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ABSTRACT. We Fourier transformed and filtered calibration curve data to compensate for the averaging effect of radiocar- 
bon-dating sets of adjacent tree rings. A Wiener Filter was also applied to minimize the effects of the counting errors of the 
dates on the resulting calibration curve and to produce a least-squares curve through the data. The method is illustrated using 
a short 14C-dated tree-ring sequence from New Zealand to produce a calibration curve at yearly intervals for New Zealand 
matai (Prumnopitys taxi folia). The resulting curve has a nominal standard error of 10±3 yr, which is ca. half the average stan- 
dard error of the original raw data. 

INTRODUCTION 

We previously showed (McFadgen, Knox and Cole 1994) that conversion of radiocarbon dates to 
calendar dates using currently accepted methods results in an artificial spreading and clumping of 
the calendar dates. The spreading and clumping, referred to as calibration stochastic distortion 
(CSD), is brought about by the interaction of the standard errors of the dates with the change in slope 
of the calibration curve. The distortion increases both the overall spread of dates and the possibility 
of date reversals. We suggested that the CSD effect could be overcome by deconvolving counting 
statistics from the 14C dates to obtain the true distribution of 14C dates, and then mapping the decon- 
volved set through the calibration curve onto the calendar axis in the usual way. The efficacy of the 
whole procedure depends on minimizing those changes of slope of the calibration curve caused by 
counting statistics. 

There are calibration curves for terrestrial samples and for marine samples (Stuiver and Reimer 
1993). Marine calibration data are derived from terrestrial data (Stuiver and Braziunas 1993) and are 
not considered further here. Terrestrial calibration curves are based on 14C dates of tree-ring dated 
wood (e.g., Stuiver and Pearson 1993; Pearson and Stuiver 1993; Stuiver and Becker 1993). Each 
dated sample comprises a group of adjacent rings, and the dates have statistical errors associated 
with them that introduce spurious wiggles into the calibration curves and contribute to changes in 
the slopes of the curves. 

Terrestrial calibration data span some 8000 yr and are derived from measurements of several tree- 
ring chronologies. The longest chronologies are from the Northern Hemisphere. Southern Hemi- 
sphere chronologies include a 14C-dated tree-ring sequence from New Zealand spanning the period 
from AD 1335 to 1745 (Sparks et al. 1995). 

In addition to their use in calibration, smoothed, accurate and precise versions of these curves are a 
prerequisite for comparison of the Northern and Southern Hemisphere data to test the assumption 
that 14C variations in the Southern Hemisphere match those of the Northern Hemisphere. They are 
also necessary to shed light on the relevant geophysical processes that produce the major changes in 
slope of the calibration curve. 
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We here describe a method of deriving a smoothed, more accurate and precise calibration curve by 
removing the spurious wiggles introduced by counting errors inherent in 14C measurements of tree 
rings, and by compensating for the averaging effect brought about by dating sets comprised of a 

number of adjacent tree rings. Our analysis uses the short 14C-dated tree-ring sequence from New 
Zealand in order to establish the method. The longer published Northern Hemisphere sequences will 
be considered in a subsequent paper. 

Finally, the method described here has wider application than just to 14C calibration curves. It is gen- 
erally applicable to producing least-squares smoothed curves through any regularly spaced set of 
discrete data points with known error estimates. 

METHODS 

The raw 14C calibration data set of 14C vs. tree-ring age is Fourier transformed from the time to the 
frequency domain, where we design and apply filters to the transformed data, based on 1) the stan- 
dard deviation of the measured tree rings, and 2) the fact that each sample measured contained wood 
spanning ten rings. We transform back to the time domain to obtain a smoothed calibration curve 
with substantially reduced errors attributable to counting statistics, and with some compensation for 
the averaging effect of using wood spanning ten adjacent tree rings in each measurement. 

We develop the method using 14C dates of tree rings for New Zealand matai (Prumnopitys taxifolia) 
measured at the Rafter Radiocarbon Laboratory, New Zealand Institute of Geological and Nuclear 
Sciences (Sparks et al. 1995: Table 2). Before Fourier transforming the data set, we remove the ideal 
(straight line) 14C age vs. tree-ring age. The difference between raw data points and corresponding 
points on the ideal line is the detrended data listed in Table 1, columns 4 and 8. The end points of the 
data set differ from the ideal by only 1-2 yr. Since 14C dates are normally reported to the nearest year, 
we use 1 yr (y) as our unit of time, and correspondingly 1 cycle per year (y-1) as the unit of frequency. 

Table 1 contains 42 points at 10-yr intervals, extending over 420 annual tree rings. Computer pro- 
grams in the field of Fourier analysis often require the number of data points to be a power of 2, so 
we extend our data period to 512 yr by padding it with an approximately equal number of zeros at 
the beginning and end. 

We use the discrete Fourier transform (e.g., Press et al. 1994: §12.1) 

- 
N -1 2nikN 

Tn = tike 
k=0 

and its inverse 

1 
N -1 -2nikN 

tk = Tne 
n=0 

(1) 

(2) 

where i = ,qCi , N = 512, n and k are integers in the range 0 to N-1 inclusive, and tk takes the data 
values given in Table 1 or else is zero. n/N is the frequency in the chosen units (y-1). 

To check how zero padding and choice of N affect accuracy, the set of tk was Fourier transformed, 
and immediately inverse Fourier transformed to recover the set of tk (including the zeros between 
and outside the values of tk given in Table 1). The recovered values agree with the original values 
to better than 0.003 yr, confirming the padding and the choice of N = 512 as adequate for calculating 
to the nearest year. 
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TABLE 1.14C age and calendar age of tree-ring dated wood of New Zealand matai (Prumnopitys 

taxi folia) from Sparks et al. (1995: Table 2). Detrended data =1950 -14C age - calendar age. k = 

the index number of the data point in the extended data set after zero padding. 

Calendar Conventional Detrended 
age (AD) "C age data 

Tk (yr BP) k tk(yr) 

Calendar Conventional Detrended 
age (AD) 14C age data 

Tk (yr BP) k tk(yr) 

1335 617 ± 22 50 14 
60 18 
70 22 
80 ±25 
90 26 

1385 618 ± 17 100 21 
1395 593± 19 110 12 

1405 599 ± 19 120 17 
1415 530± 20 130 5 21 

1425 471 ± 21 140 18 

1435 484 ± 21 150 ±20 
1445 422± 21 160 16 5 

1455 453 ± 17 170 20 
1465 450± 19 180 22 

1475 420± 22 190 20 

1485 417± 17 200 23 
1495 380 ± 23 210 ±21 
1505 380± 21 220 17 
1515 372± 15 230 20 
1525 334± 21 240 ±21 
1535 323 ± 15 250 17 

In the actual calibration procedure, taking successive sets of D(=10) tree rings at a time to supply the 
carbon for dating is mathematically equivalent to taking a running mean over D yr of the true cali- 
bration curve, and then sampling the running mean once every D yr. Because the width of rings var- 
ies from year to year, the mean over D yr is not well defined, so we simply assume the ring widths 
within any D yr set to be constant. This assumption must introduce some error into the correction for 
averaging, but as the correction itself, given below, is found to make a difference of somewhat less 
than 1 yr, the overall error introduced should not be significant. 

For constant ring width, then, the running mean in the time domain amounts to convolving a 

response function, of amplitude 1/D y-1, constant from -D/2 to D/2 y and zero elsewhere, with the 
true calibration curve (Press et al. 1994: §13.1). In the frequency domain this is equivalent to mul- 
tiplying together the Fourier transforms of the response function and the calibration curve (Press et 
a1.1994: § 12.0). The Fourier transform of the response function can be shown to be 

Rn = 

sin(nDN) 
(3) 

(Press et al. 1994: §12.0,12.1); thus, to correct for the running mean in the time domain by decon- 
volving it from the true calibration curve, the frequency domain representation of the data set must 
be divided by R. 
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A possible problem arises with the above deconvolving procedure due to Rn becoming zero for n/N 
=1/D; i.e., we would be dividing the Fourier component at frequency 1/D(=0.1)y-1(and higher har- 
monics) by zero. We avoid this problem, however, because we filter out by multiplying by zero all 
Fourier components at frequencies Z0.5/Dy-1, in order to remove the discrete character of the raw 
data set (i.e., finite values at intervals of D yr and zero values every year in between). In general, to 
remove the discreteness a specifically designed filter would be required, but it will be seen below 
that with the data we are using here, the discreteness is removed incidentally by a further filter that 
is required in order to reduce variation due to counting statistics. This further filter multiplies by 
zero all Fourier components at frequencies greater than a cut-off value which, in this case, is consid- 
erably less than 0.5/Dy-1. 

Variation due to counting statistics amounts to adding a component of noise to the quantity being 
measured. A filter that minimizes such added noise, in the sense that when applied to the noisy data 
it produces a least-squares curve passing through the data, is the Wiener filter (Press et al. 1994: 
§ 13.3). If Tn and Yn are, respectively, the Fourier transforms of the noisy data and of the noise alone, 
the Wiener filter is 

_ IYnI2 n - 1- 
2 , (4) 

ITnI 

where Iand ITnI2 can be shown to be power spectra (Press et a1.1994: §13.4). The expression 
for calculating Tn has already been given; for the noise alone it is 

N -1 2nikN 
Yn = 'uke , 

k=0 
(s) 

where each vk noise is obtained as a number of years selected randomly according to a normal dis- 
tribution having a standard deviation equal to that given for the corresponding k in Table 1. 

A difficulty arises because only one randomly chosen value of vk is used at each value of k. Differ- 
ent runs of randomly chosen values were in general found to give a very irregular power spectrum 

I 12 
(Press et al. 1994: §13.4), varying appreciably from one run to the next. However, an average 

of 500 runs of IYI2 was found to produce an acceptably constant and smooth set of values, denoted 
here by (II2) 
The same difficulty must appear in the power spectrum ITI2 because each ik is measured only once 
and only one set of data is available, but overcoming the difficulty requires a more elaborate proce- 
dure than that given above for ITo make a first estimate of a least-squares smoothed curve 
through the data points;, take the inverse Fourier transform of Tn multiplied by the filter 

r IYnI2 
= 1- 

IT IZ 

, 

n 

i.e., take the least-squares curve as 

D N -1 -2nikN 

N 
'nTne 

n=0 
' 

(6) 

(7) 
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where the need for the normalizing factor D will be discussed later. Now, as in deriving Yn above, 

for each value of k in Table 1 add to 0'k a number (of years) selected randomly according to a nor- 

mal distribution having a standard deviation equal to that given for the corresponding k, and repre- 

sented as t'k. The Fourier transform of a set of t'k is 

T' - 
N -1 

f 
2nik! Tn- tike , 

k=0 

(g) 

and we may average as many runs of IT'I2 as necessary to obtain an acceptably constant and 

smooth spectrum. As with II2, an average of 500 runs was found to be sufficient, and we repre- 

sent the average as (IT'I2). 

The above procedure finally allows us to give our best estimate of the Wiener filter as 

IYnI2) (') =i- - ' (9) 

(IT'I2) 

and the least-squares smoothed curve through the data points tk, also corrected for the running mean 

over D tree rings, as 

D 
N-l ((1)'n) -21tikN 

Ok 
N R 

Tne 
n n=0 

The normalizing factor D is required because the power in the spectrum ITI2 derives only from the 

finite data values tk separated by D yr with zero values assumed for all years in between, whereas 

the finite values of Ok are for every year in the range of interest. (cI's) is listed in Table 2. 

TABLE 2. Wiener Filter ((cD'n)) vs. Frequency ((n/N)y-1) 

n 

Frequency: 

(n/N)y-1 

0 0 1 

1 0.001953125 0.973 
2 0.003906250 0.987 
3 0.005859375 0.952 
4 0.007812500 0.969 
5 0.009765625 0.819 
6 0.011718750 0.378 
7 0.013671875 0.059 
8 0 0 

and zero for all higher frequencies 

The ideal i4C vs. tree-ring curve, initially subtracted to produce the data in the fourth and eighth col- 

umns of Table 1, is now added to 0k to yield the smoothed, error-reduced and running mean cor- 

rected 14C vs. tree-ring calibration. This calibration is listed in the Appendix and plotted as a graph 

in Figure 1. 
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Fig. 1. Least-squares smoothed calibration curve for New Zealand matai (Prumnopitys taxifolia) 
corrected for a running mean over 10 tree rings compared with ±1 standard error range at each 
of the measured 42 data points. Mean nominal standard error of the curve is 10 ± 3 yr. 

STATISTICAL TESTS AND STANDARD DEVIATION OF CURVE 

We now test to see if the deviation between 10-yr averages of the above calibration curve and the 
data is Gaussian. A x2 test (Snedecor and Cochran 1967: 84) of the differences between the 42 raw 
data points in Table 1(=14C ages) and a mean over 10 yr centered on the corresponding points of 
the smoothed calibration curve (column 2, Appendix), using the corresponding standard deviations 
listed in Table 1, yields x2 = 5.0 (df = 5), which is not significant at the 0.95 level (x20.95, df= 5 =11.1). 
This indicates that the set of data points constitutes a Gaussian distribution about the averaged cali- 
bration curve with the appropriate standard deviations, as it should. 

We determine the likely error in the calibration curve itself by constructing from it a set of simulated 
raw data and then recovering a curve from these data by the procedure described in this paper. 
Repeating this 500 times allows us to obtain 95% confidence limits and 68% confidence limits. In a 
Gaussian distribution these confidence limits would correspond respectively to ±2 and ±1 standard 
deviations, but here this correspondence is only nominal, as there is no guarantee that errors in the 
estimation of the calibration curve have a Gaussian distribution. The distribution of the data points 
about the averaged calibration curve, however, is still Gaussian. 

In implementing the procedures described in the preceding paragraph we took a normal distribution 
centered at each point of the 10-yr running mean of the calibration curve corresponding to a value 
of ik in Table 1, and with the corresponding standard deviation of the measured date. A raw data set 
is simulated by randomly selecting one value from each of these normal distributions, and this sim- 

1 1' lY 
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ulated data set is processed as described to give a simulated calibration curve. Inspection of the 500 

simulated points for each tk allowed an estimate of the 95% confidence limits for the calibration 

curve that are plotted as the dashed lines in Figure 1. 

The 68% confidence limits were derived in the same way and averaged to yield an effective overall 

nominal standard deviation of 10 ± 3 yr. This standard deviation is approximately half the average 

standard deviation of each raw data point, indicating that the curve has been smoothed in a running 

fashion over ca. 4 consecutive data points. 

COMMENT ON THE USE OF FOURIER ANALYSIS 

The method presented here, of estimating the true 14C calibration curve from discrete measured data 

regularly spaced in calendar time, assumes that the 14C age is a continuous, single-valued function 

of calendar age. It further assumes that after subtracting out the ideal straight line representing 

equality of 14C and calendar ages, the amplitude of the curve representing deviation from the ideal 

is everywhere finite. From inspection of the calibration data and consideration of the physics 

involved, we consider that both assumptions are valid. 

Under the above two assumptions, any finite length of curve may be as closely approximated as 

desired by a weighted sum of sinusoids, i.e., the Fourier sum. Once expressed in this form, the well- 

developed techniques of Fourier analysis readily allow the weights, and therefore the curve, to be 

derived from the data while eliminating much of the variation due to counting (or any other known) 

statistics. Furthermore, distortions of the curve by known processes, such as averaging the 14C age 

over a number of tree rings, may be corrected by the technique of deconvolving. 

Other techniques are available for deriving a continuous curve from the calibration data, but have 

disadvantages. For example, simple cubic splines create a continuous line through the data points, 

but in so doing cannot eliminate any of the statistical variation: many of the smaller wiggles in the 

curve are merely artifacts due to counting statistics. Straight lines joining the data points suffer the 

same disadvantage, while also introducing artificial discontinuities of slope at the data points. 

Running means can eliminate some statistical noise, but in general do not do so in an optimal fash- 

ion related to the signal-to-noise ratio in the data. Also, running means require additional criteria for 

deciding the type of mean, and how many data points the mean is to be taken over. 

The method described here can be considered a particular case of least-squares fitting a regression, 

the Fourier sum, to the data. Least-squares fitting other regressions to the data are potentially capa- 

ble of equalling or surpassing the performance of the present method, but since we do not know all 

the physical processes responsible for the deviations of the calibration curve away from the straight 

line ideal, we cannot choose the correct mathematical form for the regression. We should therefore 

use a general-purpose function, such as a Fourier sum, which is capable of approximating as closely 

as desired any mathematical function satisfying the assumptions made earlier concerning the cali- 

bration curve. Finally, Fourier analysis has the advantage of being a mathematically well-developed, 

and widely used and understood technique. 
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APPENDIX 

Least-squares smoothed calibration curve at yearly intervals for New Zealand matai (Prumnopitys 
taxi folio) corrected for a running mean over 10 tree rings. Mean nominal standard error of the curve 
is 10±3yr. 

Tree-ring 
date (AD) 

14C age 

(yr BP) 

age 
(AD) date (.an) 

age 

(yr BP) 

age 
(AD) 

1330 629 1321 
1331 630 1320 
1332 630 1320 
1333 631 1319 
1334 631 1319 
1335 632 1318 
1336 633 1317 
1337 633 1317 
1338 634 1316 
1339 635 1315 
1340 635 1315 
1341 636 1314 
1342 637 1313 
1343 638 1312 
1344 639 1311 1359 649 1301 

https://doi.org/10.1017/S0033822200052000 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200052000


Fitting a Smooth Curve to Calibration Data 201 

Tree-ring 14C age 14C age Tree-ring 14C age 14C age 

date (AD) (yr BP) (AD) date (nn) (yi BP) (AD) 

1360 649 1301 

1361 649 1301 

1362 650 1300 

1363 650 1300 

1364 650 1300 

1365 650 1300 

1366 649 1301 

1367 649 1301 

1368 649 1301 

1369 648 1302 

1370 648 1302 

1371 647 1303 

1372 647 1303 

1373 646 1304 

1374 645 1305 

1375 644 1306 

1376 643 1307 

1377 641 1309 

1378 640 1310 

1379 638 1312 

1380 637 1313 

1381 635 1315 

1382 633 1317 

1383 631 1319 

1384 629 1321 

1385 627 1323 

1386 625 1325 

1387 623 1327 

1388 620 1330 

1389 618 1332 

1390 615 1335 

1391 612 1338 

1392 609 1341 

1393 606 1344 

1394 603 1347 

1395 600 1350 

1396 597 1353 

1397 594 1356 

1398 591 1359 447 

1399 587 1363 

1400 584 1366 

1401 580 1370 

1402 577 1373 

1403 573 1377 

1404 570 1380 

1405 566 1384 

1406 563 1387 

1407 559 1391 

1408 555 1395 1457 437 1513 
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Tree-ring 
date (AD) 

14C age 

(yr Br) 
age 

(nn) date (An) 
age 

(yr BP) 
age 

(AD) 
1458 436 1514 
1459 436 1514 
1460 435 1515 
1461 434 1516 
1462 434 1516 
1463 433 1517 
1464 432 1518 
1465 432 1518 
1466 431 1519 
1467 431 1519 
1468 430 1520 
1469 429 1521 
1470 429 1521 
1471 428 1522 
1472 427 1523 
1473 427 1523 
1474 426 1524 
1475 425 1525 
1476 424 1526 
1477 423 1527 
1478 422 1528 
1479 422 1528 
1480 421 1529 
1481 420 1530 
1482 418 1532 
1483 417 1533 
1484 416 1534 
1485 415 1535 
1486 414 1536 
1487 412 1538 
1488 411 1539 
1489 409 1541 
1490 408 1542 
1491 406 1544 
1492 405 1545 
1493 403 1547 
1494 401 1549 
1495 400 1550 
1496 398 1552 
1497 396 1554 
1498 394 1556 
1499 392 1558 
1500 390 1560 
1501 388 1562 
1502 386 1564 
1503 384 1566 
1504 382 1568 
1505 380 1570 
1506 378 1572 1555 327 1623 
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Tree-ring 
date (AD) 

14C age 

(yr BP) 

age 
(.an) date (AD) 

age 

(yr BP) 

age 
(An) 

1556 328 1622 

1557 329 1621 

1558 330 1620 

1559 331 1619 

1560 332 1618 

1561 334 1616 

1562 335 1615 

1563 337 1613 

1564 338 1612 

1565 340 1610 

1566 341 1609 

1567 343 1607 

1568 344 1606 

1569 346 1604 

1570 348 1602 

1571 349 1601 

1572 351 1599 

1573 353 1597 

1574 354 1596 

1575 356 1594 

1576 358 1592 

1577 359 1591 

1578 361 1589 

1579 362 1588 

1580 364 1586 

1581 365 1585 

1582 367 1583 

1583 368 1582 

1584 370 1580 

1585 371 1579 

1586 372 1578 

1587 373 1577 

1588 374 1576 

1589 375 1575 

1590 376 1574 

1591 377 1573 

1592 378 1572 

1593 379 1571 

1594 379 1571 

1595 380 1570 

1596 380 1570 

1597 381 1569 

1598 381 1569 

1599 381 1569 

1600 381 1569 

1601 381 1569 

1602 381 1569 

1603 381 1569 

1604 380 1570 1653 258 1692 
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Tree-ring 
date (AD) 

14C age 

(yr BP) 

age 
(AD) date (an) 

age 

(yr BP) 

age 
(AD) 

1654 255 1695 

1655 252 1698 

1656 248 1702 

1657 245 1705 

1658 242 1708 
1659 238 1712 

1660 235 1715 

1661 232 1718 

1662 229 1721 

1663 226 1724 

1664 223 1727 

1665 220 1730 
1666 217 1733 166 

214 1736 166 
211 1739 

1669 208 1742 

1670 206 1744 

1671 203 1747 

1672 200 1750 

1673 198 1752 

1674 196 1754 

1675 193 1757 

1676 191 1759 

1677 189 1761 

1678 187 1763 

1679 185 1765 

1680 183 1767 

1681 181 1769 

1682 179 1771 

1683 178 1772 
1684 176 1774 

1685 174 1776 

1686 173 1777 

1687 172 1778 

1688 170 1780 
1689 169 1781 

1690 168 1782 
1691 167 1783 

1692 166 1784 
1693 165 1785 

1694 165 1785 

1695 164 1786 

1696 163 1787 

1697 163 1787 
1698 163 1787 

1699 162 1788 

1700 162 1788 

1701 162 1788 

1702 162 1788 
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