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Convergence and applications of

reproducing kernels for classes

of discrete harmonic functions

C. Wayne Mastin

This paper gives convergence properties and applications of the

discrete analogs of reproducing kernels for various families of

harmonic functions. From these results information is obtained

on the solution of interpolation problems, the convergence of the

discrete Neumann's function, and the solution to problems

involving the discrete bihannonic operator.

1 . Introducti on

Three Hilbert spaces of harmonic functions are considered, each

possessing a reproducing kernel. A discrete analog for each of these

reproducing kernels i s developed.

One of the reproducing kernels studied i s the discrete harmonic kernel

of Deeter and Springer [5 ] . They established convergence on regions

bounded by rectangles. Later convergence was established on regions

bounded by edges and diagonals of some h-net [9 ] , Our work extends

convergence to regions with curved boundary components. I t i s shown that

the discrete harmonic kernel wi l l converge to the ordinary harmonic kernel

under certain conditions on the boundary of the region. Using th i s resul t

and the known convergence properties of the discrete Green's function, we

are able to make some remarks on the convergence of the discrete Neumann's

function. Some numerical data were generated and typical resul ts are given

Received 2 July 1971*. The author i s indebted to Dr Philip F. Lee for
writing the programs needed to compute the discrete- Neumann's function.
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340 C. Wayne Mast i n

on the approximation of the Neumann's function for a circular region. The

second kernel considered is similar to the discrete harmonic kernel

mentioned above.

Another reproducing kernel studied is the discrete analog of the

kernel developed by Aronszajn [I] and Zaremba [J5] which was used to

represent solutions of particular problems involving the biharmonic

operator. These problems arise in the theory of elasticity. Convergence

of the discrete kernel is established and i t is shown that this discrete

kernel can be used to represent solutions of analogous discrete biharmonic

problems.

The final results deal with the approximation of solutions of inter-

polation problems in any of the three Hilbert spaces of harmonic functions.

We conclude that for small net widths, the solution of an analogous inter-

polation problem for discrete harmonic functions can be expressed using

reproducing kernels, and this solution will converge to the solution of the

original problem. This interpolation problem was discussed for arbitrary

Hilbert spaces with reproducing kernels in Meschkowski [7 3]. A development

of essentially the same problem for a class of analytic functions appears

in Meschkowski [73] and Epstein [7].

2. Some reproducing kernels

Several results from the theory of Hilbert spaces with reproducing

kernels are used, a l l of which may be found in Meschkowski [73] and

Aronszajn [7],

Let R be a bounded region with a piecewise smooth boundary. For

each h , 0 < h < 1 , an 7i-net may be formed in the plane by the inter-

sections of the families of lines x = rrih + a and y = rrih + b where m

is an integer and a + ib is a fixed point in R . In this report we only

consider values of h such that the h-nets form an increasing collection

of subsets of the plane. If z is a point in an 7i-net, the points

z + h , z + ih , z - h , and z - ih are called neighbors of z . Let

I be the set of a l l net points z in R such that all the neighbors of

z are also in R . Suppose now that h is sufficiently small so that

T ^ 0 . The set of net points in R which have at least one neighbor in

J and at least one neighbor in the complement of R will be denoted by
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Discrete harmonic functions 34 1

B . We ca l l R = I u B the discrete region associated with R . We -refer

to B as the boundary of R and to J as the in te r ior of R .

A function U defined on R i s discrete harmonic on I i f i i r •.

A[/(z) = \ [U{z+h)+U{zHh)+U{z-h)+U(z-ih)-hU(z)] = 0
h

for every z in I . Let ff. be the class of all functions U on R

which are discrete harmonic on J and which are normalized by

h I B(Z)U(Z) = 0 ,
ziB

where s(z) i s the number of neighbors of z in J . Let U and U

be the pa r t i a l differences of U defined at z € R by

, i f z+h € R and z or z+h € J ,

y_(z) =

0 , otherwise;

r- [V(z+ih)-U(z) ] , i f z+i7i € i? and z or z+ih € J ,
w

0 , otherwise.

With the inner product of two functions U and V in H defined by

(2.1) (U, V) = h2 I [UAz)Vx(z)+UAz)VAz)] ,

H i s a Hilbert space with a reproducing kernel . This reproducing kernel

is called the discrete harmonic kernel and i s denoted by KAz, C) . The

norm of a function U in ff i s defined by ||tf||2 = (U, U) .

Let H be the completion of the space consisting of the functions u

harmonic on R , continuous on R , with f in i t e Dirichlet in tegra l , and for

which
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I u{z)ds = 0 .

H is a Hilbert space with the inner product of two functions u and v

defined by

(2.2) (M, V) = [ [ [uJz)vJz)+uU)v (z)]dxdy .
) £ J * x » 2/

The norm of a function u i s defined by ||u|| = (it, u) . Here u and
x

u are partial derivatives. The reproducing kernel of H is called the

ordinary harmonic kernel and is denoted by kAz, Z.) .

A related kernel was discussed by Bergman [2, p. 59]. Let £,' be

some point of R . Let H be the Hilbert space of harmonic functions u

on R with finite Dirichlet integral for which M(?') = 0 ; the inner

product is defined by (2.2). The reproducing kernel of H , kAz, ?) ,

is related to that of H by the equation

(2.3) kAz, c) =kAz, c) - kAz, ?') .

If C1 belongs to I , then the class H of functions U discrete

harmonic on J with £/(£') = 0 is a Hilbert space with inner product

(2.1). Its reproducing kernel, KAz, C) , is related to that of H by

the equation

(2.U) KAz, t.) = KAz, C) - KAl,, C») .

Thus far we have considered classes of harmonic functions with finite
Dirichlet integral and the corresponding classes of discrete harmonic
functions. We will now consider the class of harmonic functions with
finite square integral. Let H denote the Hilbert space consisting of

these functions with the inner product of two functions u and v defined

u, v) = u(z)v(z)dxdy .
'R

Note that no normalization is required for this class of functions as was
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Discrete harmonic functions 343

necessary in the previous cases.

The norm of a function u will be denoted by |||u||| . The Hilbert

space H has a reproducing kernel k (z, t,) . For the discrete analog of

this reproducing kernel we let H denote the Hilbert space of all

discrete harmonic functions on I with the inner product of U and V

given by

<U, V> = h2 I U(z)V{z) .

3. Convergence of the kernel X2(s, z)

Henceforth, we will let t, and t,' be fixed points in R belonging

to some discrete region R with ? i- C,' . Suppose h is sufficiently

small so that £ and ?' are in I . Again we denote by H the class

of discrete harmonic functions on J which vanish at z' • The function

M given by

is the unique function with minimum norm among all functions U in H

satisfying £/(£) = 1 . The following theorem establishes convergence of

the solution of this discrete minimum problem. The convergence of the

kernel K^(z, £) is obvious since

KAz, C) 4
2 IMI2

THEOREM 3 .1 . If the Hilbert space Hp has a complete orthonormal

system consietvng of functions harmonic on K , then the minimizing

function M converges uniformly on compact subsets of H as h -*• 0 to

the unique function m in H^ with minimum norm among all u in H

with u(z) = 1 . Furthermore \\M\\ •+ ||m|| as h •*• 0 .

Proof. Let u' be the solution of the minimum problem in H_ . I f

q i s any l inear combination of elements of the complete orthonormal system
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for H consist ing of functions harmonic on R , then q i s harmonic on

R . Let 0 be a region with smooth boundary such that R c 0 and q i s

harmonic on 75 . By approximating the solution of the Dirichlet problem on

0 with the boundary values of q using discrete harmonic functions, we

can obtain functions {Q : 0 < h < l } which are discrete harmonic on J

and such tha t Q, Q , and Q converge uniformly on R to q, q , andx y x

q , respect ively, as h -*• 0 . For the detai ls of the approximation of q

by discre te harmonic functions, we refer to the book by Epstein 16, pp.

199-211]. If q i s a function for which <?(?) = 1 and q(t,') = 0 , then

we may assume 6(C) = 1 and Q(c.') = 0 . In th i s case, \\Q\\ •*• \\q\\ as

h •*• 0 and ||Af|| 5 \\Q\\ for each h . This implies that { M : 0 < h < l }

i s bounded. Thus {M : 0 < h < l } i s equi continuous and uniformly bounded

on compact subsets of R . The proof of th i s also follows from resul ts in

Eps+ein [6 ] . Furthermore, any sequence in {M : 0 < h < l} wi l l have a

subsequence \M } such that M and i t s pa r t i a l differences Af and1 p> p px

M converge uniformly on compact subsets of R to a harmonic function m

and i t s p a r t i a l derivatives m and m , respectively.

x y

We wi l l now show that m = u' . Let {C.} be an exhaustion of R by

compact s e t s . Let
(3.1) \\U\\- = h2 I \{M (z))2+{M (z))2] ,

and

(3.2) IH. = J [ [ ( ^ U ) ) 2 ^ ^ ) ) 2 ] ^ .

Now ||jif ||. s ||Af || , which i s bounded for a l l p , and since ||W ||. -»• ||m|| .

as p -*•<*>, we have ||m||. -»• ||m|| < °° . Since m(t,') = lim M (£,') = 0 ,

m € Hp • Also m(t,) = 1 and thus ||w'|l — \\m\\ • ^ ^ <7 ^ e anY l inear

combination of elements of the complete orthonormal system of functions

harmonic on R which has q(^) = 1 . As discussed ea r l i e r , we can

construct a sequence {Q } of discrete harmonic functions such that
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0 (?) = 1 , Q W) = 0 , and Q , Q ,_ and Q - converge unifornQy on

to q, q , and q , respectively. Now \\Q || 2 ||Af [| , which implies that

- IMI We conclude that ||m|| £ \\u\\ for a l l u in H with

K(C) = 1 . therefore m = u' . By the same argument, any other convergent

sequence in {M : 0 < h < l ) wi l l converge to u' = m . . Thus- W-

converges uniformly on compact subsets of R to m as -h ->- 0 .

I t remains to show that ||w|| •* ||m|| as h •+ 0 . Let e > 0 be given.

Let q be a l inear combination of elements of the complete orthonormal

system of functions harmonic on K such that q{t.) = 1 and ||q-m|| < E/2 .

Let {Q : 0 < h < l } be the family of functions described above. There

exists an h > 0 such that ; . ;

and thus

flll-lklll < e/2

-

£ II9JI < IMI

denotes an

and ||m|| . be defined by (3.1) and (3-2). Choose -L

e .

whenever h < h . Again {C.} denotes an exhaustion of R by compact

s e t s . Let \\M

such that - -• . \ _

I N I - I N I I : < . e / 2 •

There exis ts an h^ > 0 such that h < hp implies

| ||Af|| . - |M| . | < e/2 .

Thus we have

| > \\m\\.~- e / 2 > IMI - e

for al l h < It h < wd.n{h , h^\ , then

IM-HII < e .
Thus ||M|| -> ||m|| as fc -»• 0 , which completes t h e proof of t h e theorem.

THEOREM 3 . 2 . If the Rilbert space H has a complete orthonormal

system of functions harmonic on R , then K (z, t,) converges to k (z, z;)
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uniformly in z on compact subsete of R as h -*• 0 .

4 . C o n v e r g e n c e o f t h e k e r n e l K,{z, c )

The Hilbert space H. wil l have a complete orthonormal system of

functions harmonic on R i f and only i f the same is true for the space

H2 . By equations (2.3) and (2.U), p ^ U , ?)|| = U^z, t,)\\ for

0 < h < 1 and \\kAz, £)|| = ||fc Az, £)|| . These observations lead to the

next theorem.

THEOREM 4 . 1 . If H has a complete orthonormal system of functions

harmonic on R , then KAz, £) converges to kAz, r,) uniformly in z

on compact subsets of R as h -*• 0 .

Proof. Note that H^U, 0\\ = l/||tf|| and \\kAz, t,)\\ = I /HI •

Furthermore, U^z, Z)\\2 = KA^l,^) and 11^(2, ?)||2 = k^Z, ?) • Since

||Af|| •* \\m\\ as h •* 0 , K^t;, Z)''f\U, ?) as h •* 0 . Therefore

h -*- 0 . We conclude that KAz, t,) = KAz, t,) - K^t,, ? ') converges to

kAz, c) - kA$, Z,') = kAz, Z) uniformly in z on compact subsets of R

a s h •*• 0 .

The next corollary follows from knovn results on when the space H

will have a complete orthonormal system of functions harmonic on R (see

[73]). In the f i rs t case the system can be taken as polynomials in x and

y . In the second case i t can be taken as rational functions with one

singular point in each component of the complement of R .

COROLLARY 4 .2 . If R is either bounded by a simple closed contour

or is a finitely connected region bounded by analytic curves, then

KAz, £) converges to kAz, £) uniformly in z on compact subsets of R

as h •*• 0 .

5. Convergence of the discrete Neumann's function

For 0 < h < 1 , the discrete Green's function for i? is defined to
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be the function G(z, t,) which vanishes on B , the boundary of R , and

which is a discrete harmonic function of z on I except at z = t, where

LG(z% C ) = _ -L. .
h2

For each 3 in B , let s(z) denote the number of neighbors of z in

I . Let z^ , i = 1, . . . , s(z) , be the neighbors of 2 in I . The

discrete Neumann's function for if is the function #(2, X>) satisfying
the conditions:

(i) s(z)N{z, t) - J N[Zi, ?) = _ Z
8 W for al l 8 in

t = 1

( i i ) il/(2, £) is a discrete harmonic function of z except

at 2 = t, where

and

( i i i ) ^(2, 5) is normalized by the condition

h I s(z)N(z, t.) = 0 .

I t was shown by Deeter and Springer [5, p. U2l] that

Kx(z, 5) = ff(2, c) - C(B, c) .

Under the hypothesis of Corollary h.2, there exists an ordinary

Green's function and Neumann's function for the region R . If £7(2, 5)

i s the Green's function and n{z, 5) i s the Neumann's function for R ,

then k (2, t.) = n(z, C,) - g(z, ?) . I t i s well known that as h •*• 0 ,

G{z, t,) converges to g(z, Z,) uniformly in z on any compact subset of

R which does not contain C • Combining th is resul t with Corollary U.2,

the following theorem is proved.

THEOREM 5 .1 . If R is bounded by a simple closed contour or is a

finitely connected region bounded by analytic curves, then as h -*• 0 ,

N(z, 5) converges to n(z, t,) uniformly in z on any compact subset of
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R which does not contain* £ .

From the discussion of the discrete Green's function in Forsythe and
Wasow [S, pp. 33.l4.-3i8] i t is known that if the boundary of the region is
sufficiently smooth, then G(z, ?) - g(z, t,) = 0{h) uniformly on the
region provided z is bounded away from 5 by a constant multiple of

1/2h . For regions bounded by edges and diagonals of some net, Huddleston

[9] obtained an error of the order 0[h ) on compact subsets not
containing £ .

Results so far on the discrete Neumann's function indicate convergence
may be much slower. The discretization error given by Deeter and Springer
[5] and Huddleston [9] is O(hlogh) . We note that there are some
differences between the associated discrete regions and the definitions of
the discrete. Green's- and Neumann's function in [5], [S],and [9].

In an attempt to shed some light on the rate of convergence of the
discrete Neumann's function, and hence the discrete harmonic kernel, the
following computations were made. The region was taken to be the interior
of the unit circle. The h-nets contained the origin and the values of h
used were h = l A , 1/8 , and l/l6 . For the continuous function we have

n{z, 0) = - ^ log|z| .

The discrete function N(z, 0) was calculated by solving the system of
equations which arise from the definition in Section 5. Since the
continuous and discrete functions are both symmetric with respect to the x
and y axes and the line y = x , only values of z with 0 5 y 5 x are
considered. The computed discrete functions and the continuous function
are compared at points of the lA-net in Table 1. This table also
contains the values obtained by extrapolation to h = 0 [S, p. 307] using
the values of the discrete functions for h = 1/8 and h = 1/16 . Table 2
presents a comparison of the continuous and discrete function along the
nonnegative real axis when h = 1/16 .

All computations were executed on a UHIVAC 1106 computer using
gaussian elimination to solve the system of equations. Some calculations
were made using 5 # 0 and the observed error was approximately the same.
Since there is considerable error in our approximation even after extra-
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TABLE 1

N(z, 0) -and n(z, 0) at some points in | z | < 1

i
2

i
\
3
4

z

0

1
4

1
2

3
4

• * *

• | i

• I '

.45400

.20400

.09400.

.04400

.13400

.06400

.01400

.01400

.03600 v-

* = i-.
.57665

.21333

•:IOO75-, .

.04043

.15191 -

.08007

.02738

.03850

-.00432

--i
.69383

.21688

• 10,6.42

.04462

.16012

.08741

.03354

.04772

.00682

extrapolated
value

.81101

-.22043

. : . : . 11209

.04881

.16833

.09475

.03970

.05694

.01796

n(z, 0)

+ 00

.22064

.11032

.0U579

.16548

.09256

.03740

.05516

.OI652

. . . . . TABLE 2

N(z, 0) and n ( s , - 0 ) where h = 1/16 and 0 £ z < 1

, 0)" n(z, 0) , 0) n{z, 0)

1
16

8
_3_
16
1

¥
16
2
8

J_
16

69383

44383

33045

26356

21688

18103

15192

12746

+ 0 0

.44126

• 33095

' "••' .26642

• .22064

.18512

.15611

.13158

2

f
8

1 1
16
k
13
16
1
8

15

10642

08803

07181

057^2

0^462

03329

02333

01471

.11032

.09157

.07480

.05963

.04579

' .03305

.02125

-.01027
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polation (a maximum of 0.00385 in Table l ) , the possibility of using

smaller values of h along with some iterative methods arises. However,

the coefficient matrix is not diagonally dominant and i t is unclear whether

the standard iterative methods for solving linear systems will converge in

this case. An alternative method for improving accuracy might be the

inclusion of certain points on the unit circle in the discrete region. The

preceding development would have to be modified accordingly.

6. Convergence and app l i ca t i ons of the kernel ^ 3 ( a . ?)

The proof of the convergence of K (z, ?) i s similar to the proof for

K (z, t.) in Section 3. As before, we begin by considering the unique

function M of minimum norm among a l l functions in H assuming the value

1 at £ . Appealing to the work of Laasonnen [70], i f C is any compact

subset of R there i s a constant K , independent of h , such that

max \M(z)\ 2 K
C

This inequal i ty , together with the assumption that H has a complete

orthonormal system of functions harmonic on R , implies that

{M : 0 < h < 1} i s uniformly bounded on compact subsets of R . Hence,

from Verblunsky [74] , {M : 0 < h < 1} i s equicontinuous on compact

subsets of R and any sequence wil l have a subsequence which converges

uniformly on compact subsets of R . An application of the resul ts stated

thus fa r , and an examination of the proof of Theorem 3 .1 , establishes

convergence of the function M to the solution of the analogous minimum

problem in H . The convergence of the kernel K ( s , s) to k (2, t.)

follows d i rec t ly .

THEOREM 6 . 1 . If M, has a complete orthonormal system of functions

harmonic on R 3 then KAz, 5) converges to kAz, t,) uniformly in z

on compact subsets of R as h •*• 0 .

The hypothesis of this theorem will be satisfied, as with H and

H , if the region R is bounded by a simple closed contour or is a

multiply connected region bounded by analytic curves.
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The techniques used to establish convergence of KAz, t.) do not lend

themselves to an analysis of the rate of convergence. Although it would

not be difficult to calculate KAz, Z,) for particular associated discrete

regions, we could conclude little about the error since no easily

computable expression is known for the function kAz, Z.) even for simple

regions.

It was noted by Aronszajn [/] and Zaremba [15] that the reproducing
kernel kAz, Z,) could be used to obtain integral representations of

solutions of particular problems involving the biharmonic operator. We
2

consider analogous problems for the discrete biharmonic operator A
2

defined by A U = A(AI/) . This operator was discussed by Courant,
Friedrichs and Lewy [4],who also developed the following discrete Green's
formula which we now state. If U and V are functions defined on the
discrete region R with interior I and boundary B , then

(6.1) h2 I [U(z)bV(z)-V{z)bU(z)] = h £ [u(z)V (z)-V(z)U (z)] ,

where

Un(z). = i \a{z)U{z) -

with z. , i = 1, ..., s(z) , the neighbors of z in I .

2
In order for the quantity A U(z) to be defined at a point z , i t is

necessary that U be defined at each point which is a neighbor of z and
also at each point which is the neighbor of a neighbor of z . Let R' be
the set of points in the 7i-net which belong to R or have a neighbor in

2
R . The boundary points of R' will be denoted by B' . How A U is

defined at every point of I when U is defined on R' .

The kernel K (z, t,) and the Green's function G(z, Z,) give the

solution to the problem of finding a function U satisfying:

(i) U{z) = U (z) = 0 for z € B' ,n
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( i i ) A2y(s) = *(a) for z € I ,

where $ is a given function defined on I . Suppose ¥ is a function

such that A¥ = $ on I . Then the function U which solves the above

problem is given by - - • •- . . . -

( 6 . 2 ) U{z) = -h2 I G(z, z')U{z') - h2 I X , ( a \ a»)<F(a")l •
z^ZR L 3 ' ^ 3 J

To verify' this equation We note that if U solves the above problem, then

Ai/ - ¥ is discrete harmonic on I ,which implies

h2 I K ( a 1 , z")[{LU-V){z")} = W(z') - V(z') ,
a €ff 3 • • : . . . . . • . :

by the reproducing property of the kernel. Thus

¥ ( 2 ' ) - ' h2 "I K (z, z")V(z") = bJJ(z') - h2 I K ( s ( , a")A£/(a") .
- -• :- •' lz'rSR 3 s"e? ' 3

With t h i s s u b s t i t u t i o n and an app l i ca t ion of (6 .1) toge the r with ( i ) , the

r i g h t hand s ide of (6 .2) becomes _ ~; '

-h2 I G{z, z')LV(z') .
z^iB

A second application of (6.1) reduces this expression to U(z) .

One possible choice for the function V appearing in (6.2) is given

by

<F(z) = h2 I Uz'-zWz')
z'ZI

where L is the "free space" discrete Green's function of McCrea and

Whipple [J2]. The function L is defined at every point of the 7z-net in

the plane and satisfies the equation

Hz) =

0 for z ± 0 ,

\ for 3 = 0 .

Estimates for the function L , along with known integral representations,

are found in the paper by Mangad [ I J ] .
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Now if we let the function * in ( i i ) be defined by

0 for z * t, ,

$(2) = .

then the solution to (i) and (i i) becomes the discrete analog of the

bihannonic Green's function for the region R . If we let V{z) in (6.2)

be -G(z, £) , then the discrete bihannonic Green's function GAz, Z,)

satisfies

GAz, c) = h2 I G{z, Z')\G(Z', C) - h2 I G(z\ tfKlz', «")] .
2 3'e? L 3 ' ^ 3 j

7. Applications to interpolation problems

In this last section we will let H- denote one of the Hilbert

spaces of harmonic functions H , H , or H defined in Section 2. The

space B will be the analogous space of discrete harmonic functions.

Inner products will be (•, •) and norms II • II .

Let z1 , z z be distinct points (different from t,' in the

case of H ) belonging to the region R and let U,, w , . . . , w be real

numbers. By considering linear combinations of the harmonic polynomials

Re(s ) , k = 0, 1, . . . . n , and Im(z ) , k = 1, 2, . . . , n , (suitably

normalized in the case of H and H ) i t is possible to construct a

harmonic function p in H such that p(s.) = W. for j = 1, 2, . . . , n .

Since the set of nil functions u in H with u[z •) = u . ,
<7 0

j = 1, 2, . . . , n , is a nonempty closed convex subset of H , this set will

contain a unique function with minimum norm.

THEOREM 7 .1 . In the EiVbert space H , the unique function u with

minimum norm satisfying u[z .) = w. 3 j = 1, 2 , . . . , n > has the form
3 0

n
u(z) = J aM{zt zj .
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The determinant

V =

does not vanish and the constants a. are determined by the system of

equations

(7.1) I aMz., z.) = w. , 3 = 1 , 2 , . . . , n .
•i=\ % ° v °

Proof. We follow the proof of a s imi la r r e s u l t in Epstein [ 7 , p .

for a Hi lber t space of ana ly t i c funct ions. Let S denote the closed

subspace of l i n e a r combinations of k[z, zS] , k[z, z ) , , k[z, z } .

Let u be t h e s o l u t i o n of t h e s t a t e d minimum problem. How u can be

un ique ly expressed i n t h e form u = v + w , v € S , w € S , where S

i s t h e or thogona l complement of S . Since w belongs t o S and

k[z, z.) and v be long t o S , we see t h a t w[z.) = (w(z), k[z, z.)) = 0

for i = 1, 2, ..., n , and ||w||2 = ||u||2 + ||u||2 . Thus ||u|| < ||u|| and
u(z.) = w. . Since w is the unique solution of the minimum problem, this

implies that w = v and hence u belongs to S . The function u can be
written as

u{z) = I a.k[z, z.) .

The constants a. must satisfy the system of equations (7.1) since this is
equivalent to u[z .) = w. , j = 1, 2, , n . The determinant V cannot

vanish, for otherwise the rows of the matrix would be linearly dependent,
which asserts that for certain choices of the w. our minimum problem

Is

would be unsolvable. This contradicts the remarks preceding this theorem.
Thus the constants a. are determined by the system of equations.

The problem of solving an analogous minimal interpolation problem in
the space H i s quite different. If z , z , . . . , z belong to R , then
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it is possible that for certain choices of U^, w W there is no

function U in H satisfying u[z.) = w. , i = 1, 2, ..., n . Thus the

problem would be unsolvable. There is a unique solution, for any choice of

the w. , if the determinant

D =

does not vanish, for then there will be a unique function V of the form

n

satisfying U[z.} = W. , i = 1, 2, . . . , n . As in the continuous case

this function solves the minimum problem.

THEOREM 7.2. Suppose H has a complete orthonormal system of
functions harmonic on R . Let z1, z , , z be points of R

belonging to some h-net and let w , w., ..., w be real numbers. If h

is sufficiently small, there is a unique function U in H with minimum
norm satisfying u[z.) = w. , i = 1, 2 n.. Furthermore, as h -*• 0 ,

the function U converges uniformly on compact subsets of R to the
unique function u in H with minimum norm satisfying u[z.) = w. ,

i = 1, 2, . . . , n .

Proof. From the previous results on the convergence of discrete

harmomic kernels (Theorems 3.2, U.I, and 6.1)

as h •*• 0 for 1 £ i , j £ n . Thus lim D = V t 0 which implies that

h-*0

D + 0 for all h sufficiently small. Therefore the minimum problem in B

has a unique solution. The solution V can be expressed in the form

U(z) = I A.K{z, z)
i=l
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with the A. satisfying the system

Using Cramer's rule to solve for the A. , we see that the solution U

can be writ ten as

0 X[s, 3..J . . . K\z, z )

UiB) = - i

The function V converges uniformly on compact subsets of R to a

function u defined toy

0 k{z, zj . . . k[z, zj

u{z) = -

Upon solving for the coefficients in (7-1) we recognize u as the solution

to our minimum prohlem in H .

I t can now tie concluded that the minimal interpolation problem in H

can be solved provided h i s small enough, and th is solution approximates

the solution of the analogous problem in H . The work of Chalmers [3] on

reproducing kernels and minimum problems in subspaces of Hilbert spaces

motivated the resu l t s in t h i s section.
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