prior
work (Neis et al., 2011; Turon et al., 2013). We do not need step-indexed worlds since we
include syntactic types, A or τ , for mutable locations (arrays) in the worlds. This suffices
for our purposes because our language only considers arrays whose elements are of base
type like int, bool, etc.

4.3 Fundamental theorem

In this section, we prove a standard theorem, called a fundamental theorem, for each of
our two interpretations, unary and relational. We use � δ :� to mean that δ is a well-sorted
substitution for the index variables in the domain of �, and � δ
 to denote that δ satisfies
the constraint environment
. As a preliminary step, we show a monotonicity lemma,
which is useful in the proofs of our fundamental theorems.

Lemma 1 (Monotonicity).

1. If k′ ≤ k and G⊆G′, then �τ �G,k ⊆ �τ �G′,k′ .
2. If k′ ≤ k and g⊆ g′, then �A�g,k ⊆ �A�g′,k′ .
3. If k′ ≤ k and G⊆G′, then �τ �E,D

G,k ⊆ �τ �E,D
G′,k′ .

4. If k′ ≤ k and g⊆ g′, then�A�
E,(L,U)
g,k ⊆ �A�

E,(L,U)
g′,k′ .

5. If k′ ≤ k and G⊆G′, then �
�G,k ⊆ �
�G′,k′
6. If k′ ≤ k and g⊆ g′, then���g,k ⊆ ���g′,k′

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 29

Proof. Points (1) and (3), related to the interpretation of relational types, are proved simul-
taneously by induction on τ . Similarly, points (2) and (4), about the interpretation of the
unary types, are proved simultaneously by induction on the unary type A. Points (5) and
(6), about the contexts, follows directly from points (1) and (2). �

The monotonicity lemma says that all our interpretations are monotone with respect to
larger worlds and smaller step indexes. Take the value interpretation of a relational type
as an instance. If a pair of values (v1, v2) is in this interpretation for some step index k
in some world G, then (v1, v2) is also in the value interpretation of the same type for any
smaller step index k′ and any bigger world G′.

Next, we present the fundamental theorem for ARel’s unary typing. The theorem states
the following. Suppose we have an expression t that is well-typed at a unary type A in
contexts	,�,
 and� with cost lower and upper bounds L and U . If we close everything
using a substitution δ for the index variables in � (satisfying
) and a substitution σ for
the term variables� satisfying the (context) interpretation of δ� (at world g and step index
k), then the closed term σ t is in the interpretation of the closed type δA with bounds L and
U (at world g and step index k).

Theorem 2 (Fundamental Theorem for Unary Typing). If 	;�;
;��U
L t : A, � δ :�

and � δ
, and σ ∈ �δ��g,k , then (σ t) ∈ �δA�e
g,k,(δL,δU).

Proof. The proof is by induction on the derivation of the judgment 	;�;
;��U
L t : A.

We present some of the most relevant cases.

Case

	;�;
;��U1
L1

t1 :Arrayγ [I] A γ ∈ dom(P)

	;�;
;��U2
L2

t2 : int[I ′] � I ′ ≤ I 	;�� P wf

	;�;
;��0
0 read t1 t2 :

exec(L1+L2+Lread,U1+U2+Uread)

{P} ∃_ : A {P}
u-read

By assumption we have � δ :�, � δ
 and σ ∈ �δ��g,k . We need to show:

read (σ t1) (σ t2)∈ �δ
exec(L1+L2+Lread,U1+U2+Uread)

{P} ∃_ : A {P} �e
g,k,(0,0)

Since read (σ t1) (σ t2) is a value, and its evaluation incurs no cost, it is sufficient to
show:

read (σ t1) (σ t2)∈ �δ
exec(L1+L2+Lread,U1+U2+Uread)

{P} ∃_ : A {P} �g,k

By the definition of forcing evaluation we have:

σ t1 ⇓c1,k1 l σ t2 ⇓c2,k2 n2 H(l)[n]= v
read (σ t1) (σ t2); H ⇓c1+c2+cread,k1+k2+1

f v; H
f-read

So, unfolding the definition of interpretation, for k′ ≤ k, g′ ⊇ g, and an arbitrary heap H
such that H �g′,k′ P and such that k1 + k2 + 1< k′ ≤ k we must show:

1. δ L1 + δ L2 + δ Lread ≤ c1 + c2 + cread ≤ δ U1 + δ U2 + δ Uread.
2. H �g′,k′−(k1+k2+1) P.
3. v ∈ �δA�g′,k′−(k1+k2+1).

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

30 W. Qu et al.

4. ∃n.P= {γ1 → T1, . . . , γn → Tn} ∧ ∀i ∈ [1, n].g(γi)= (li, A, m)⇒∀j.(H[li][j]) �=
H[li][j]⇒ j ∈ Ti.

By induction hypothesis, from the first premise and Lemma 1 we have:

σ t1 ∈ �Arrayγ [δ I] (δA)�e
g′,k′,(δ L1,δ U1)

From this we have:

l ∈ �Arrayγ [δ I] (δA)�g′,k′−k1 ∧ δ L1 ≤ c1 ≤ δ U1

which in turn tells us: g′(γ)= (l, δA, δ I).
By induction hypothesis, from the premise 	;�;
;��U2

L2
t2 : int[I ′] and Lemma 1 we

have:

σ t2 ∈ �int[δ I ′]�e
g′,k′,(δ L2,δ U2)

From this we have that: n2 ∈ �int[δ I ′]�g′,k′−k2 , which in turn tells us that

n2 = δ I ′ ∧ δ L2 ≤ c2 ≤ δ U2

Now to conclude we can proceed as follows:

1. the inequality δ L1 + δ L2 + δ Lread ≤ c1 + c2 + cread ≤ δ U1 + δ U2 + δ Uread can
be shown using the fact that Lread ≤ cread <Uread and the fact that in our language
Lread and Uread are constants , which means δ Lread= Lread and δ Uread= Uread .

2. H �g′,k′−(k1+k2+1) P is proved by unfolding the definition of our assumption
H �g′,k′ P.

3. For v ∈ �δA�g′,k′−(k1+k2+1), we know that from the heap relation H �g′,k′ P and the
premise γ ∈ dom(P), we have ∀i≤ n, (H1(l)(i)) ∈ �A�g′,k′−1, which in turn tells us
v ∈ �A�g′,k′−1. We can then show our goal by using Lemma 1.

4. ∃n.P= {γ1 → T1, . . . , γn → Tn} ∧ ∀i ∈ [1, n].g(γi)= (li, A, m)⇒∀j.(H[li][j]) �=
H[li][j]⇒ j ∈ Ti follows because the heap H is not changed, so the claim is trivial.

Case

	;�;
;��U1
L1

t1 :Arrayγ [I] A 	;�;
;��U2
L2

t2 : int[I ′]
	;�;
;��U3

L3
t3 : A �;
 � I ′ ≤ I 	;�;� P wf �;
 � I ′ ∈ β

	;�;
;��0
0 updt t1 t2 t3 :

exec(L1+L2+L3+Lupdt,U1+U2+U3+Uupdt)

{P � γ → β} ∃_ : unit {P � γ → β}
u-updt

By assumption we have � δ :�, � δ
 and σ ∈ �δ��g,k , we need to show:

updt (σ t1) (σ t2) (σ t3)∈ �δ
exec(L1+L2+L3+Lupdt,U1+U2+U3+Uupdt)

{P � γ → β} ∃_ : unit {P � γ → β}�e
g,k,(0,0)

Since updt (σ t1) (σ t2) (σ t3) is a value, it is sufficient to show:

updt (σ t1) (σ t2) (σ t3)∈ �δ
exec(L1+L2+L3+Lupdt,U1+U2+U3+Uupdt)

{P � γ → β} ∃_ : unit {P � γ → β}�g,k

By the definition of forcing evaluation we have:

σ t1 ⇓c1,k1 l σ t2 ⇓c2,k2 n σ t3 ⇓c3,k3 v

updt (σ t1) (σ t2) (σ t3); H ⇓c1+c2+c3+cupdate,k1+k2+k3+1
f (); H(l)[n]← v

f-updt

So, unfolding the definition of the interpretation, for k′ ≤ k, g′ ⊇ g, for an arbitrary heap
H such that H �g′,k′ P � γ → β, and k1 + k2 + k3 + 1< k′, we must show:

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 31

1. δ L1 + δ L2 + δ L3 + δ Lupdt ≤ c1 + c2 + c3 + cupdt ≤ δ U1 + δ U2 + δ U3 +
δ Uupdt.

2. (H(l)[n]← v) �g′,k′−(k1+k2+k3+1) P � γ → β.
3. v ∈ �unit�g′,k′−(k1+k2+k3+1).
4. ∃n.P � γ → β = {γ1 → T1, . . . , γn → Tn}∧∀i ∈ [1, n].g(γi)= (li, A, m)⇒

∀j.(H[li][j]) �= (H(l)[n]← v)[li][j]⇒ j ∈ Ti.

By induction hypothesis, from the first premise 	;�;
;��U1
L1

t1 : Arrayγ [I] A and
Lemma 1, we have:

σ t1 ∈ �Arrayγ [δ I] (δA)�e
g′,k′,δ (δ L1,δ U1)

From this we have:

l ∈ �Arrayγ [δ I] (δA)�g′,k′−k1 ⇒ g′(γ)= (l, δA, δ I)∧ δ L1 ≤ c1 ≤ δ U1

By induction hypothesis, from the second premise �;
;��U2
L2

t2 : int[I ′] and Lemma 1,
we conclude:

σ t2 ∈ �int[δ I]�e
g′,k′,(δ L2,δ U2)

From this we have that n ∈ �int[δ I]�g′,k′−k2 , which in turn tells us that

n= I ∧ δ L2 ≤ c2 ≤ δ U2

By induction hypothesis, from the third premise 	;�;
;��U3
L3

t3 : A and Lemma 1, we
have:

σ t3 ∈ �δA�e
g′,k′,(δ L3,δ U3)

From this we have:

v ∈ �δA�g′,k′−k3 ∧ δ L3 ≤ c′′1 ≤ δ U3

To conclude, we proceed as follows:

1. the inequality δ L1 + δ L2 + δ L3 + δ Lupdt ≤ c1 + c2 + c3 + cupdt ≤ δ U1 + δ U2 +
δ U3 + δ Uupdt can be shown using the fact that Lupdt ≤ cupdt <Uupdt and Lupdt

and Uupdt are constants, which means δ Lupdt= Lupdt and δ Uupdt= Uupdt .
2. (H(l)[n]← v) �g′,k′−(k1+k2+k3+1) P � γ → β is proved by unfolding the definition of

our assumption H �g′,k′ P � γ → β. We can conlude that ∀i≤ I .H(l)[i] ∈ �δA�g′,k′−1,
and then we can show that ∀i≤ I .(H(l)[n]← v)(l)[i] ∈ �δ A�g′,k′−(k3+1) because of
the our previous conclusion v ∈ �δA�g′,k′−k3 . Then our goal can be proved by using
Lemma 1.

3. v ∈ �unit�g′,k′−(k1+k2+k3+1) is proved by the definition of the interpretation of unit
type.

4. ∃n.P � γ → β = {γ1 → T1, . . . , γn → Tn} ∧ ∀i ∈ [1, n].g(γi)= (li, A, m)⇒
∀j.(H[li][j]) �= (H(l)[n]← v)[li][j]⇒ j ∈ Ti. It is proved depending on γi.
When γi �= γ , the array is not changed such that H[li]= (H(l)[n]← v)[li].
When γi = γ , then Ti = β, we can show that the only updated index n at this
array H[l] is in β from our premise �;
 � I ′ ∈ β in the rule, which proves
this case. �

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

32 W. Qu et al.

Similarly, we have a fundamental theorem for the relational typing. The theorem says
the following. Suppose we have a pair of expressions (t1,t2) that is well-typed with the
relational type τ in the contexts 	, �,
, and
 with upper bound D on the relative cost.
Suppose we close � with the substitution δ for index variables, which also satisfies the
constraint
, and close
 with a pair of closing substitutions (σ1, σ2) satisfying the inter-
pretation of the relational context δ
. Then, the pair of closed terms (σ1 t1, σ2 t2) is in the
expression interpretation of the closed relational type δτ with the cost upper bound D.

Theorem 2 (Fundamental Theorem for Relational Typing). If
	;�;
;
 � t1 � t2 �D : τ and � δ :� and � δ
 and (σ1, σ2) ∈ �δ
�G,k , then
(σ1 t1, σ2 t2) ∈ �δτ �e

G,k,(δ D).

Proof. The proof is by induction on 	;�;
;
 � t1 � t2 �D : τ .

Case
	;�;
;
 � t1 � t′1 �D1 :

diff (D)
τ1 −→ τ2 	;�;
;
 � t2 � t′2 �D2 : τ1

	;�;
;
 � t1 t2 � t′1 t′2 �D+D1 +D2 : τ2

r-app

By assumption we have � δ :�, � δ
 and (σ1, σ2) ∈ �δ
�G,k , we need to show:(
(σ1 t1) (σ1 t2), (σ2 t′1) (σ2 t′2)

) ∈ �δτ2�
e
G,k,(δ D+δ D1+δ D2)

By the definition of the evaluation we have:

σ1 t1 ⇓c1,k1 fix f (x).t σ1 t2 ⇓c2,k2 v t[fix f (x).t/f][v/x]⇓c3,k3 v1

(σ1 t1) (σ1 t2)⇓c1+c2+c3+cfapp,k1+k2+k3+1 v1

e-fix

σ2 t′1 ⇓c′1,k′1 fix f (x).t′ σ2 t′2 ⇓c′2,k′2 v′ t′[fix f (x).t′/f][v′/x]⇓c′3,k′3 v′1
(σ2 t′1) (σ2 t′2)⇓c′1+c′2+c′3+cfapp,k′1+k′2+k′3+1 v′1

e-fix

So, unfolding the interpretation, for k1 + k2 + k3 + 1≤ k, we must show:

1. (v1, v′1) ∈ �δτ2�G,k−(k1+k2+k3+1).
2. (c1 + c2 + c3 + cfapp)− (c′1 + c′2 + c′3 + cfapp)≤ δ D+ δ D1 + δ D2

By induction hypothesis, from the first premise 	;�;
;
 � t1 � t2 �D1 :
diff (D)

τ1 −→ τ2,
we have:

(σ1 t1, σ2 t′1) ∈ �
diff (δ D)

δτ1 −→ δτ2�
e
G,k,δ D1

From this we know:

(fix f (x).t, fix f (x).t′) ∈ �
diff (δ D)

δτ1 −→ δτ2�G,k−k1 ∧ c1 − c′1 ≤ δ D1

By induction hypothesis, from the second premise 	;�;
;
 � t2 � t′2 �D2 : τ1, we
conclude:

(σ1 t2, σ2 t′2) ∈ �δτ1�
e
G,k,δ D2

From this we have:

(v, v′) ∈ �δτ1�G,k−k2 ∧ c2 − c′2 ≤ δ D2

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 33

So, we unfold the definition of (fix f (x).t, fix f (x).t′) ∈ �
diff (δ D)

δτ1 −→ δτ2�G,k−k1 , using the
previous conclusion (v, v′) ∈ �δτ1�G,k−(k2+k1+1), we have:

(t[fix f (x).t/f][v/x], t′[fix f (x).t′/f][v′/x]) ∈ �δτ2�
e
G,k−(k1+k2+1),δ D

From this we know:

(v1, v′1) ∈ �δτ2�G,k−(k1+k2+k3+1),δ D ∧ c3 − c′3 ≤ δ D

Now to conclude we can proceed as follows:

1. (v1, v′1) ∈ �δτ2�G,k−(k1+k2+k3+1) is proved by our aforementioned conclusions
2. (c1 + c2 + c3 + cfapp)− (c′1 + c′2 + c′3 + cfapp)≤ δ D+ δ D1 + δ D2 is proved by

our aforementioned conclusions.

Case
	;�;
;
 � t1 � t′1 �D1 : int[I] 	;�;
;
 � t2 � t′2 �D2 : τ γ fresh 	;�� P wf

	;�;
;
 � alloc t1 t2 � alloc t′1 t′2 � 0 :
diff(D1+D2)

{P} ∃γ . Arrayγ [I] τ {P � γ →N}
r-alloc

By assumption we have � δ :�, � δ
 and (σ1, σ2) ∈ �δ
�G,k , we need to show:

(alloc (σ1 t1) (σ1 t2), alloc (σ2 t′1) (σ2 t′2)) ∈ �
diff(δ D1+δ D2)

{P} ∃ �γ . Arrayγ [I] δτ {P � γ →N}�e
G,k,0

Since alloc (σ1 t1) (σ1 t2) and alloc (σ2 t′1) (σ2 t′2) are values, it is sufficient to show:

(alloc (σ1 t1) (σ1 t2), alloc (σ2 t′1) (σ2 t′2)) ∈ �
diff(δ D1+δ D2)

{P} ∃γ . Arrayγ [I] (δτ) {P � γ →N}�G,k

By the definition of the forcing evaluation we have:

σ1 t1 ⇓c1,k1 n σ1 t2 ⇓c2,k2 v z= [
n︷ ︸︸ ︷

v, . . . , v] l fresh

alloc (σ1 t1) (σ1 t2); H1 ⇓c1+c2+calloc,k1+k2+1
f l; H1 � [l→ z]

f-alloc

σ2 t′1 ⇓c′1,k′1 n′ σ2 t′2 ⇓c′2,k′2 v′ z′ = [

n′︷ ︸︸ ︷
v′, . . . , v′] l′ fresh

alloc (σ2 t′1) (σ2 t′2); H2 ⇓c′1+c′2+calloc,k′1+k′2+1
f l′; H2 � [l→ z′]

f-alloc

So, unfolding the definition of interpretation, for G′ ⊇G, k′ ≤ k, and arbitrary heaps
H1, H2 such that (H1, H2) �G′,k′ P and k1 + k2 + 1< k′ ≤ k. Now we define G2 =G′[r→
(l, l′, δτ , δ I), H ′

1 =H1 � [l→ z] and H ′
2 =H2 � [l′ → z′], we must show:

1. (H ′
1, H ′

2) �G2,k′−(k1+k2+1) P � γ →N.
2. (l, l′) ∈ �Arrayγ [δ I] (δτ)�G2,k′−(k1+k2+1).
3. (c1 + c2 + calloc)− (c′1 + c′2 + calloc)≤ (δ D1 + δ D2).

By induction hypothesis, from the first premise 	;�;
;
 � t1 � t′1 �D1 : int[I] and
Lemma 1 we conclude:

(σ1 t1, σ2 t′1) ∈ �int[δ I]�e
G′,k′,δ D1

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

34 W. Qu et al.

From this we have: (n, n′) ∈ �int[δ I]�G′,k′−k1 , which in turn tells us:

n= n′ = δ I ∧ c1 − c′1 ≤ δ D1

By induction hypothesis, from the second premise 	;�;
;
 � t2 � t′2 �D2 : τ and
Lemma 1 we have:

(σ1 t2, σ2 t′2) ∈ �δτ �e
G′,k′,δ D2

From this we have:

(v, v′) ∈ �δτ �G′,k′−k2 ∧ c2 − c′2 ≤ δ D2

Now to conclude we can proceed as follows:

1. (H ′
1, H ′

2) �G2,k′−(k1+k2+1) P � γ →N. It is proved depending on γi. When γi �= γ , the
corresponding arrays is not changed, so the claim is trivial. When γi = γ , we can
show that ∀i< δ I .H ′

1(l)[i] �=H ′
2(l′)[i]⇒ i ∈N.

2. (l, l′) ∈ �Arrayγ [δ I] (δτ)�G2,k′−(k1+k2+1) is proved by unfolding its definition using
G2 =G′[r→ (l, l′, δτ , δ I).

3. (c1 + c2 + calloc)− (c′1 + c′2 + calloc)≤ (δ D1 + δ D2) is proved by the previous con-
clusions.

Case

	;�;
; |
|2 �U1
L1

t′1 :
exec(L,U)

{P1} ∃ �γ1 : A′
1 {Q1}

	;�;
; |
|1 �U2
L2

t2 :
exec(L′,U ′)

{P2} ∃ �γ1 : A1 {Q2} dom(P)= dom(P1)

	;�;
;
, x : U(A′
1, A′

1)� t2 � t′2 �D2 :
diff(D′)

{P � P1} ∃ �γ1.τ ′ {Q}

	;�;
;
 � t2 � let {x} = t′1 in t′2 �U2 :
diff(D′+(D2−L2)−L1−L−clet){P} ∃ �γ1.τ ′ {Q}

r-e-bind

By assumption we have � δ :�, � δ
 and (σ1, σ2) ∈ �δ
�G,k , we need to show:

(σ1 t2, let {x} = (σ2 t′1) in (σ2 t′2)) ∈ �
diff(δ(D′+(D2−L2)−L1−L−clet))

{P} ∃ �γ1.δτ ′ {Q} �e
G,k,δ U2

By the definition of the evaluation of σ1 t2 of the form σ1 t2 ⇓c1,k1 v1, and the evaluation
of the monadic bind of the form, we have:

(let {x} = σ2 t′1 in σ2 t′2)⇓0,0 let {x} = σ2 t′1 in σ2 t′2

So, unfolding the definition of the expression interpretation, we must show:

1. c1 − 0≤ δ U2.

2. (v1, (let {x} = (σ2 t′1) in (σ2 t′2))) ∈ �δ(
diff(δ(D′+(D2−L2)−L1−L−clet))

{P} ∃ �γ1.δτ {Q})�G,k−k1 .

By Theorem 2, from the second premise	;�;
; |
|1 �U2
L2

t2 :
exec(L′,U ′)

{P2} ∃ �γ1 : A1 {Q2}, instan-
tiated with σ1 ∈ �δ|
|1�|G|1,k inferred from (σ1, σ2) ∈ �δ
�G,k , we have:

σ1 t2 ∈ �
exec(δ L′,δ U ′)

{P2} ∃ �γ1 : δA1 {Q2}�e
|G|1,k,(δ L2,δ U2)

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 35

From this we have:

v1 ∈ �
exec(δ L′,δ U ′)

{P2} ∃ �γ1 : δA1 {Q2}�|G|1,k ∧ δ L2 ≤ c1 ≤ δ U2

which proves our first goal: c1 − 0≤ δ U2.
We then need to show:

(v1, let {x} = σ2 t′1 in σ2 t′2) ∈ �
diff(δ(D′+(D2−L2)−L1−L−clet))

{P} ∃ �γ1.δτ {Q} �G,k−k1

By the definition of the forcing evaluation we have:

v1; H ⇓c2,k2
f v2; H2

σ2 t′1 ⇓c′1,k′1 v′ v′; H ′ ⇓c′2,k′2
f v′1; H ′

1 σ2 t′2[v′1/x]⇓c′3,k′3 v′2 v′2; H ′
1 ⇓c′4,k′4

f v′3; H ′
2

let {x} = σ2 t′1 in σ2 t′2; H ′ ⇓c′1+c′2+c′3+c′4+clet,k′1+k′2+k′3+k′4+1
f v′3; H ′

2

f-bind

So, unfolding the definition of the interpretation, for G′ ⊇G, k′ ≤ k − k1, arbitrary heaps
H , H ′ such that H , H ′ �G′,k′ P and k2 < k′ ≤ k − k1, we must show:

1. (H2, H ′
2) �G′,k′−k2 Q.

2. (v2, v′3) ∈ �δτ �G′,k′−k2 .
3. c2 − (c′1 + c′2 + c′3 + c′4 + clet)≤ δ(D′ + (D2 − L2)− L1 − L− clet).

By induction hypothesis using Theorem 2, from the first premise, we have:

σ2 t′1 ∈ �(
exec(δ L,δ U)

{P1} ∃ �γ1 : δA′
1 {Q1})�e

|G|2,k′,(δ L1,δ U1)

From this we have:

v′ ∈ �
exec(δ L,δ U)

{P1} ∃ �γ1 : δA′
1 {Q1}�|G|2,k′−k′1 ∧ δ L1 ≤ c′1 ≤ δ U1

which in turn tells us the following when we define g2 = |G|2:

H ′
1 �g2,k′−k′2 Q1 ∧ v′1 ∈ �δA′

1�g2,k′−k′2 ∧ δ L≤ c′2 ≤ δ U

From this, we can conclude:

(σ1[v′1/x], σ2[v′1/x]) ∈ �δ(
, x : U(A′
1, A′

1))�G2,k

By induction hypothesis, from the third premise instantiated with (σ1[v′1/x], σ2[v′1/x]) ∈
�δ(
, x : U(A′

1, A′
1))�G2,k , we have:

(σ1 t2[v′1/x], σ2 t′2[v′1/x]) ∈ �
diff(δ D′)

{P ∪ P1} ∃ �γ1.δτ ′ {Q}�e
G2,k,δ D2

From this we have:

(v1, v′2) ∈ �
diff(δ D′)

{P ∪ P1} ∃ �γ1.δτ ′ {Q})�G2,k−k1 ∧ c1 − c′3 ≤ δ D2

We unfold (v1, v′2) ∈ �
diff(δ D′)

{P ∪ P1} ∃ �γ1.δτ ′ {Q})�G2,k−k1 and have: (H , H ′
1) �G′,k′ P � P1 by

using the definition of the heap relation and the premise dom(P)= dom(P1). We choose
G2 =G′ and then have:

(v2, v′3) ∈ �δτ ′�G′,k′−k2 ∧ c2 − c′4 ≤ δ D′ ∧ (H2, H ′
2) �G′,k′−k2

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

36 W. Qu et al.

Now to conclude we can proceed as follows:

1. (H2, H ′
2) �G′,k′−k2 Q is already proved by the previous conclusions.

2. (v2, v′3) ∈ �δτ �G′,k′−k2 is already proved by the previous conclusions.
3. c2 − (c′1 + c′2 + c′3 + c′4 + clet)≤ δ(D′ + (D2 − L2)− L1 − L− clet) is proved by

previous conclusions. �

When we have the fundamental theorems for both the unary and relational typing, we
can easily have the soundness of our system.

Lemma 3 (Soundness for Costs).

1. If �U
L t : A and t ⇓c v, then L≤ c≤U.

2. If � t1 � t2 �D : τ and t1 ⇓c1,_ v1 and t2 ⇓c2,_ v2, then c1 − c2 ≤D.

Proof. Proof of statement (1) follows directly by the fundamental theorem for uanry
typing.
Proof of statement (2) follows directly by the fundamental theorem for relational
typing. �

5 More examples

We discuss here five more examples demonstrating how we perform relational cost anal-
ysis on programs with arrays. To improve readability, we omit some annotations and use
syntactic sugar. For example, we abbreviate let {x} = t1 in t2 to x←− t1 ; t2 and even to
t1; t2 when x does not appear in t2. We also shorten the type U(A, A) to U(A) and use
if t then t1 else t2 as syntactic sugar for case(t, x.t1, y.t2) when x and y do not appear in t1
and t2, respectively.

In some of the examples, such as the Cooley–Tukey FFT Algorithm below, we add a
dummy first argument of type unit to a recursive function. This allows us to make the
recursive function polymorphic in index terms.

5.1 Cooley–Tukey FFT algorithm

The Fast Fourier Transform or FFT is a discrete Fourier Transform of a sequence of
numbers. The Cooley–Tukey algorithm is a commonly used FFT algorithm that uses
divide-and-conquer to split the sequence (Cooley & Tukey, 1965). Here, we perform a
relational cost analysis of an imperative implementation of the algorithm that represents
the sequence as an array and uses in-place updates. The objective of the analysis is to prove
that the implementation is constant time—any two runs with arbitrary inputs take the same
amount of time, assuming that array read/write operations and primitive numerical oper-
ations like addition and multiplication are constant time. Our implementation is shown in
Figure 13.

The recursive function FFT uses divide-and-conquer. The variable x is the input array,
y is another array used for temporary storage, m is the length of the range of the array to

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 37

fix FFT ().λx.λy.λm.λp.
if 2≤m then

separate () x m y p ;
FFT () x y (m/2) p ;
FFT () x y (m/2) (p+m/2) ;
loop () 0 m x p

else
return ()

fix loop ().λk.λm.λx.λp.
if k < (m/2) then

e←−read x (k + p) ;
o←−read x (k + p+m/2) ;
let w= exp(−2πk/m) in
updt x (k + p) (e+w ∗ o) ;
updt x (k + p+m/2) (e−w ∗ o) ;
loop () (k + 1) m x p

else
return ()

fix separate ().λx.λm.λy.λp.
sp() x m 0 y p ;
cp() y x p (m+ p)

Fig. 13. Code of FFT.

be transformed, and p is an index that specifies the starting index of the range of the array
to be split in the recursive call. This function uses a helper function separate to relocate
elements in even positions to the lower half of the array x and elements in odd positions
to the upper half of the array respectively, using y as a scratchpad. The function separate
also uses two helper functions—the function sp does the separation work using temporary
storage and the function cp copies the separated part from the temporary storage back to the
original array. We omit the code of sp and cp here; this code can be found in the Appendix.

Another helper function loop simulates a for-loop in which the input array x is updated
to actually perform the Fourier transform.

Intuitively, this example is constant time (for arrays with fixed length) because the
sequence of array accesses depends only on the array length, not on array contents.
Formally, every function in this example relates to itself with relative cost 0. For instance,
the relational types of separate and loop are shown below.

� separate� separate� 0 :

unit→∀γ1, γ2, β1, M , N , P.(P+M <N)⊃(
Arrayγ1

[N] U(int)→ int[M]→Arrayγ2
[N] U(int)→

int[P]→
diff(0)

{γ1 → β1, γ2 →N} ∃_.unit {γ1 →N, γ2 →N})

� loop� loop� 0 :

unit→∀γ1, β1.∀K, M , N , P.(P+M <N)⊃(
int[K]→ int[M]→Arrayγ1

[N] U(int)→ int[P]→
diff(0)

{γ1 → β1} ∃_.unit {γ1 →N})
The constraint P+M <N ensures that we never index the array past its end. Next, we
show the relational type of FFT, again with relative cost 0.

� FFT� FFT� 0 :

unit→∀γ1, γ2, β1, M , N , P.(P+M <N)⊃(
Arrayγ1

[N] U(int)→Arrayγ2
[N] U(int)→ int[M]→

int[P]→
diff(0)

{γ1 → β1, γ2 →N} ∃_.unit {γ1 →N, γ2 →N})

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

38 W. Qu et al.

The typing derivations for the above typing judgments are straightforward, so we omit
them here.

We note that a different way to achieve the same result is to first compute precise lower
and upper bounds on the unary cost of FFT and then show that they are, in fact, equal.
This works, but is much more difficult because computing the precise unary cost of FFT is
quite involved. We first establish the precise cost of the auxiliary functions. For example,
we need to give the following unary types to separate and loop.

� separate :

unit→∀γ1, γ2, M , N , P.(M + P<N)⊃(
Arrayγ1

[N] int→ int[M]→Arrayγ2
[N] int→ int[P]→

exec(4∗M ,4∗M)
{γ1 →N, γ2 →N} ∃_.unit {γ1 →N, γ2 →N})

� loop :
unit→∀γ1, K, M , N , P.(P+M <N)⊃(

int[K]→ int[M]→Arrayγ1
[N] int→ int[P]→

exec(4∗(M−K),4∗(M−K))
{γ1 →N} ∃_.unit {γ1 →N})

Once these unary costs are available, we can conclude that the function FFT has the same
min and max costs: 8 ∗M ∗ log(M) and is, thus, constant time (using the rule r-switch).3

While both the unary and relational reasoning can show that this example is constant
time, the relational reasoning is much easier in this case since the relative cost is 0 every-
where while the unary reasoning requires a precise computation of the actual complexity
of all functions.

5.2 Naive string search

We show how a combination of unary and relational reasoning can give a precise relative
cost to a classic array algorithm: substring search.

We represent strings as arrays of integers (storing the ASCII code of each character). In
Figure 14, the function NSS takes as input, a “long” string s and a “short” string w in the
form of arrays, the lengths ls and lw of these arrays, and an array p of length ls (we call this
the result array). This function iteratively searches the substring w at each position in s and
records in p whether the substring is found at that position (1) or not (0). To do this, NSS
uses helper function search, which is also shown in Figure 14.

The function search has the same inputs as NSS except for the additional index i, that
iterates over the positions of lw. The two conditionals check whether search is in its final
step (i+ 1== lw), and whether the two corresponding characters in s and w coincide.
When the two characters differ, p is updated with 0. When the two conditionals are satisfied
at the same time, p is updated with 1.

Intuitively, search runs fastest when the first character of w does not appear in s. It runs
slowest when the suffix of w starting at index i occurs in s at offset m+ i. The difference
between these two costs is a bound on the relative cost of search. Consider two runs of
search on the same string s, the same index i and where the two ws agree on some prefix.
The runs behave identically until we reach an index i where the two ws differ for the first
time. We can use this index to give a better bound on the cost of search relative to itself.

3 It is not hard to see that FFT has unary cost in O(M ∗ log(M)): The unary costs of separate and the call to
loop() are both linear in M , so the cost f (M) of FFT satisfies the recurrence f (M)= 2 ∗ f (M/2)+O(M),
which has the standard solution O(M ∗ log(M)). However, proving this in the type system is much harder than
the direct relational proof of 0 relative cost.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 39

fix NSS (s).λw.λm.λls.λlw.λp.
if (m+ lw)≤ ls then

search s w m 0 ls lw p ;
NSS s w (m+ 1) ls lw p

else
return ()

fix search (). λs. λw. λm. λi. λls. λlw. λp.
x←−read s (m+ i) ;
y←−read w i ;
if i+ 1== lw then

if x== y then
updt p m 1

else
updt p m 0

else
if x== y then

search () s w m (i+ 1) ls lw p
else

updt p m 0

Fig. 14. Code of NSS.

To write this bound, we need to express the first index in the range [i, lw] where the two ws
differ. In ARel, the index term MIN(β2 ∩ [I ,∞)) represents this index (assuming β2 is the
relational precondition of w and I is the static index refinement for i’s size). Then, search
incurs a nontrivial relative cost only after this index is reached. Using this idea, we can
show:

� search� search� 0 :

unit→∀γ1, γ2, γ3, I , M , R, N , β2, β3.
(I < R<N ∧M + I <N)⊃(
T →

diff((R−1−min(MIN(β2∩[I ,∞)),R−1))∗r)
{P, γ3 → β3} ∃_.unit {P, γ3 → β3 ∪ {M}})

where T =Arrayγ1
[N] U(int)×Arrayγ2

[R] U(int)×int[M]× int[I]× int[N]×
int[R]×Arrayγ3

[N] U(bool)

where P= {γ1 →∅, γ2 → β2}, R is the static size of lw, and r is the (constant) cost of two
read operations. The constraint I < R guarantees that the search will not exceed the length
of the array w and the constraint R<N guarantees that w is shorter than s. The other con-
straint M + I <N guarantees that the search will not exceed the length of the array s. The
postcondition modifies only the set associated with γ3, from β3 to β3 ∪ {M}, representing
that only the result array p will be overwritten. To account for the case where w is the
same in the two executions we also add a lower bound R− 1 to the cost. The relative cost
we establish here is more precise than the cost (R− 1− I) ∗ r we would achieve with a
non-relational analysis.

We stress here that to obtain this relative cost, the rule r-fix-ext is essential. At a high
level, typing proceeds by case analysis on I ∈ β2. When I �∈ β2 we can proceed relationally
with relative cost 0 in the recursive call. When I ∈ β2 the control flows may differ in the
two runs and we need to switch to unary reasoning via the rule r-switch. To obtain our
bound using unary worst- and best-case analysis, we need the precise unary type of search,
which is available in the context only due to the rule r-fix-ext. The details of this proof are
in our appendix.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

40 W. Qu et al.

Fig. 15. Code of msort.

Using the above type of search, we can also obtain a tight bound on the cost of NSS rel-
ative to itself: (R− 1−min(MIN(β2 ∩ [I ,∞)), R− 1)) ∗ r ∗ (N −M − R). This is simply
the number of times search is called (N −M − R) multiplied by the relative cost of search.

5.3 Mergesort

As our next example, we consider an imperative version of mergesort. Similar to what
we did for the mapi example in Section 2, we present two relational types for mergesort,
corresponding to two different assumptions on the inputs. Consider the function msort in
Figure 15 which sorts the elements of an array a from index l to u, using another array b
as buffer. We use an auxiliary function merge that merges the two sorted partitions of the
array. This function is defined in Figure 15. The function merge takes in input the array
a, the buffer array b, the starting index l and ending index u, and additionally asks for
a “midpoint” index m at which the array range is divided. It uses two helper functions:
the function mergelp which implements the standard merging process in a recursive way,
and the function copy which copies the merged buffer array back to the working array.
We omit the code of the function copy here (it can be found in the Appendix). We show
just the code of the function mergelp. The argument k is the position where to store the
merged element in the buffer array b, the four arguments ls, le, rs, and re separate the
array a into two portions, the left one is specified by the variables ls and le representing
its starting and ending indices, whereas the right portion is specified by rs and re. The idea
underlying this function is to check if there is an element available in the left portion and
right portion using conditionals, then compare two elements one from each side, before
storing the smaller one in the buffer array at the position k. Then this pointer is updated,
and the process is repeated recursively.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 41

The first relational type we want to show for msort assumes that the two arrays, which
are input to the two runs, are equal in the range [l, u]. Intuitively, the fact that we have the
same array elements in the range [l, u] implies that we have the same execution path, and
so we can prove that the relative cost is 0.

�msort�msort� 0 :

unit→∀l, u, β, γ , γ ′, N .
l≤ u≤N ∧ β ∩ [l, u]=∅⊃(
Arrayγ [N] U(int)→Arrayγ ′ [N] U(int)→ int[l]→

int[u]→
diff(0)

{γ → β, γ ′ →N} ∃_.unit {γ → β, γ ′ →N})
The assumption that the two arrays from the two runs are equal in the range [l, u] is repre-
sented by the constraint (β ∩ [l, u]=∅), where β is the set containing indices at which the
two arrays can differ. Using this assumption, we can derive relational types asserting rela-
tive cost 0 for both mergelp and copy, and thus for merge. We show the types of mergelp
and merge below.

�mergelp �mergelp � 0 :

∀N , ls, le, rs, re, K, γ , γ ′, β.
ls ≤ le ≤ rs ≤ re ≤N ∧ β ∩ [K, re]=∅⊃(
int[K]→Arrayγ [N] U(int)→ int[ls]→ int[le]→

int[rs]→ int[re]→Arrayγ ′ [N] U(int)→
diff(0)

{γ → β, γ ′ →N} ∃_.unit {γ → β, γ ′ →N \ [l, u]})

�merge�merge� 0 :

∀l, m, u, β, γ , γ ′, N .
l≤ u≤N ∧ β ∩ [l, u]=∅⊃(
Arrayγ [N] U(int)→Arrayγ ′ [N] U(int)→ int[l]→

int[m]→ int[u]→
diff(0)

{γ → β, γ ′ →N} ∃_.unit {γ → β, γ ′ →N})
Notice that we also restrict the value of u to be between the starting index l and the array
length of a. Moreover, notice that the precondition and the postcondition in merge are
equal. This follows again from the assumption we have for this typing: since the two arrays
coincide in the range [l, u] before the sort, they will also coincide after the sort, so no new
element will be added to β.

Next, we show a more general relational type for msort that does not assume that the
two input arrays are equal in the range [l, u]. We start a general type for the function
mergelp. Without the assumption, we may have different execution paths in two runs of
this function. We use the rule r-switch to switch to the unary analysis to get the relative
cost and the rule R-X to use the subtyping rule r-rum for the proper monadic type. Using
this approach we get the following relational type for mergelp:

�mergelp �mergelp � 0 :

∀K, ls, le, rs, re, β, γ , γ ′, N .
ls ≤ le ≤ rs ≤ re ≤N ∧K ≤ re ⊃(
T →

diff(max(le−ls,re−rs))

{γ → β, γ ′ →N} ∃_.unit {γ → β, γ ′ →N})

where T = int[K]×Arrayγ [N] U(int)×int[ls]× int[le]× int[rs]×
int[re]×Arrayγ ′ [N] U(int)

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

42 W. Qu et al.

fix ISort (). λs.λi.λls.
if i< ls then

a←−read s i ;
b←− insert () s a 0 i ;
ISort () s (i+ 1) ls

else
return ()

fix insert (). λs.λa.λx.λi.
b←−read s x ;
if a≥ b then

insert () s a (x+ 1) i ;
else

shift () s x (i− 1) ;
updt s x a

fix shift (). λs.λidx.λi.
if idx≤ i then

c←−read s i ;
updt s i+ 1 c ;
shift () s idx (i− 1)

else
return ()

Fig. 16. Code of ISort.

So, we have that the relative cost of two executions of mergelp is max(le − ls, re − rs). (The
function copy does not contain branches and so it does not introduce a nontrivial relative
cost.)

Using the relational type described above we can derive the following relational type
for merge:

�merge�merge� 0 :

∀l, m, u.∀β.∀γ , γ ′.∀N : N. l≤m≤ u≤N ⊃
Arrayγ [N] U(int)→Arrayγ ′ [N] U(int)→ int[l]→ int[m]

→ int[u]→
diff(max(m−l,u−(m+1)))

{γ → β, γ ′ →N} ∃_.unit {γ → β ∪ [l, u], γ ′ →N}
From this, we can give a relational type to msort.

�msort�msort� 0 :

∀l, u, β, γ , γ ′, N . l≤ u≤N ⊃(
Arrayγ [N] U(int)→ int[l]→ int[u]→Arrayγ ′ [N] U(int)

→
diff(Q(u−l+1,|β∩[l,u]|))

{γ → β, γ ′ →N} ∃_.unit {γ → β ∪ {l, u}, γ ′ →N})
where Q(n, α)=	H

i=0h(�2i−1�) ·min(α, 2H−i) and H = �log2(n)�. To prove that msort has
this relative cost, we need some algebraic properties of the recurrence relation Q, which
we postpone to the appendix. While the cost looks complicated, we prove that it is in
O(n · (1+ log2(|β ∩ [l, u]|))). This is consistent with a previous relational analysis of a
non-imperative variant of msort (Çiçek et al., 2017).

5.4 Inplace insertion sort

Our next example, inplace insertion sort, implements the insertion sort algorithm without
any temporary array. This is an involved example which combines most of the ideas we
discussed in other examples, in order to derive a precise relative cost. The relative cost is
complex but we can show that under reasonable assumptions, ARel provides a more pre-
cise relative cost than a unary analysis. The algorithm is shown in Figure 16. The function

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 43

ISort sorts the input array s in the range [i, ls]. Intuitively, we observe that the cost of ISort
relative to itself should be the sum of the possible cost variation of every recursive call,
which is mainly determined by the auxiliary function insert shown in Figure 16.

The recursive function insert implements the standard operation of inserting an ele-
ment into an array by finding the right position x to insert the element at and shifting
elements behind x in the array backward before updating the value at index x to a. The
input arguments x and i specify the range in the array to insert into.

The function insert uses a helper function shift, which performs the shift operation. It is
not hard to observe that the auxiliary function shift, which shifts the elements in the range
[idx, i] backward by one index, uses one read operation and one update operation at every
index. Finding the right position only needs one read operation. The unary cost of ISort
is maximum when the input array is initially sorted in descending order. In contrast, the
unary cost is minimum when the input array is initially sorted ascending. Assuming that
read and update operations incur a unit cost each, the unary type of insert is as follows:

� insert :
unit→∀γ1, N , X , I . X ≤N ∧ I ≤N ⊃(
Arrayγ1

[N] int→ int→ int[X]→ int[I]→
exec(I−X+1,2∗(I−X)+2)

{γ1 →N} ∃_.unit {γ1 →N})
With this unary type of insert in hand, we can obtain the relative cost of insert by switch-
ing to unary reasoning and then taking the difference. An interesting observation is that
if the input arrays of the two runs coincide in the insertion range [X , I] and the elements
“a" being inserted also agree, then insert’s cost relative to itself is 0. The correspond-
ing relational type is shown below, where the constraint β1 ∩ [X , I]=∅ describes our
aforementioned assumption.

� insert� insert� 0 :

unit→∀γ1, β1, N , A, X , I .
X ≤N ∧ I ≤N ∧ β1 ∩ [X , I]=∅⊃(
Arrayγ1

[N] U(int)→ int→ int[X]→ int[I]→
diff(0)

{γ1 → β1} ∃_.unit {γ1 → β1}
)

This observation can be used in typing ISort: For every I , we split cases on whether
β1 ∩ [0, I]=∅ or not (using rule r-split). While β1 ∩ [0, I]=∅, we proceed relationally
(with 0 relative cost). Once β1 ∩ [0, I] �= ∅, we switch to unary reasoning using rule r-
switch since control flow may differ in the two runs. We need the rule r-fix-ext to allow us
to switch back to unary typing when the control flow actually differs at some point. Using
this idea, we obtain a very precise relational cost for ISort.

� ISort� ISort� 0 :
unit→∀γ1, β1, N , I . I ≤N ⊃

(
Arrayγ1

[N] U(int)→ int[I]→ int[N]→
diff(N∗(N+1)−k∗(k+1)

2)

{γ1 → β1} ∃_.unit {γ1 →N})
where the index term k =max(I , min(MIN(β1), N)) represents the first index where the two
arrays differ. The relative cost N∗(N+1)−k∗(k+1)

2 is the sum of all the relative costs generated
in the recursive calls corresponding to indices in the range [k, N]. Recursive calls up to
index k incur 0 relative cost, as noted above. More details are provided in the appendix. We
note that the cost obtained here is more precise than the relative cost that can be obtained
using unary reasoning alone.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

44 W. Qu et al.

fix loop (A). λm.λn.
if m< n then

if b then
h←−read A m ;
let a= f h in
updt A m a ;
loop A (m+ 1) n

else
return ()

else
return ()

loopOp= if b then
fix loop’ (A). λm.λn.

if m< n then

h←−read A m ;
let a= f h in
updt A m a ;
loop’ A (m+ 1) n

else
return ()

else
λA.λm.λn.return ()

Fig. 17. Code of loop unswitching.

5.5 Loop unswitching

In this example, we examine a classical technique from compiler optimization, loop
unswitching. We show how ARel can provide a more precise relative cost than the standard
worst-case/best-case analysis when dealing with two programs that are not structurally
similar.

In Figure 17, we present a function loop which operates a simple loop over an input array
A, from index m, to the end of the array n (of type int[N]). Inside the loop, we have an if
statement whose then branch reads the value in the array at index m and does some pure
computation f h on the value h just read, and then stores the result back to the array, before
moving on to the next iteration. For simplicity, the else branch does nothing interesting.

This program can be optimized by pulling out the if conditional from the function body,
as we can see in the right part of Figure 17. We call the optimized program loopOp.
Suppose that the original program loop and the optimized program loopOp operate on
the same array A, run the same pure computation f inside the loop, and share the boolean
input b in two runs. Intuitively, the relative cost of loop and loopOp is upper bounded
by N (the size of the array) when we count one unit cost for elimination forms because
loop checks b at each iteration, while the optimized one checks b only once. Using unary
analysis, we can obtain the following unary types.

� λf .λb.loop :
(A→ unit)→ bool→∀γ1, N , M .

Arrayγ1
[N] A→ int[M]→ int[N]→

exec(1,4∗(N−M)+1)
{γ1 →N} ∃_.unit {γ1 →N}

� λf .λb.loopOp :
(A→ unit)→ bool→∀γ1, N , M .

Arrayγ1
[N] A→ int[M]→ int[N]→

exec(1,3∗(N−M)+1)
{γ1 →N} ∃_.unit {γ1 →N}

In both types above loop, both the precondition and the postcondition map γ1 to N,
which is consistent with our assumption that the array will be updated during the execution
of either loop or loopOp. With the help of the subtyping rule s-rum, we obtain the cost of
loop relative to loopOp, which is 4 ∗ (N −M). When we start the loop from the beginning,
which means M = 0, then the relative cost is bounded by 4 ∗N , which is higher than the
N we expected.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 45

We can do better if we use the relational analysis and, in particular, the relational asyn-
chronous rule r-e-case in Figure 6 on p. 20 (recall that if t then t1else t2 is syntactic sugar for
the construct case (t, x.t1, y.t2)). To be precise, we can derive a simplified asynchronous
rule r-e-if from r-e-case.

	;�;
; |
|2 �U1
L1

t′ : bool 	;�;
;
 � t� t′1 �D2 : τ
	;�;
;
 � t� t′2 �D2 : τ

	;�;
;
 � t� if t′ then t′1else t′2 �D2 − L1 − ccase : τ
r-e-if

This asynchronous rule allows us to relationally type loop relative to the inner recursive
function loop’ inside loopOp. When we compare the bodies of loop and loop’, and type
the “then” branch of the first if conditional (if m< n . . .), we come across structurally
dissimilar pieces of codes: the piece of code inside the box in loop and the piece of code
inside the box in loop’. Here, we use the r-e-if rule above. We want to avoid comparing
the “else” branch return () in the loop with the boxed part of loop’, when we know that the
condition b is the same in the two runs. To this end, we refine our unary boolean type bool
to bool[B] and our relational boolean type boolr to boolr[B], where B ∈ {true, false}. (The
erasure operation over the refined relational type is defined as |boolr[B]|i = bool[B]).

With this, we can relationally type the two programs with a precise relative cost as
follows:

� λf .λb.loop� λf .λb.loopOp� 0 :

(U(A)→ unit)→∀B :: {true, false}.boolr[B]
diff(−1)−−−−→∀γ1, N , M . Arrayγ1

[N] U(A)→ int[M]

→ int[N]→
diff(N−M)

{γ1 →N} ∃_.unit {γ1 →N}
The negative cost −1 in the type comes from checking b at the beginning in the optimized
version. The relative cost embedded in the monadic type reflects the difference between
the boxed code in loop and the boxed code in loop’ for every iteration.

6 Bidirectional type checking

In this section we discuss the implementation of ARel. Implementing ARel naively results
in an immediate challenge: the relational aspects of ARel create non-determinism in the
type system. This non-determinism comes from two aspects. First, some of the rules are
not syntax-directed. For example, in the split rule r-split in Figure 5, we can choose any
constraint to split on (and this is an infinite choice); we can apply the switch rule r-switch
in Figure 6 anywhere; in the rule r-fix-ext shown in Figure 7, we have to guess the unary
types of the functions (again an infinite choice); simultaneously, there are two rules for
every array operator, which makes a choice between them non-deterministic because � τ
is a subtype of τ . Second, the existence of the modality� and its interaction between other
types makes the algorithmization of relational subtyping quite tricky. To be concrete, it is
challenging to define relational subtyping algorithmically while preserving transitivity of
the subtyping relation.

To address these challenges, inspired by the work of Çiçek et al. (2019), we introduce
a two-step method to algorithmize ARel. We first introduce an intermediate core language
denoted ARelCore corresponding to an annotated, syntax-directed, version of ARel. An
elaboration of ARel to ARelCore eliminates the non-determinism of ARel in two steps.
First, it adds annotations on term constructors to resolve non-syntax-directed typing rules.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

46 W. Qu et al.

Fig. 18. ARelCore syntax of values and terms.

Second, it eliminates relational subtyping in the core language to avoid its corresponding
non-determinism. The elaboration replaces relational subtyping with explicit coercions in
the core language. The language ARelCore is sound and complete with respect to ARel,
modulo finding the right elaboration. We then develop bidirectional type checking for
ARelCore as the main component of our implementation, and heuristics for elaboration.

This section is organized as follows. We first present the ARelCore language through
its syntax and typing rules. Then, we demonstrate the elaboration from ARel to ARelCore
by showing some of the elaboration rules. We also justify its soundness and completeness.
Then, after the introduction of ARelCore and the elaboration, we focus on the algorithmiza-
tion and discuss how to construct a bidirectional type system with respect to ARelCore.

6.1 ARelCore

The difficulties encountered when trying to algorithmize ARel disappear when we instead
algorithmize a core language suitable for bidirectional type checking. This core language
can be seen as a theoretical medium for algorithmization, which is sound and complete
with respect to our declarative type system ARel.

6.1.1 Syntax

The syntax of ARelCore is an extension of the syntax of ARel with the annotations
and corresponding term constructs shown in Figure 18. These annotations and new con-
structs make ARelCore’s type system syntax-directed. For instance, the term construct
split t with C can be used to mark a use of the rule r-split, which splits on the constraint
C in the type checking of t. The use of the rule r-fix-ext of Figure 5 is indicated by the
construct FIXEXT f (x).t with A that provides the unary type A of fixf (x).t. Similarly, the
constructs NC t and switch t specify the use of the rule r-nc which introduces the�modal-
ity, and the switch rule r-split, respectively. The construct contra t allows us to assign an
arbitrary type to the expression t if there is a contradiction in our constraint environment. In
addition, we introduce two variants of each array operation, for example, alloc and allocb

correspond to the two rules r-alloc and r-allocb, respectively.

6.1.2 Typing rules of ARelCore

The main purpose of ARelCore is to provide a syntax-directed type system that we can
use as the target for a translation of ARel programs. Like ARel, ARelCore has two typing
judgments. We have the unary judgment	;�;
a;��U

L t :c A that assigns to a single term
t a type A, and bounds L and U to t’s evaluation cost, under the environment 	;�;
a;�.
We also have relational typing 	;�;
a;
 � t1 � t2 �D :c τ , which says that two terms

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 47

Fig. 19. Selected typing rules of ARelCore.

t1 and t2 are related at type τ , and that their relative cost is bounded by D, under the
context
.

We present in Figure 19 a selection of the typing rules for ARelCore. We select rules
for terms that may incur non-determinism in ARel, and we show how the non-determinism
can be resolved at the syntactic level in ARelCore. As an example, to resolve the non-
determinism caused by array-based operations we now have two different constructors
for each operation and two different rules for them. For instance, for the read operation,
we have a pair of terms read t t and read� t t which correspond to the two typing rules
c-r-read and c-r-readb, respectively. These typing rules of ARelCore are similar to their
counterparts in ARel. Consider the rule c-r-read. It is easy to see that it has a structure
similar to that of the rule r-read in Figure 7. For example, the same premise �;
 � I ′ ≤

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

48 W. Qu et al.

I guarantees the array bound limit. Such similarity can also be found between the rule
c-r-readb and the rule r-readb, and other pairs of array-related rules.

Subtyping is managed in a different way. For unary subtyping, we have the rule c-���
which has a form similar to its counterpart in ARel. This is mainly because the unary
subtyping relation allows a direct algorithmization. On the other hand, relational subtyping
in ARelCore is limited to type equivalence as in rule c-r-≡≡≡. ARel’s subtyping is then
simulated using explicit coercion functions. The main reason for this approach comes from
the fact that the modalities � and U prevent easy algorithmization. We show that every
relational subtyping can be simulated by applying a coercion expression in ARelCore.

Lemma 4 (Simulation of Binary Subtyping in ARelCore). If �;
 |= τ � τ ′ then
there exists a term t in ARelCore, which we also denote coerceτ ,τ ′ , such that

�;
; · � t� t� 0 :c τ
diff(0)−−→ τ ′.

Proof. By induction on the given subtyping derivation. �

6.2 Elaboration

Now that we have ARelCore, we want to show that we can elaborate any well-typed
program from ARel into a well-typed program in ARelCore. The unary elaboration
judgment �;
a;��U

L t� t∗ : A represents the translation of a term t in ARel to its
counterpart t∗ in ARelCore. Both terms have the unary type A and bounds L, U in the
contexts 	;�;
a;�. In the same vein, the relational elaboration judgment has the shape
	;�;
a;
 � t1 � t2� t∗1 � t∗2 �D : τ . It represents the translation of a pair of terms
(t1, t2) to (t∗1, t∗2). Both pairs are typed at τ in the given contexts, and both pairs have the
same relative cost bound D. We show a selection of the unary and relational elaboration
rules in Figure 20. In the unary elaboration subsumption rule e-u-sub and the relational
rule e-r-sub, we see the two different approaches to subtyping we discussed previously.
The rule e-u-sub preserves the unary subtyping relation during the translation. As we
mentioned before, ARelCore eliminates relational subtyping using coercions, which are
provided by Lemma 4. In the rule e-r-sub, the ARelCore term t′ is such a coercion.
Elaboration rules for array operations have structures that are quite similar to the structure
of the rules in ARel, except that they map terms to their annotated versions.

Elaboration is sound and complete in the sense of the following theorems.

Theorem 5 (Soundness of ARelCore & Type Preservation of Embedding). The following
holds.

1. If 	;�;
;��U
L t� t∗ : A, then 	;�;
;��U

L t∗ :c A and 	;�;
;��U
L t : A.

2. If 	;�;
;
 � t1 � t2� t∗1 � t∗2 �D : τ , then 	;�;
;
 � t∗1 � t∗2 �D :c τ
and 	;�;
;
 � t1 � t2 �D : τ .

Proof. By simultaneous induction on the given elaboration derivations. �

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 49

Fig. 20. Selected unary and relational elaboration rules.

Theorem 6 (Completeness of ARelCore). The following holds.

1. If 	;�;
;��U
L t : A then ∃ t∗ such that 	;�;
;��U

L t� t∗ : A.
2. If 	;�;
;
 � t1 � t2 �D : τ then ∃ t∗1 and ∃ t∗2 such that
	;�;
;
 � t1 � t2� t∗1 � t∗2 �D : τ .

Proof. By simultaneous induction on the given typing derivations. �

6.3 Algorithmization

Next, we algorithmize ARelCore’s type system. Here, we face the usual challenge of
algorithmizing any type system: The need to either annotate or infer the types of bound
variables. The problem is more nuanced than would be in a simply typed or even a refine-
ment type calculus, since we must also deal with cost bounds in function and monadic
types. To address this challenge, we rely on bidirectional type checking or local type infer-
ence (Pierce & Turner, 2000), where type annotations must be provided only at explicit
beta-redexes and at the top level, but everything else can be inferred. Our algorithmic sys-
tem, which we call BiARel, inherits ARelCore’s syntax and adds two annotated constructs
(t : τ , D) and (t : A, L, U), as shown in Figure 21. These are required for bidirectional type
checking.

For background, bidirectional type checking is a widely used method to implement type
systems. The main idea is to split the typing judgment into two judgments corresponding to
two modes: one for checking types and the other for synthesizing types. The combination
of these two modes reduces the number of annotations needed to guide a type checker.
Rules of a bidirectional type system usually resemble those in standard declarative type
systems. This simplifies the proof of soundness and completeness of the bidirectional type

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

50 W. Qu et al.

Fig. 21. BiARel syntax of values and terms.

system relative to the declarative type system. Our bidirectional type system for ARelCore
is similar to the one for RelCost (Çiçek et al., 2019), but extended in a nontrivial way to
support array-related operations and for our extended fixpoint operator.

The core language has two typing judgments, the unary and relational one, while we
have four of them in BiARel: two relational and two unary judgments. The relational typing
judgment of ARelCore splits into two relational judgments in its bidirectional version, one
for the “checking mode” and one for “inference mode”. The relational checking judgment
has the follwoing form:

	;�;ψa;
a;
 � t1 � t2 ↓ τ , D⇒
 .

Given the location environment 	, the index variable environment �, the existential vari-
able context ψa, the current constraint environment
a, the relational typing context
,
and terms t1 and t2, we check against the relational type τ and the relative cost D, and we
generate the constraint
, which must be discharged separately. In contrast, the relational
inference judgment has the follwoing form:

	;�;ψa;
a;
 � t1 � t2 ↑ τ ⇒ [ψ], D ,
 .

Here, we synthesize the relational type τ and the relative cost D, and we generate the
constraint
 with all the newly generated (existential) variables in ψ .

Similarly, we have two judgments for the unary case. The unary checking judgment has
the form 	;�;ψa;
a;�� t ↓ A, L, U ⇒
 , while the unary inference judgment has

the form 	;�;ψa;
a;�� t ↑ A ⇒ [ψ], L , U ,
 . Both these judgments can be
understood in a way similar to their relational counterparts. In all the judgments, we write
all the outputs (inferred components) in red boxes and inputs in black. We can think of
our unary checking judgment as a mutually recursive function check(t, A, L, U), whose
inputs include a term t, a type A, the bounds L and U . The generated output is a constraint

 , which holds exactly when t indeed has type A with execution cost bounded by L

and U in our semantics. Likewise, the unary inference judgment performs like a function
whose input is a term t. The outputs cover the inferred type A , the constraint
 , the

bounds U , L , and an index variable environment ψ that tracks all the new generated
index variables during the procedure of the inference. Here, the type and bounds hold iff
∃ ψ .
 holds. Notice that algorithmic typing judgments have one more input context
ψa, which records previously eliminated existential variables.

We show selected algorithmic typing judgments in Figure 22 to explain how we handle
ARel’s non-determinism. The switch rule (r-switch) exists in both checking and inference
modes. Both algorithmic rules relate the annotated terms switch t1 and switch t2 at the type
U (A1, A2) and generate the final constraint based on the constraints from subterms t1 and
t2 obtained in unary mode. The relative cost D is the difference of the maximal unary
cost of t1 (U1) and the minimal unary cost of t2 (L2). In the checking rule, alg-r-switch↓,
this is forced in the output constraint. The split rule (r-split) exists only in checking mode

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 51

Fig. 22. Selection of algorithmic typing rules in BiARel.

(alg-r-split↓). The terms split t1 with C and split t2 with C determine that this rule must
be applied, splitting on constraint C. The final output constraint C →
1 ∧¬C →
2 also
analyzes C.

The algorithmic counterpart of the rule r-fix-ext in checking mode, alg-fixext↓, relates
the annotated terms FIXEXT f (x).t with A1 and FIXEXT f (x).t with A2 and checks the
subterms fix f (x).t and fix f (x).t′ at the unary types A1 and A2, respectively. The final con-
straint is the combination of the constraints generated from the unary checking of the two
subterms and the relational checking of the two function bodies.

The rule alg-r-↑↓ provides the possiblity of tranfering from inference mode to check-
ing mode, while the rule alg-r-anno-↑ allows the opposite transfer. Notice that we check
the equivalence of two types in the rule alg-r-↑↓. In most bidirectional type systems, one
would check subtyping here but, as explained earlier, ARelCore only has type equiva-
lence. We emphasize the presence of the annotated term (t : τ , D) in the rule alg-r-↑↓. This
annotated term allows the user to provide the type τ and the effect (relative cost D) to be
checked in checking mode, as shown in the rule alg-r-↑↓. It helps when the bidirectional
type checker has difficulty inferring the type of a term t by transferring the inferring chal-
lenge to a task that is easier, namely, checking a user-provided type. The unary annotated
term (t, A, L, U) is useful in a similar way.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

52 W. Qu et al.

Next, we discuss selected rules for array operations. These operations constitute the
main challenge in our bidirectional type system relative to prior work. We show a selection
of bidirectional rules for array operations in Figure 23. As mentioned, to resolve the non-
determinism between the�-ed and non-�-ed rules for each array operation, we use distinct
expressions, for example, alloc� t1 t2 versus alloc t1 t2. Notice that the conclusion of every
array operation is typed in checking mode. The two allocation rules alg-r-alc-↓ and alg-r-
alcB-↓ check the first arguments t1 and t′1 against the relational type int[I] and relative cost
D1, then check the second arguments t2 and t′2 against the relational type τ (or �τ) and
relative cost D2. The final constraint
r =∃D1 :: R.(
1 ∧ ∃D2 :: R.
) requires that there
exist D1 and D2 such that
1 and
2 hold and that D1 +D2 equals the given cost D.

The algorithmic typing rules for read and updt have other interesting aspects. These
rules are in checking mode but the types of the first two arguments are inferred, not
checked. This is because, although we know that the first argument of read t1 t2 or
updt� t1 t2 t3 must be an array and the second argument must be a number, we do not
know the size of the array or the size (refinement index) of the number. Hence, we must
infer this information. Additionally, these rules check the pre and postconditions. As an
example, the condition ¬(I ′ ∈ β) is checked in the rule alg-r-readB-↓ to guarantee that we
indeed read the same value on the two sides. Similarly, in the rules alg-r-updt-↓ and alg-r-
updtB-↓, the β ′ in the postcondition, representing the differences between the two arrays,
must be the same as the β in the precondition except for the index I ′ which has been
updated. For this, in the rule alg-r-updt-↓ we check that β ′ = β ∪ {I ′}, while in the rule
alg-r-updtB-↓ we check that β ′ = β \ {I ′}, consistent with the corresponding declarative
typing rules of ARel.

Finally, we show the soundness and completeness of BiARel with respect to ARelCore.
Soundness says if the constraints in the output of a provable BiARel typing judgment for
term t are satisfiable, then a corresponding typing judgment for the type-erased term |t|
is provable in ARelCore. Completeness is the converse: If a term t has a typing deriva-
tion in ARelCore, then an annotation of t has a typing derivation in BiARel and the
constraints in the output of this derivation are satisfiable. In the following theorem, the
function FIV(r)eturns the free index variables in its argument. � � θa :ψa means θa is a
valid substitution for ψa under the index variable environment�. This substitution is used
in the theorem, for example, free index variables in constraints
 are substituted using ψa,
written
[θa]. We also define the type erasure operation |t|, which erases (t : A, L, U) and
(t : τ , D) to t.

Theorem 7 (Soundness of the Algorithmic Typechecking in ARelCore). The following
hold.

1. Assume that 	;�;ψa;
a;�� t ↓ A, L, U ⇒
 and

a. FIV(
a,�, A, L, U)⊆ dom(�,ψa)
b. 	;�;
a[θa] |=
[θa] is provable for some θa such that � � θa :ψa is

derivable.
Then 	;�;
a[θa];�[θa]�U[θa]

L[θa] |t| :c A[θa].

2. Assume that 	;�;ψa;
a;�� t ↑ A ⇒ [ψ], L , U ,
 and

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 53

Fig. 23. Selection of algorithmic typing rules for array operations.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

54 W. Qu et al.

a. FIV(
a,�)⊆ dom(�,ψa)
b. ∀θ ∀θa. �;
a[θa] |=
[θ θa] is provable s.t � � θ :ψ and � � θa :ψa are

derivable
Then 	;�;
a[θa];�[θa]�U[θ θa]

L[θ θa] |t| :c A[θ θa] .

3. Assume that �;ψa;
a;
 � t� t′ ↓ τ , D⇒
 and

a. FIV(
a,
, τ , D)⊆ dom(�,ψa)
b. �;
a[θa] |=
[θa] is provable for some θa such that � � θa :ψa is derivable
Then 	;�;
a[θa];
[θa]� |t| � |t′|�D[θa] :c τ [θa].

4. Assume that �;ψa;
a;
 � t� t′ ↑ τ ⇒ [ψ], D ,
 and

a. FIV(
a,
)⊆ dom(�,ψa)
b. ∀θ ∀θa. �;
a[θa] |=
[θ θa] is provable s.t � � θ :ψ and � � θa :ψa are

derivable
Then �;
a[θa];
[θa]� |t| � |t′|�D[θ θa] :c τ [θ θa] .

Proof. Statements (1–4) follow from simultaneous structural induction on the given
algorithmic typing derivations. �

Theorem 8 (Completeness of the Algorithmic Typechecking in ARelCore). The follow-
ing hold.

1. Assume that 	;�;
a;��U
L t :c A. Then, ∃t′ such that

a. 	;�; ·;
a;�� t′ ↓ A, L, U ⇒

b. �;
a |=

c. |t′| = t

2. Assume that 	;�;
a;
 � t1 � t2 �D :c τ . Then, ∃t′1, t′2 such that

a. 	;�; ·;
a;
 � t′1 � t′2 ↓ τ , D⇒

b. �;
a |=

c. |t′1| = t1 and |t′2| = t2

Proof. By simultaneous induction on the given ARelCore typing derivations. �

7 Implementation and experiments

We have implemented the bidirectional type checking system for ARel described in
Section 6. Using this implementation, we checked all the examples described in this paper
as well as some others that are described in the Appendix. Our type checker is implemented
in OCaml and the code as well as the examples are available in the public Git repository at
https://github.com/haddyclipk/ICFP2019_BiArel. We summarize salient points
of our implementation and the results of our experiments in this section.

7.1 Heuristics

Our implementation uses heuristics to automatically backtrack over some typing rules of
ARel. We do this to reduce the annotations programemrs have to write manually.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://github.com/haddyclipk/ICFP2019_BiArel
https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 55

One heuristic that our type checker implements is to automatically determine whether to
apply the �-ed rule or the non-�-ed rule, rather than forcing the programmer to make this
choice by providing an annotation on every array operation. Our heuristic applies the �-
ed rule first and tries to solve the generated constraints (with an SMT-solver, as explained
later). If the constraint cannot be solved, the heuristic tries the non-�-ed rule. For example,
when processing a read operation we always try the alg-r-readB-↓ rule first. The generated
constraint is I �∈ β. We pass this constraint to the SMT solver and if it says yes (satisfiable),
we just continue. If the SMT solver says no, we backtrack and try the alg-r-read-↓ rule.

Another heuristic is that we switch from relational to unary reasoning only when abso-
lutely necessary. There are three cases when this happens: a) the unary type is explicitly
mentioned with the construct FIXEXT t with A1, b) the switch term switch t is used, and
c) no other relational rules apply.

These heuristics suffice for our examples and reduce our annotation burden at the cost
of some extra type checking time.

7.2 Constraint solving

The primary difficulty in our implementation (and the most time-consuming step in type
checking) is solving the constraints that the bidirectional type system generates. For this,
we rely on an SMT solver. Specifically, we use Alt-Ergo (Bobot et al., 2013) through the
Why3 frontend (Filliâtre & Paskevich, 2013). A fundamental difficulty here is that the
SMT solver struggles with constraints that have too many existential quantifiers. To alle-
viate this concern, we rely on a solution proposed in the implementation of RelCost (Çiçek
et al., 2019): We implement a simple algorithm that generates candidate substitutions
for existentially quantified variables by examining equality and inequality constraints that
mention the variables. From a simple inspection of the algorithmic rules, we can see that
generated constraints contain inequalities on index terms such as I ′ ≤ I to check the array
bound limit (for instance, in the rule alg-r-read-↓), and equalities such as D1 +D2 =D to
show that the inferred relative cost matches the relative cost we want to check. Çiçek et al.
(2019)’s simple algorithm works remarkably well on these kinds of constraints.

A new challenge for ARel is how to represent and solve constraints involving the sets
of integers β. There are three kinds of constraints involving these sets. (1) equalities of
two sets β = β ′ which are generated when the rule compares whether the precondition and
postcondition are the same (e.g., in the rule alg-r-read-↓); (2) containments between sets
such as β ⊆ β ′ which are generated when the postcondition is updated (e.g., alg-r-updt-↓);
(3) index inclusions I ∈ β which are generated when certain indexes appear or disappear
after the execution of the computation (e.g., alg-r-updtB-↓). Index inclusions are also used
by our heuristic to decide whether to use �-ed rules or not. To express these constraints,
we rely on the library for set theory from Why3. Its operations for membership, equality,
inclusion, empty set, union, intersection, and difference are enough to solve our constraints,
and work well in our experience.

7.3 Type checking example

We illustrate our implementation of type checking by walking the reader through the type
checking of the following annotated version of the mapi function from Section 1.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

56 W. Qu et al.

let ≤= (contra : int→ int→ bool, 0) in
let plusOne= (contra : ∀x.int[x]→ int[x+ 1], 0) in
fix mapi (f).λa.λk.λn.

if(≤ k n) then
SPLIT {

let {x} = (read a k, τ1, 0 ; τ ′1, 0) in

let {_} = (updt a k (f x), τ2, 0 ; τ ′2, 0) in

mapi f a (plusOne k) n
} with (i ∈ b)

else
return ()

≤ 0 : ∀r : .�(
diff (r)

U(int, int)−→U(int, int))→∀i, m, g, b.(i<m)⊃
Arrayg[m] U(int, int)→ int[i]→ int[m]→

diff(|b∩[i,m]|∗r)
{g→ b} ∃g.unit {g→ b}

First, we introduce two primitive functions for ≤ and plusOne. We use a trivial expres-
sion contra to simplify the actual implementations of these primitives. For ≤, contra
appears in the term (contra, int→ int→ bool, 0), which also includes the relational type
and relative cost of ≤. We omit the relational costs on the arrows here because they are
0, which is also the default cost in our concrete syntax. (In experimental results below,
we do not count these functions as annotations, since they are just primitive functions that
actually should be inserted by the compiler automatically.)

Different from the mapi function in Section 1, our map example uses the annotated
term SPLIT{t} with C to specify the use of the split rule r-split in Figure 5. This elimi-
nates non-determinism and guides the type checking. We also have the annotated terms
(read a k, τ1, 0 ; τ ′1, 0) and (updt a k (f x), τ2, 0 ; τ ′2, 0), which vary from our standard
terms because they now contain the two relational types and two relative cost upper
bounds. As a reminder, the annotated terms aim to provide the necessary type and effect to
help the type checker.

When we want to provide the relational type and relative cost for terms related to
array operations, we need to provide two types and two relative costs, one for the
�-ed rule and the other for the non-�-ed rule, as depicted in our heuristics in Section 7.1.
As an example, consider the expression (updt a k (f x), τ2, 0 ; τ ′2, 0). In this expression,

τ2 =
diff(0)

{g→ b} ∃g.unit {g→ b \ {i}} is the relational type we want our type checker to use
for the expression updt a k (f x) when it tries the rule alg-r-updtB-↓. The second type,

τ ′2 =
diff(r)

{g→ b} ∃g.unit {g→ b∪ {i}} is the type for the non-�-ed rule alg-r-updt-↓, which is
tried only if the rule alg-r-updtB-↓ generates an unsatisfiable constraint.

Overall, this example uses three annotations, which are shown in boxes in the code
above.

7.4 Experiments

Table 1 summarizes some statistics about the performance of our type checker on
different examples. For each example, we show the number of lines of code (LOC), the

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 57

Table 1. Summary of experimental results

Benchmark LOC #TYP #ESF TC TC-SMT TF-SMT
(s) (s) (s)

mapi(1) 12 2 0 0.802 1.051 0.01
mapi(2) 19 3 1 1.247 0.994 0.02
boolOr 48 8 3 1.574 1.131 2.38
separate 36 8 0 1.351 2.148 0.01
loop 23 5 0 1.167 2.114 0.01
FFT 66 17 0 2.591 4.268 0.01
Search 62 10 3 3.753 4.430 6.56
NSS 94 12 3 4.158 4.413 10.03
shift 14 3 0 0.660 1.394 0.01
insert 22 6 0 1.001 3.019 0.01
iSort 134 12 3 2.897 6.181 10.70
merge(1) 29 8 0 2.203 2.232 0.01
merge(2) 64 11 2 3.231 0.349 0.02
sam 19 4 1 0.946 0.083 0.02
comp 20 3 0 1.138 0.112 0.01

number of type annotations that are needed (#TYP), the number of annotations needed to
disambiguate rules (#ESF), the time needed for type checking (TC), the time needed for
solving the constraints that arise as premises during type checking (TC-SMT), and the time
needed for solving the final constraint, which is the output of the type checking (TF-SMT).
Our experiments were performed on a 3.1 GHz Intel Core i5 processor with 8GB of RAM.

The programs mapi(1), mapi(2), boolOr, FFT, NSS, and ISort are implementations of
the corresponding examples discussed in Sections 2 and 5. The example mapi(1) is mapi
where we do not assume that the input functions are equal in the two runs. In mapi(2), we
assume that the inputs functions are equal in the two runs (we presented the full annotated
code for this example in Section 7.3). For FFT, which uses the auxiliary functions separate
and loop, we report statistics for the whole program and individually for each auxiliary
function. The program ISort uses helper functions insert and shift. These are also shown
separately. The programs merge(1) and merge(2) are the two typings of imperative merge
discussed in Section 5.

The function SAM (square-and-multiply) computes a positive power of a number rep-
resented as an array of bits, while comp checks the equality of two passwords represented
as arrays of bits. These last two examples are array-based implementations of similar list-
based implementations presented in Çiçek et al. (2017). More details of these examples
are in the Appendix.

The results in Table 1 show that ARel can be used to reason about the relative cost of
functional-imperative programs. Unsurprisingly, examples combining relational and unary
reasoning (using rules r-fix-ext and r-switch) such as boolOr, NSS and ISort need more
annotations and need more time for both type checking and SMT solving. In some exam-
ples like ISort, the time taken for solving constraints in the premises of the rules (TC-SMT),

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

58 W. Qu et al.

is very high. This is because of the heuristic we described at the beginning of this section
where we try �-ed rules before non-�-ed rules. The SMT solver first tries to prove that
the�-ed rule can be applied, but in some cases it times out. This timeout period is counted
in TC-SMT. It is set to 1s in all examples, except ISort and Insert, where we need 2s. TF-
SMT, the time taken to check the final output constraint, is also high for some examples
like ISort, but this is due to the complexity of the constraint.

7.5 Limitations and future directions

One obvious limitation of our current prototype is efficiency, as we mentioned, for
example, NSS and iSort. Type checking slows down for two reasons: (1) The heuristic
to determine whether to apply a �-ed rule to array-based operations has to wait for SMT
to timeout in some cases. The time for alt-ergo (our SMT solver) to solve constraints
varies considerably depending on the examples. When dealing with examples with
many array-based operations, the problem is exacerbated. Unfortunately, we use Why3
to connect to alt-ergo and have to set a large timeout to guarantee enough time for
alt-ergo to deal with the constraint on all connections, which accounts for the unnecessary
time consumption. (2) The complexity of the final constraint grows with the number of
array-based operations. This complexity translates to longer SMT-solving times.

Another limitation of our implementation is that some annotations are still needed
(despite our heuristics). We saw this in the example of Section 7.3.

We plan to improve our prototype by improving our heuristics and the constraint solving
process. We would like to find a way to decrease connection times, the constraint solving
time, and to make our backtracking more efficient. We also plan to investigate the use of
other SMT solvers in order to improve efficiency further.

8 Related work

A lot of prior work has studied static cost analysis. We discuss some of this work here.
Reistad & Gifford (1994) present a type-and-effect system for cost analysis where, like
ARel, the cost can depend on the size of the input. Danielsson (2008) uses a cost-annotated
monad similar in spirit to the one we use here. Dal Lago & Gaboardi (2011) present a lin-
ear dependent type system using index terms to analyze time complexity. Hoffmann et al.
(2012a) present an automated amortized cost analysis for programs with complex data
structures such as matrices. Wang et al. (2017) develop a type system for cost analysis with
time complexity annotations in types. Recurrence extraction analyzes the cost by extract-
ing recurrences which express the run time cost in terms of sizes of inputs, under either
call-by-value, call-by-name, or call-by-push-value evaluation strategies (Danner et al.,
2015; Kavvos et al., 2019; Cutler et al., 2020). However, none of these systems consider
relational costs.

Charguéraud & Pottier (2015) present an amortized resource analysis based on an
extension of separation logic with time credits. Our use of triples and separation-based
management of arrays references is similar to theirs. However, their technique is based on
separation logic, while ours is based on a type-and-effect system. Moreover, they consider

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 59

only unary reasoning while we are interested primarily in relational reasoning. Lichtman &
Hoffmann (2017) present an amortized resource analysis for arrays and references using.
Their technique represents the available “potential” before and after a computation, similar
to our triples. Again, they focus only on unary cost analysis and consider mostly first-order
programs and linear potentials.

Outside of cost analysis, a lot of work has considered relational verification techniques
for other applications. Lahiri et al. (2010) present a differential static analysis to find
code defects looking at two pieces of code relationally. Probabilistic relational verifica-
tion has seen many applications in cryptography (Barthe et al., 2014) and differential
privacy (Gaboardi et al., 2013; Barthe et al., 2015). Barthe et al. (2015) propose HOARe2,
which uses relational refinements to reason about differential privacy and other proba-
bilistic relational properties. ARel also relies on relational refinements to reason about
pairs of arrays via assertions P, Q in our monadic types. The difference is that we choose
lightweight assertions and use them to reason only about difference of arrays. Conversely,
HOARe2 uses arbitrary relational refinement types, which are more expressive, but which
also require many more annotations.

The indexed types used by Gaboardi et al. (2013) are similar in spirit to ours. Their
indices cover the size of the data types as we do, but they also track the sensitivity, which
is useful for differential privacy. Our indices instead focus more on effects and differences
of arrays. Zhang et al. (2015) introduce dependent labels into the type of SecVerilog, an
extension of Verilog with information flow control. The use of a lightweight invariant on
variables and security levels in SecVerilog is similar to our use of β, which is also an
invariant on static location variables. Unno et al. (2017) present an automated approach
to verification based on induction for Horn clauses, which can also be used for relational
verification. Benton et al. (2014, 2016) introduce abstract effects to reason about abstract
locations. This is conceptually similar to the way our preconditions and postconditions
allow us to reason about different independent locations.

Our work is directly inspired by RelCost (Çiçek et al., 2017) and DuCostIt (Çiçek et al.,
2016). These are refinement type-and-effect systems for pure functional languages without
mutable state. RelCost supports relational cost analysis of pure programs. In contrast, ARel
supports imperative arrays. The difference is substantial: Besides significant changes to the
model, the type system has to be enriched with Hoare-like triples, whose design is a key
contribution of our work. RelCost has an implementation via an SMT back-end (Çiçek
et al., 2019); we extend this approach with imperative features and support for sets of
indices (our βs).

Ngo et al. (2017) combine information flow and amortized resource analysis to guar-
antee constant-resource implementations. Their type system allows relational reasoning
about resources through precise unary analysis. Their focus is on first-order functional pro-
grams and on the constant time guarantee, while we want to support functional-imperative
programs and more general relative costs. Radicek et al. (2018) add a cost monad to a
relational refinement type system, where refinements reason about relational cost, for pro-
grams without state. This system is expressive: it supports a combination of cost analysis
with value-sensitivity and full functional specifications (RelCost can also be embedded
in it). However, it requires a framework for full functional verification. Our approach is
complementary in that we use lighter refinements that are easier to implement, but do not
support full functional verification.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

60 W. Qu et al.

9 Conclusion

We have presented ARel, a relational type-and-effect system for reasoning about the rela-
tive cost of two functional-imperative programs with mutable arrays. Our key contribution
is a set of lightweight relational refinements allowing one to establish different relations
between pairs of state-affecting computations, including upper bounds on cost difference.
We have discussed how ARel is implemented and used ARel to reason about the relational
cost of several nontrivial examples.

ARel currently supports arrays whose elements are of base types, due to our choice of the
lightweight monadic types for the array-based operations. Support for more complicated
but common data types such as matrices (arrays of arrays) is something we would like
to develop in the future. Other limitations come from the current implementation, as dis-
cussed in Section 7.5. Another possible direction for future work is to add other imperative
data structures besides arrays.

Acknowledgments

This work was supported in part by the National Science Foundation under Grant No.
1718220.

Conflicts of interest

None.

Supplementary materials

For supplementary material for this article, please visit doi.org/10.1017/
S0956796821000071

References

Ahmed, A. (2006) Step-indexed syntactic logical relations for recursive and quantified types. In
Proceedings of the European Conference on Programming Languages and Systems (ESOP).

Ahmed, A., Dreyer, D. & Rossberg, A. (2009) State-dependent representation independence. In
Proceedings of the Symposium on Principles of Programming Languages (POPL).

Ahmed, A. G. (2004) Semantics of types for mutable state, Princeton University.
Appel, A. W. & McAllester, D. A. (2001) An indexed model of recursive types for foundational

proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683.
Atkey, R. (2010) Amortised resource analysis with separation logic. In Proceedings of the European

Conference on Programming Languages and Systems (ESOP).
Avanzini, M. & Dal Lago, U. (2017) Automating sized type inference for complexity analysis. In

Proceedings of DICE-FOPARA.
Barthe, G., Fournet, C., Grégoire, B., Strub, P.-Y., Swamy, N. & Béguelin, S. Z. (2014) Probabilistic

relational verification for cryptographic implementations. In Proceedings of the Symposium on
Principles of Programming Languages (POPL).

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071
https://doi.org/10.1017/S0956796821000071
https://doi.org/10.1017/S0956796821000071

Relational cost analysis in a functional-imperative setting 61

Barthe, G., Gaboardi, M., Arias, E. J. G., Hsu, J., Roth, A. & Strub, P.-Y. (2015) Higher-
order approximate relational refinement types for mechanism design and differential privacy. In
Proceedings of the Symposium on Principles of Programming Languages (POPL).

Benton, N. (2004) Simple relational correctness proofs for static analyses and program trans-
formations. In Proceedings of the Symposium on Principles of Programming Languages
(POPL).

Benton, N., Hofmann, M. & Nigam, V. (2014) Abstract effects and proof-relevant logical relations.
In Proceedings of the Symposium on Principles of Programming Languages (POPL).

Benton, N., Hofmann, M. & Nigam, V. (2016) Effect-dependent transformations for concurrent
programs. In Proceedings of the 18th International Symposium on Principles and Practice of
Declarative Programming.

Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Lescuyer, S. & Mebsout, A. (2013) The
alt-ergo automated theorem prover, 2008.

Brockschmidt, M., Emmes, F., Falke, S., Fuhs, C. & Giesl, J. (2014) Alternating runtime and
size complexity analysis of integer programs. In Tools and Algorithms for the Construction and
Analysis of Systems – 26th International Conference (TACAS).

Carbonneaux, Q., Hoffmann, J. & Shao, Z. (2015) Compositional certified resource bounds. In
Proceedings of the 36th Conference on Programming Language Design and Implementation
(PLDI).

Çiçek, E., Barthe, G., Gaboardi, M., Garg, D. & Hoffmann, J. (2017) Relational cost analysis. In
Proceedings of the Symposium on Principles of Programming Languages (POPL).

Charguéraud, A. & Pottier, F. (2015) Machine-checked verification of the correctness and amor-
tized complexity of an efficient union-find implementation. In Interactive Theorem Proving - 6th
International Conference, ITP.

Çiçek, E., Paraskevopoulou, Z. & Garg, D. (2016) A type theory for incremental computational com-
plexity with control flow changes. In Proceedings of the International Conference on Functional
Programming(ICFP).

Çiçek, E., Qu, W., Barthe, G., Gaboardi, M. & Garg, D. (2019) Bidirectional type checking for
relational properties. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22–26, 2019,
pp. 533–547

Cooley, J. W. & Tukey, J. W. (1965) An algorithm for the machine calculation of complex fourier
series. Math. Comput. 19(90), 297–301.

Cutler, J. W., Licata, D. R. & Danner, N. (2020) Denotational recurrence extraction for amortized
analysis. Proc. ACM Program. Lang. 4(ICFP), 1–29.

Dal Lago, U. & Gaboardi, M. (2011) Linear dependent types and relative completeness. In
Proceedings of the IEEE 26th Annual Symposium on Logic in Computer Science (LICS).

Danielsson, N. A. (2008) Lightweight semiformal time complexity analysis for purely functional
data structures. In Proceedings of the Symposium on Principles of Programming Languages
(POPL).

Danner, N., Licata, D. R. & Ramyaa, R. (2015) Denotational cost semantics for functional languages
with inductive types. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming. ICFP 2015.

Filliâtre, J.-C. & Paskevich, A. (2013) Why3: Where programs meet provers. In Proceedings of the
European Conference on Programming Languages and Systems (ESOP).

Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A. & Pierce, B. C. (2013) Linear dependent types for
differential privacy. In Proceedings of the Symposium on Principles of Programming Languages
(POPL).

Grobauer, B. (2001) Cost recurrences for DML programs. In Proceedings of the 6th International
Conference on Functional Programming (ICFP).

Hermenegildo, M. V., Puebla, G., Bueno, F. & López-García, P. (2005) Integrated program
debugging, verification, and optimization using abstract interpretation (and the ciao system
preprocessor). Sci. Comput. Program. 58(1–2), 115–140.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

62 W. Qu et al.

Hoffmann, J., Aehlig, K. & Hofmann, M. (2012a) Multivariate amortized resource analysis. ACM
Trans. Program. Lang. Syst. 34(3), 1–62.

Hoffmann, J., Aehlig, K. & Hofmann, M. (2012b) Resource aware ML. In Computer Aided
Verification - 24th International Conference, CAV.

Kavvos, G. A., Morehouse, E., Licata, D. R. & Danner, N. (2019) Recurrence extraction for
functional programs through call-by-push-value. Proc. ACM Program. Lang. 4(POPL), 1–31.

Lahiri, S. K., Vaswani, K. & Hoare, C. A. R. (2010) Differential static analysis: Opportunities,
applications, and challenges. In Proceedings of the Workshop on Future of Software Engineering
Research, FoSER 2010, at the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, Roman, G.-C. & Sullivan, K. J. (eds).

Lichtman, B. & Hoffmann, J. (2017) Arrays and references in resource aware ML. In The 2nd
International Conference on Formal Structures for Computation and Deduction, FSCD.

Nanevski, A., Banerjee, A. & Garg, D. (2013) Dependent type theory for verification of information
flow and access control policies. ACM Trans. Program. Lang. Syst. 35(2), 1–41.

Nanevski, A., Morrisett, J. G. & Birkedal, L. (2008) Hoare type theory, polymorphism and
separation. J. Funct. Program. 18(5–6), 865–911.

Neis, G., Dreyer, D. & Rossberg, A. (2011) Non-parametric parametricity. J. Funct. Program.
21(4–5), 497–562.

Ngo, V. C., Dehesa-Azuara, M., Fredrikson, M. & Hoffmann, J. (2017) Verifying and synthesizing
constant-resource implementations with types. In 2017 IEEE Symposium on Security & Privacy.

Nielson, F. & Nielson, H. (1999) Type and effect systems. In Correct System Design. Lecture Notes
in Computer Science, vol. 1710, pp. 114–136.

Pierce, B. C. & Turner, D. N. (2000) Local type inference. ACM Trans. Program. Lang. Syst. 22(1),
1–44.

Radicek, I., Barthe, G., Gaboardi, M., Garg, D. & Zuleger, F. (2018) Monadic refinements for
relational cost analysis. PACMPL 2(POPL), 36–1.

Reistad, B. & Gifford, D. K. (1994) Static dependent costs for estimating execution time. In
Proceedings of the 1994 ACM Conference on LISP and Functional Programming. LFP’94, pp.
65–78.

Sinn, M., Zuleger, F. & Veith, H. (2014) A simple and scalable approach to bound analysis and
amortized complexity analysis. In Computer Aided Verification - 26th International Conference,
CAV.

Turon, A. J., Thamsborg, J., Ahmed, A., Birkedal, L. & Dreyer, D. (2013) Logical relations for fine-
grained concurrency. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’13, Rome, Italy - January 23–25, 2013, pp. 343–356.

Unno, H., Torii, S. & Sakamoto, H. (2017) Automating induction for solving horn clauses. In
Computer Aided Verification - 29th International Conference, CAV.

Wang, P., Wang, D. & Chlipala, A. (2017) TiML: A functional language for practical complex-
ity analysis with invariants. In Proceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA).

Xi, H. & Pfenning, F. (1999) Dependent types in practical programming. In Proceedings of the
Symposium on Principles of Programming Languages (POPL).

Zhang, D., Wang, Y., Suh, G. E. & Myers, A. C. (2015) A hardware design language for timing-
sensitive information-flow security. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS.

https://doi.org/10.1017/S0956796821000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796821000071

	Relational cost analysis in a functional-imperative setting
	Introduction
	ARel through examples
	ARel formally
	Syntax
	Operational semantics
	Index terms and constraints
	Unary and relational types
	Unary and relational typing

	Logical relations
	Unary interpretation
	Relational interpretation
	Fundamental theorem

	More examples
	Cooley–Tukey FFT algorithm
	Naive string search
	Mergesort
	Inplace insertion sort
	Loop unswitching

	Bidirectional type checking
	ARelCore
	Syntax
	Typing rules of ARelCore

	Elaboration
	Algorithmization

	Implementation and experiments
	Heuristics
	Constraint solving
	Type checking example
	Experiments
	Limitations and future directions

	Related work
	Conclusion

