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Abstract

We consider the estimation of rare-event probabilities using sample proportions output
by naive Monte Carlo or collected data. Unlike using variance reduction techniques, this
naive estimator does not have an a priori relative efficiency guarantee. On the other
hand, due to the recent surge of sophisticated rare-event problems arising in safety
evaluations of intelligent systems, efficiency-guaranteed variance reduction may face
implementation challenges which, coupled with the availability of computation or data
collection power, motivate the use of such a naive estimator. In this paper we study the
uncertainty quantification, namely the construction, coverage validity, and tightness of
confidence intervals, for rare-event probabilities using only sample proportions. In addi-
tion to the known normality, Wilson, and exact intervals, we investigate and compare
them with two new intervals derived from Chernoff’s inequality and the Berry–Esseen
theorem. Moreover, we generalize our results to the natural situation where sampling
stops by reaching a target number of rare-event hits. Our findings show that the normal-
ity and Wilson intervals are not always valid, but they are close to the newly developed
valid intervals in terms of half-width. In contrast, the exact interval is conservative,
but safely guarantees the attainment of the nominal confidence level. Our new inter-
vals, while being more conservative than the exact interval, provide useful insights into
understanding the tightness of the considered intervals.
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1. Introduction

We consider the problem of estimating a minuscule probability, denoted p = P(A), for some
rare event A, using data or Monte Carlo samples. This problem, known as rare-event estimation,
is of wide interest to communities such as system reliability [22, 27, 28, 38], queueing systems
[9, 11, 16, 25, 30, 32, 37], and finance and insurance [3, 4, 14, 18, 20, 21, 26], where it is crucial
to estimate the likelihood of events which, though unlikely, can cause catastrophic impacts.
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There are multiple prominent lines of work addressing this estimation problem, depend-
ing on how information is collected. In settings where real-world data are collected, methods
based on extreme value theory [15, 17, 26, 36] are often used to extrapolate distributional tails
to assist such estimation. These methods are theoretically justified and widely applicable, but
their performance could be affected by intricate hyperparameter choices that affect their accu-
racy and challenge the reliability in uncertainty quantification [17]. In settings where A is an
event described by a simulable model, Monte Carlo methods can be used, and to speed up
computation variance reduction tools such as importance sampling [24, 33, 35], conditional
Monte Carlo [5, 31], and multi-level splitting [6, 19, 39] are often harnessed. While vari-
ance reduction is greatly beneficial in reducing the number of Monte Carlo samples needed
to estimate rare events [5, 12, 31], it is also widely known that they rely heavily on model
assumptions [10, 24]. That is, to guarantee the successful performance of these techniques,
we typically need to analyze the underlying model dynamics carefully to design the Monte
Carlo scheme. However, recent applications, such as autonomous vehicle safety evaluation [2,
23, 29, 44, 45] and robustness evaluation of machine learning predictors [7, 42, 43], lead to
rare-event estimation problems with extremely sophisticated structures that hinder the design
of efficiency-guaranteed variance reduction schemes. On the other hand, with the remarkable
recent surge in computational infrastructure, in some situations we can afford to run a gigantic
number of simulation trials.

Motivated by the limitations of the above techniques and the potential to generate numerous
samples, in this paper we focus on a more basic setting than some of the above literature, but in
a sense fundamental. More precisely, we focus on the situation where all we have to estimate p
is a set of independent and identically distributed (i.i.d.) Bernoulli observations I(A). A natural
point estimate of p is the sample proportion p̂, i.e. given a set of Bernoulli data I1, . . . , In of size
n, we output p̂ = (1/n)

∑n
i=1 Ii. We are interested in understanding the statistical error in using

p̂ in the situation where p could be very small, importantly with no lower bound on how small it
could be. Unlike the estimates given by efficiency-guaranteed variance reduction techniques, as
we will explain, it is not entirely straightforward whether using simple sample proportion can
give meaningful guarantees to estimating rare-event probabilities, in relation to the sample size
n and the (unknown) magnitude of p. Motivated by this, our main goal in this paper is to study
the construction, coverage validity, and tightness of confidence intervals (CIs) for rare-event
probabilities using only the simple sample proportion estimator. The main messages from our
findings are as follows: The normality and Wilson intervals are not always valid, in the sense
that their actual coverage probabilities can be less than the nominal confidence level, but they
are shown to be close to our two newly developed valid intervals in terms of half-width. On the
other hand, the exact interval is conservative, as its coverage probability is strictly larger than
the nominal confidence level and hence it is not as tight as the aforementioned two intervals,
but it safely guarantees the attainment of the nominal confidence level. Our new intervals are
even more conservative than the exact interval and hence not recommended in practice, but they
provide useful insights in understanding the tightness of the normality and Wilson intervals.

This paper is organized as follows. Section 2 describes the problem setting and the moti-
vating challenges. Section 3 gives an overview of the existing and new CIs, and Section 4
summarizes our main results. Then, in Sections 5 and 6, we present the details of the derivation
and analyses of these intervals. After that, Section 7 reports some numerical results to visualize
our comparisons. Section 8 concludes the paper with our findings and recommendations. All
missing proofs can be found in the appendix.
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2. Problem setting and motivation

Suppose we would like to estimate a target probability p by using information from the
Bernoulli data, or equivalently p̂. In particular, we would like to construct a CI for p that has
justifiable statistical guarantees. In answering this, we would also quantify the error between
the point estimate p̂ and p.

First of all, we clarify what a good CI is supposed to be. To this end, we mainly consider
the validity of the coverage and tightness. Throughout this paper, we say that [p̂l(α), p̂u(α)] is
a valid (1 − α)-level CI if P(p̂l(α) ≤ p ≤ p̂u(α)) ≥ 1 − α. This notion of validity can be defined
similarly for one-sided confidence bounds. On the other hand, a good CI should not be too
wide; for example, in the extreme case, the trivial CI [0, 1] is valid, but it does not provide
any useful information. In this paper, we quantify tightness by the ‘half-width’, i.e. p̂u(α) − p̂
or p̂ − p̂l(α) (some intervals we consider are symmetric so there is no difference between the
‘upper’ and ‘lower’ half-widths, but some intervals are not, in which case the context would
make the meaning of half-width clear). Importantly, considering that p is tiny in the rare-event
settings, the CI is meaningful only if the half-width is small relative to p and p̂.

To understand the challenges, we first examine the use of a standard ‘textbook’ CI, and we
focus on the upper confidence bound for now since the lower confidence bound can be argued
analogously. More specifically, we use the following as the (1 − α)-level upper confidence
bound:

p̂CLT = p̂ + z1−α

√
p̂(1 − p̂)

n
, (1)

where z1−α is the (1 − α)-quantile of a standard normal variable. The typical way to justify (1)
is a normal approximation using the central limit theorem (CLT), which entails that

P(p ≤ p̂CLT) ≈ �̄( −z1−α) = 1 − α,

where we denote by �̄ (and �) the tail (and cumulative) distribution function of the standard
normal.

To delve a little further, note that the approximation error in the previous equation is con-
trolled by the Berry–Esseen (BE) theorem. To simplify the discussion, suppose we are in a
more idealized (but unrealistic) case where we know the precise value of the variance of
the Bernoulli trial, i.e. σ 2 = p(1 − p), so that we use p̂ + z1−ασ/

√
n. Then the BE theorem

stipulates that

|P(p ≤ p̂CLT) −�(z1−α)| ≤ Cρ

σ 3
√

n
, (2)

where ρ = E|Ii − p|3 = p(1 − p)(1 − 2p + 2p2), and C is a universal constant (≈ 0.4748).
Thus, the error in (2) is bounded by

Cp(1 − p)(1 − 2p + 2p2)

p3/2(1 − p)3/2
√

n
≤ C√

np(1 − p)
. (3)

The issue is that when p is tiny, np can also be tiny unless n is sufficiently big, but a priori we
would not know what n is ‘sufficient’. If we have used the confidence bound given by (1) where
the variance σ 2 is unknown and estimated by p̂(1 − p̂), a similar BE bound would ultimately
conclude the same issue as revealed by (3) [34]. A straightforward idea is to use the number of
successes to infer whether n is sufficiently large. Suppose we have, say, 30 ‘success’ outcomes
among n trials; then we may think that np ≈ 30, so that from the bound in (3) the error of p̂CLT

appears controlled. As another, more extreme, case, suppose we only have only one success;
then we may be led to believe that np ≈ 1, so that p̂CLT is well defined but its coverage is likely
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way off from 1 − α. However, we note that the guess that np ≈ 30 or np ≈ 1 is itself based
on some central limit or concentration argument, which apparently leads to circular reasoning.
This challenge motivates us to investigate more on the validity and tightness of different CIs in
order to make a suitable choice.

It is well known that a quick and implementable approach to construct a CI that is always
valid regardless of n, p, or p̂ is to utilize the fact that np̂ follows a binomial distribution and
extract a finite-sample confidence region using this exact distribution. This is often called the
Clopper–Pearson CI or the exact method [13]. Though this is computationally easy, we are
interested in simpler mathematical forms that allow us to analytically study the relative half-
width as well. In this regard, Wilson’s interval [1] has been studied and shown to give superior
empirical performance, even in the case that p is tiny, but we are not aware of any rigorous
proof on its validity. In this paper, we propose two different ways of constructing CIs for p
that are simultaneously valid and analytically tractable, one using Chernoff’s inequality, and
the other one using the BE bound. Compared to the exact CI, these two CIs have explicit
forms that allow us to investigate their half-widths, and thereby understand how far the CLT or
Wilson CIs are from valid CIs.

Finally, in simulation analysis and some real-data situations, it is natural to keep sampling
until we observe enough successes (e.g. when the number of successes is 30) in the experi-
ments. We also adapt the existing or newly developed CIs to this setup and investigate their
performance.

3. Overview of confidence intervals

Here we briefly introduce the formulas of the CIs that we study in this paper. We consider
two settings. The first one is called the ‘standard’ setting, where the sample size n is fixed.
The other setting is when we fix the number of successes ŝ = np̂, which we call the ‘targeted
stopping’ setting. Under each setting, we discuss three existing CIs: the CLT CI, Wilson CI,
and exact CI. We also introduce how to construct our new Chernoff CI and the BE CI via
inverting Chernoff’s inequality and the BE theorem.

3.1. Confidence intervals under the standard setting

Under the standard setting, to construct valid CIs our starting point is the following set:

{0< p< 1: F(p̂) ≥ α/2, F−(p̂) ≤ 1 − α/2}, (4)

where F(x) = P(p̂ ≤ x) and F−(x) = P(p̂< x). Note that F and F− depend on p. If F were
continuous, we know that P(F(p̂) ≥ α/2, F−(p̂) ≤ 1 − α/2) = 1 − α since in this case F(p̂) =
F−(p̂)

d= Uniform[0, 1]. Now we argue that P(F(p̂) ≥ α/2, F−(p̂) ≤ 1 − α/2)> 1 − α in this
discrete case. Indeed, for any α ∈ (0, 1), there exist 0 ≤ k, l ≤ n such that F((k − 1)/n)<α/2 ≤
F(k/n) and F−(l/n) ≤ 1 − α/2< F−((l + 1)/n). Then

P(F(p̂)<α/2 or F−(p̂)> 1 − α/2) ≤ P(F(p̂)<α/2) + P(F−(p̂)> 1 − α/2)

= P(p̂ ≤ (k − 1)/n) + P(p̂ ≥ (l + 1)/n)

= F((k − 1)/n) + 1 − F−((l + 1)/n)<α.

Therefore, the set (4) is a valid (1 − α)-level confidence region. From this derivation, we find
that, due to the discreteness, the probability that this confidence region covers the true value p
is strictly larger than the nominal confidence level 1 − α, and hence this confidence region is
inevitably conservative.
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The CLT and Wilson CIs can be obtained from (4) by estimating F(p̂) and F−(p̂) via nor-
mal approximation. As a result, these two CIs are no longer guaranteed to be valid. More
specifically, using the fact that (p̂ − p)/

√
p̂(1 − p̂)/n ≈ N(0, 1), we substitute

F(p̂) ≈�

(
p̂ − p√

p̂(1 − p̂)/n

)
, F−(p̂) ≈�

(
p̂ − p√

p̂(1 − p̂)/n

)

into (4) to obtain the CLT CI.

Definition 1. (CLT CI under the standard setting.) Suppose that we estimate the probability
p = P(A) for the event A, and p̂ is the sample proportion of hitting A in n i.i.d. trials. Under this
setting, the CLT CI is defined by:

p̂CLT
u = p̂ + z1−α/2

√
p̂(1 − p̂)

n
, p̂CLT

l = p̂ − z1−α/2

√
p̂(1 − p̂)

n
.

Similarly, since (p̂ − p)/
√

p(1 − p)/n ≈ N(0, 1) and substituting

F(p̂) ≈�

(
p̂ − p√

p(1 − p)/n

)
, F−(p̂) ≈�

(
p̂ − p√

p(1 − p)/n

)
,

we get the Wilson CI.

Definition 2. (Wilson CI under the standard setting.) Suppose that we estimate the probability
p = P(A) for the event A, and p̂ is the sample proportion of hitting A in n i.i.d. trials. Under this
setting, the Wilson CI is defined by:

p̂Wilson
u =

1 + (
2np̂/z2

1−α/2
)+

√
1 + (

4np̂(1 − p̂)/z2
1−α/2

)
2
(
1 + (

n/z2
1−α/2

)) ,

p̂Wilson
l =

1 + (
2np̂/z2

1−α/2
)−

√
1 + (

4np̂(1 − p̂)/z2
1−α/2

)
2
(
1 + (

n/z2
1−α/2

)) .

Instead of using normal approximation, the exact CI directly solves the valid confidence
region (4). In fact, we know that ŝ = np̂ ∼ Binomial(n, p), so the functions F(·) and F−(·) have
exact expressions. More specifically, we have the following definition.

Definition 3. (Exact CI under the standard setting.) Suppose that we estimate the probability
p = P(A) for the event A, and p̂ is the sample proportion of hitting A in n i.i.d. trials. Under
this setting, the exact CI is defined by [p̂Exact

l , p̂Exact
u ], where p̂Exact

u and p̂Exact
l are the respective

solutions to

ŝ∑
k=0

(
n

k

)
pk(1 − p)n−k = α/2,

n∑
k=ŝ

(
n

k

)
pk(1 − p)n−k = α/2,

except that p̂Exact
u = 1 if ŝ = n and p̂Exact

l = 0 if ŝ = 0.

When 0< ŝ< n, the bounds could be expressed explicitly via quantiles of the F distribution
or Beta distribution, and hence are easy to compute numerically [1]. However, it is hard to
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analyze the scale of this CI, which motivates us to further relax the confidence region (4) to get
other valid CIs that are more conservative but easier to analyze.

In order to relax (4), we respectively consider using two methods: Chernoff’s inequality and
the BE theorem. We will only present the formulas for them here and leave the details of their
development to Section 5.1.

Definition 4. (Chernoff CI under the standard setting.) Suppose that we estimate the probabil-
ity p = P(A) for the event A, and p̂ is the sample proportion of hitting A in n i.i.d. trials. Under
this setting, the Chernoff CI is defined by:

p̂Chernoff
u = p̂ + log (2/α)

n
+
√

( log (2/α))2

n2
+ 2p̂ log (2/α)

n
,

p̂Chernoff
l = p̂ + log (2/α)

2n
−
√

( log (2/α))2

4n2
+ 2p̂ log (2/α)

n
.

Definition 5. (BE CI under the standard setting.) Suppose that we estimate the probability
p = P(A) for the event A, and p̂ is the sample proportion of hitting A in n i.i.d. trials. In addition,
we assume that p< 1

2 . Under this setting, the BE CI is solved from

{
0< p ≤ p̂ ∧ 1

2
: �

(
p − p̂√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}

∪
{

p̂ ≤ p<
1

2
: �

(
p̂ − p√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}
.

3.2. Confidence intervals under targeted stopping

Now we consider experiments where we keep sampling until we get n0 successes. Under
this setting, the sample size N is a random variable. More specifically, N = N1 + · · · + Nn0 ,
where N1, . . . ,Nn0 are i.i.d. Geometric(p) random variables, or, equivalently, N − n0 follows
a negative binomial distribution NB(n0, p). Note that N ≥ n0. We define FN(x) = P(N ≤ x) and
FN−(x) = P(N < x). Similar to Section 3.1, we argue that the following set is a valid (1 −
α)-level confidence region for p:

{0< p< 1: FN(N) ≥ α/2, FN−(N) ≤ 1 − α/2}. (5)

Indeed, for any α ∈ (0, 1), there exist 1 ≤ k, l<∞ such that FN(k − 1)<α/2 ≤ FN(k) and
FN−(l) ≤ 1 − α/2< FN−(l + 1). Then

P(FN(N)<α/2 or FN−(N)> 1 − α/2) ≤ P(FN(N)<α/2) + P(FN−(N)> 1 − α/2)

= P(N ≤ k − 1) + P(N ≥ l + 1)

= FN(k − 1) + 1 − FN−(l + 1)<α.

By definition, the set (5) is a valid (1 − α)-level confidence region.
We could still use the CLT and Wilson CIs with p̂ = n0/N. More specifically, we have the

following definitions.

Definition 6. (CLT CI under targeted stopping.) Suppose that we estimate the probability p =
P(A) for the event A. We keep sampling until we get n0 successes and the sample size is denoted
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by N. Under this setting, the CLT CI is defined by:

p̂CLT
u,n0

= n0

N
+ z1−α/2

√
n0(N − n0)

N3
, p̂CLT

l,n0
= n0

N
− z1−α/2

√
n0(N − n0)

N3
.

Definition 7. (Wilson CI under targeted stopping.) Suppose that we estimate the probability
p = P(A) for the event A. We keep sampling until we get n0 successes and the sample size is
denoted by N. Under this setting, the Wilson CI is defined by:

p̂Wilson
u,n0

=
1 + (

2n0/z2
1−α/2

)+
√

1 + (
4n0(N − n0)/z2

1−α/2N
)

2
(
1 + (

N/z2
1−α/2

)) ,

p̂Wilson
l,n0

=
1 + (

2n0/z2
1−α/2

)−
√

1 + (
4n0(N − n0)/z2

1−α/2N
)

2
(
1 + (

N/z2
1−α/2

)) .

Similar to the standard setting, we can directly solve (5) using the exact distribution of N.

Definition 8. (Exact CI under targeted stopping.) Suppose that we estimate the probability
p = P(A) for the event A. We keep sampling until we get n0 successes and the sample size is
denoted by N. Under this setting, the exact CI is defined by

[
p̂Exact

l,n0
, p̂Exact

u,n0

]
where p̂Exact

u,n0
and

p̂Exact
l,n0

are the respective solutions to

N−n0−1∑
k=0

(
k + n0 − 1

n0 − 1

)
(1 − p)kpn0 = 1 − α/2,

N−n0∑
k=0

(
k + n0 − 1

n0 − 1

)
(1 − p)kpn0 = α/2,

except that p̂Exact
u,n0

= 1 if N = n0.

While the interval is easy to compute numerically, it is not easy to analyze. Similar to the
standard setting, we relax the confidence region (5) to construct valid CIs via respectively
inverting Chernoff’s inequality and the BE theorem. We leave the details of developing these
two new CIs to Section 6.1 and only present the formulas here.

Definition 9. (Chernoff CI under targeted stopping.) Suppose that we estimate the probability
p = P(A) for the event A. We keep sampling until we get n0 successes and the sample size is
denoted by N. Under this setting, the Chernoff CI is solved from{

0< p< 1: pn0 (1 − p)N−n0 ≥ α

2

(
n0

N

)n0
(

1 − n0

N

)N−n0
}

.

Definition 10. (BE CI under targeted stopping.) Suppose that we estimate the probability p =
P(A) for the event A. We keep sampling until we get n0 successes and the sample size is denoted
by N. In addition, we assume that p< 1

2 . Under this setting, the BE CI is defined by:

{
0< p ≤ n0

N
∧ 1

2
: �

(
Np − n0√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2

}

∪
{

n0

N
≤ p<

1

2
: �

(
n0 − Np√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2

}
,

where C′ = 16C is a universal constant.
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Standard – Upper Standard – Lower

(a) (b)

FIGURE 1. Comparisons of the positions of confidence upper and lower bounds under the standard set-
ting. Here, ‘valid’ means that the CI has valid coverage in the sense that the actual coverage probability

always reaches the nominal confidence level.

Targeted stopping – Upper Targeted stopping – Lower

(a) (b)

FIGURE 2. Comparisons of the positions of confidence upper and lower bounds under the targeted stop-
ping setting. Here, ‘valid’ means that the CI has valid coverage in the sense that the actual coverage

probability always reaches the nominal confidence level.

4. Summary of the main results

As explained in Section 2, when we compare different CIs we mainly consider the validity
in terms of coverage probability, and tightness in terms of half-width. In terms of validity,
the existing CLT and Wilson CIs do not possess guarantees, while the exact CI, and our new
Chernoff CI and BE CI, are valid by construction. The half-widths of the CIs, which will be
analyzed in detail in Sections 5.2 and 6.2, are summarized in Figures 1 and 2. In particular,
these figures illustrate comparisons of these CIs in terms of upper and lower bound (the exact
CI is not included since it is hard to analyze its magnitude). For instance, from (1), we clearly
see that the half-width of the CLT CI scales at the same order as

√
p̂/n = p̂/

√
ŝ, where ŝ = np̂

is the number of positive outcomes. By expressing
√

p̂/n as p̂/
√

ŝ here, it is easier to see how
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the half-width scales relative to p̂. That is, the relative half-width is of order 1/
√

ŝ. Note that
in these figures, under the standard setting, for f (n, p̂), g(n, p̂) ≥ 0, we write f = O(g) if there
exist N0, p0,M> 0, which do not depend on p or p̂, such that, for any np̂>N0 and p̂< p0,
f ≤ Mg; we write f =�(g) if there exist N0, p0,M1,M2 > 0, which do not depend on p or p̂,
such that, for any np̂>N0 and p̂< p0, M1g ≤ f ≤ M2g. Under the targeted stopping setting,
O(·) and �(·) are defined similarly by replacing np̂ with n0. The notations O(·) and �(·) will
be used throughout the rest of this paper.

More concretely, Tables 1 and 2 summarize the formulas, scales, pros, and cons of each
CI under the standard and targeted stopping settings respectively. The key findings can be
summarized as follows:

• The CLT CI is the ‘textbook’ normality interval and thus very intuitive, but its coverage
probability can be far below the nominal level. However, in terms of the half-width,
except for the lower bound in the standard setting, the difference between the CLT bound
and the valid BE bound is of order p̂/ŝ, so the relative difference with respect to p̂ is of
order 1/ŝ, which is of higher order in ŝ than its relative half-width. This can be viewed
as a relatively small price of validity paid to make the CLT bound correct. For the lower
bound in the standard setting, the BE bound is trivial, so we cannot come to a similar
conclusion. However, in this case the difference between the CLT bound and the valid
Chernoff bound is of order p̂/

√
ŝ, the same order as the half-width, which shows that the

CLT bound has roughly the correct magnitude.

• In practice, the Wilson CI has satisfactory performance, in the sense that it is relatively
tight while the coverage probability is usually close to the nominal confidence level.
The difference between the Wilson and CLT bounds is of order p̂/ŝ, which is of higher
order in ŝ than the half-width. As a result, the conclusions for the CLT CI regarding the
difference from the valid BE and Chernoff CIs still hold for the Wilson CI.

• The exact CI is, as aforementioned, inevitably conservative, in the sense that its
coverage probability is strictly higher than the nominal level. However, it is the tightest
among the valid CIs, so it is recommended when we want the nominal confidence level
to be guaranteed. The Chernoff and BE CIs are valid but extremely conservative. They
are not recommended for use in practice, but their analytical forms help us gain useful
insights on the CLT and Wilson CIs. That is, now we learn that the CLT and Wilson
CIs, although not always valid, are relatively close to these two valid CIs as mentioned
in the first bullet point.

5. Developments under the standard setting

We present in detail the construction of the new Chernoff and BE CIs that endows
their validity (Section 5.1). Then we analyze the half-widths of all the CIs discussed here
(Section 5.2).

5.1. Derivation of new confidence intervals

5.1.1. Chernoff’s CI. Now we present our first approach to construct a valid CI for p by
relaxing (4). By Chernoff’s inequality, we have
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TABLE 1. Summary of the CIs in the standard setting (I1, . . . , In
i.i.d.∼ Bernoulli(p), p̂ = (1/n)

∑n
i=1 Ii,

ŝ = np̂).

CLT p̂ ± z1−α/2
√

p̂(1 − p̂)

n

Scale p̂CLT
u − p̂ = p̂ − p̂CLT

l =�(p̂/
√

ŝ)

Pros Follows from the intuitive ‘textbook’ formula
Cons Not always valid, especially when np is not sufficiently large

Wilson
1 + (

2np̂/z2
1−α/2

)±
√

1 + (
4np̂(1 − p̂)/z2

1−α/2
)

2
(
1 + (

n/z2
1−α/2

))
Scale

∣∣p̂Wilson
u − p̂CLT

u

∣∣= O(p̂/ŝ),
∣∣p̂Wilson

l − p̂CLT
l

∣∣= O(p̂/ŝ)

Pros Tight; the coverage probability is usually close to 1 − α

Cons Not always valid; lacks theoretical error control

Exact Solutions to
∑ŝ

k=0

(n
k

)
pk(1 − p)n−k = α/2,

∑n
k=ŝ

(n
k

)
pk(1 − p)n−k = α/2

except that p̂Exact
u = 1 if ŝ = n and p̂Exact

l = 0 if ŝ = 0

Pros Always valid; tighter than other valid CIs
Cons Conservative; hard to analyze

Chernoff p̂ + log (2/α)

n
+
√

( log (2/α))2

n2
+ 2p̂ log (2/α)

n
,

p̂ + log (2/α)

2n
−
√

( log (2/α))2

4n2
+ 2p̂ log (2/α)

n

Scale p̂Chernoff
u − p̂CLT

u =�(p̂/
√

ŝ), p̂CLT
l − p̂Chernoff

l =�(p̂/
√

ŝ)

Pros Always valid; helps us understand the relative error of p̂
Cons Extremely conservative

BE
{

0< p ≤ p̂ ∧ 1

2
: �

(
p − p̂√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}

∪
{

p̂ ≤ p<
1

2
: �

(
p̂ − p√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}
where C is the universal constant in the BE theorem

Scale
∣∣p̂BE

u − p̂CLT
u

∣∣= O(p̂/ŝ)

Pros Always valid; helps us understand the error of the CLT upper bound
Cons Extremely conservative; trivial lower bound
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TABLE 2. Summary of the CIs in the targeted stopping setting (N1, . . . ,Nn0

i.i.d.∼ Geometric(p), N =∑n0
i=1 Ni, p̂ = n0/N).

CLT
n0

N
± z1−α/2

√
n0(N − n0)

N3

Scale p̂CLT
u,n0

− p̂ = p̂ − p̂CLT
l,n0

=�(
√

n0/N)

Pros Follows from the intuitive ‘textbook’ formula
Cons Not always valid

Wilson
1 + (

2n0/z2
1−α/2

)±
√

1 + (
4n0(N − n0)/z2

1−α/2N
)

2
(
1 + (

N/z2
1−α/2

))
Scale

∣∣p̂Wilson
u,n0

− p̂CLT
u,n0

∣∣= O(1/N),
∣∣p̂Wilson

l,n0
− p̂CLT

l,n0

∣∣= O(1/N)

Pros Tight; the coverage probability is usually close to 1 − α

Cons Not always valid

Exact Solutions to
∑N−n0−1

k=0

(k+n0−1
n0−1

)
(1 − p)kpn0 = 1 − α/2,∑N−n0

k=0

(k+n0−1
n0−1

)
(1 − p)kpn0 = α/2 except that p̂Exact

u,n0
= 1 if N = n0

Pros Always valid; tighter than other valid CIs
Cons Conservative; hard to analyze

Chernoff
{

0< p< 1: pn0 (1 − p)N−n0 ≥ α

2

(
n0

N

)n0
(

1 − n0

N

)N−n0
}

Pros Always valid
Cons Extremely conservative; hard to analyze

BE
{

0< p ≤ n0

N
∧ 1

2
: �

(
Np − n0√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2

}

∪
{

n0

N
≤ p<

1

2
: �

(
n0 − Np√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2

}
where C′ = 16C is a universal constant

Scale p̂BE
u,n0

− p̂CLT
u,n0

= O(1/N), p̂CLT
l,n0

− p̂BE
l,n0

= O(1/N)

Pros Aways valid; helps us understand the error of p̂ and the CLT CI
Cons Extremely conservative; trivial for small n0

P(p̂ ≤ (1 − δ)p) ≤ exp

(
−δ

2

2
np

)
, 0< δ < 1,

P(p̂ ≥ (1 + δ)p) ≤ exp

(
− δ2

2 + δ
np

)
, δ > 0.
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Replacing (1 − δ)p or (1 + δ)p by x, we have

F(x) ≤ exp

{
−
(

1 − x

p

)2 np

2

}
, x ≤ p,

F−(x) ≥ 1 − exp

{
− ((x/p) − 1)2

1 + (x/p)
np

}
, x ≥ p.

Hence, F(p̂) ≥ α/2, F−(p̂) ≤ 1 − α/2 implies that

p ≥ p̂ and exp

{
−
(

1 − p̂

p

)2 np

2

}
≥ α

2
or p ≤ p̂ and 1 − exp

{
− ((p̂/p) − 1)2

1 + (p̂/p)
np

}
≤ 1 − α

2
.

Therefore,{
0< p ≤ p̂ : exp

{
− ((p̂/p) − 1)2

1 + (p̂/p)
np

}
≥ α

2

}
∪
{

p̂ ≤ p< 1: exp

{
−
(

1 − p̂

p

)2 np

2

}
≥ α

2

}

is a confidence region for p̂ with confidence level at least 1 − α. Simplifying the above
expression, we have

0< p ≤ p̂, exp

{
− ((p̂/p) − 1)2

1 + (p̂/p)
np

}
≥ α

2

=⇒ p̂ + log (2/α)

2n
−
√

( log (2/α))2

4n2
+ 2p̂ log (2/α)

n
≤ p ≤ p̂,

p̂ ≤ p< 1, exp

{
−
(

1 − p̂

p

)2 np

2

}
≥ α

2

=⇒ p̂ ≤ p ≤ p̂ + log (2/α)

n
+
√

( log (2/α))2

n2
+ 2p̂ log (2/α)

n
.

Hence, by taking the union, we get a valid (1 − α)-level CI for p, for any finite sample n. This
id summarized in the following theorem.

Theorem 1. (Validity of Chernoff CI under the standard setting.) The interval given by

p̂Chernoff
u = p̂ + log (2/α)

n
+
√

( log (2/α))2

n2
+ 2p̂ log (2/α)

n
,

p̂Chernoff
l = p̂ + log (2/α)

2n
−
√

( log (2/α))2

4n2
+ 2p̂ log (2/α)

n

is a valid (1 − α)-level CI for p, for any finite sample n. That is, for any n,

P
(
p̂Chernoff

l ≤ p ≤ p̂Chernoff
u

)≥ 1 − α.
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5.1.2. BE CI. We develop another CI for p by inverting the BE theorem. Here, we assume that
p is known to satisfy p< 1

2 a priori (which is reasonable if we consider rare events). In this
paper, we use the standard version of the BE theorem, and a potential future investigation is to
consider a BE bound for the studentized statistic [40, 41].

By the BE theorem,∣∣∣∣P
(

(p̂ − p)
√

n

p(1 − p)
≤ x

)
−�(x)

∣∣∣∣≤ C√
np(1 − p)

,

∣∣∣∣P
(

(p − p̂)
√

n

p(1 − p)
≤ x

)
−�(x)

∣∣∣∣≤ C√
np(1 − p)

,

where C is a universal constant. We replace x by (p̂ − p)/
√

p(1 − p)/n in the first inequality
and (p − p̂)/

√
p(1 − p)/n in the second one. Then,∣∣∣∣F(p̂) −�

(
p̂ − p√

p(1 − p)/n

)∣∣∣∣≤ C√
np(1 − p)

,

∣∣∣∣1 − F−(p̂) −�

(
p − p̂√

p(1 − p)/n

)∣∣∣∣≤ C√
np(1 − p)

.

Hence, F(p̂) ≥ α/2, F−(p̂) ≤ 1 − α/2 implies that either

p ≥ p̂ and �

(
p̂ − p√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α/2 or

p ≤ p̂ and �

(
p − p̂√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α/2.

Thus,

{
0< p ≤ p̂ : �

(
p − p̂√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}

∪
{

p̂ ≤ p< 1: �

(
p̂ − p√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}

is a valid (1 − α)-level confidence region for p. Since we have assumed that p< 1
2 , the above

confidence region can be shrunk further. To summarize, we have the following theorem.

Theorem 2. (Validity of BE CI under the standard setting.) Assume that p< 1
2 . Then the set

{
0< p ≤ p̂ ∧ 1

2
: �

(
p − p̂√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}

∪
{

p̂ ≤ p<
1

2
: �

(
p̂ − p√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}
(6)

is a valid (1 − α)-level confidence region for p, for any finite sample n.
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5.2. Analyses of half-widths

5.2.1. CLT CI. Clearly, p̂CLT
u − p̂ =�(

√
p̂/n) =�(p̂/

√
ŝ) and p̂ − p̂CLT

l =�(p̂/
√

ŝ). As

explained in Section 2, we express the half-width as �(p̂/
√

ŝ) instead of �(
√

p̂/n) in order
to understand the magnitude of the relative half-width with respect to p̂ more clearly.

5.2.2. Wilson CI. We derive the following theorem through some algebraic manipulations.

Theorem 3. (Half-width of the Wilson CI under the standard setting.)

∣∣p̂Wilson
u − p̂CLT

u

∣∣≤ z2
1−α/2

n
+ z3

1−α/2
2n3/2

,
∣∣p̂Wilson

l − p̂CLT
l

∣∣≤ z2
1−α/2

n
+ z3

1−α/2
2n3/2

.

Note that 1/n = p̂/ŝ, so the difference between the Wilson and CLT CIs is of order O(p̂/ŝ),
which is of higher order than p̂/

√
ŝ in ŝ. In fact, as long as ŝ ≥ 1, i.e. we have at least one

positive observation, then p̂/
√

ŝ =√
p̂/n = √

ŝ/n ≥ 1/n. Since the half-width of the CLT CI is
of order p̂/

√
ŝ, we get that the half-width of the Wilson CI is close to the CLT CI.

5.2.3. Chernoff CI. When p̂ = 0, the Chernoff CI reduces to [0, 2 log (1/α)/n] (and in fact we
can construct even tighter bounds by using the binomial distribution of np̂ directly in this case).
On the other hand, when p̂> 0, we can re-express using ŝ = np̂ to get

p̂Chernoff
u = p̂

(
1 + log (2/α)

ŝ
+
√

( log (2/α))2

ŝ2
+ 2 log (2/α)

ŝ

)
,

p̂Chernoff
l = p̂

(
1 + log (2/α)

2ŝ
−
√

( log (2/α))2

4ŝ2
+ 2 log (2/α)

ŝ

)
.

We highlight that in this case, the half-width of the Chernoff CI is of order �(p̂/
√

ŝ), which
scales in the same order as the CLT CI. If we check the difference between this interval and the
CLT interval, we find that it is of the same order as the half-width of the CLT CI. The following
theorem presents the details of this claim. We will shortly contrast this result with another one
presented.

Theorem 4. (Half-width of the Chernoff CI under the standard setting.)

p̂Chernoff
u − p̂CLT

u ≥ (
√

2 log (2/α) − z1−α/2)

√
p̂

n
+ log (2/α)

n
,

p̂CLT
l − p̂Chernoff

l ≥ (
√

2 log (2/α) − z1−α/2)

√
p̂

n
− log (2/α)

2n
.

Note that
√

2 log (2/α) − z1−α/2 > 0 for 0<α < 1.

We recall that 1/n = p̂/ŝ is of higher order than
√

p̂/ŝ = p̂/
√

ŝ. Provided that
√

2 log (2/α) −
z1−α/2 > 0, p̂Chernoff

u − p̂CLT
u (or p̂Chernoff

l − p̂CLT
l ) is of no higher order than p̂CLT

u − p̂ (or
p̂CLT

l − p̂).

5.2.4. BE CI. We focus on the confidence upper bound as, unfortunately, we cannot derive a
non-trivial confidence lower bound from (6) since any 0< p< 1

2 such that C/
√

np(1 − p) ≥
α/2 is contained in this confidence region. Now we further relax (6) to develop a more explicit
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upper bound. In particular, (6) could be relaxed to{
0< p<

1

2
: �

(
p̂ − p√

p(1 − p)/n

)
+ C√

np(1 − p)
≥ α

2

}
.

In fact, for any 0 ≤ λ≤ 1 − (4C/
√

nα),

0< p<
1

2
,

C√
np(1 − p)

≥ (1 − λ)
α

2
=⇒ 0< p ≤ 1 −√

1 − (16C2/n(1 − λ)2α2)

2
,

0< p<
1

2
, �

(
p̂ − p√

p(1 − p)/n

)
≥ λα

2
=⇒

0< p ≤
1 + (

2np̂/z2
λα/2

)+
√

1 + (
4np̂(1 − p̂)/z2

λα/2

)
2
(
1 + (

n/z2
λα/2

)) .

Therefore,

0< p ≤
(

1 −√
1 − (16C2/n(1 − λ)2α2)

2

)
∨
(

1 + (
2np̂/z2

λα/2

)+
√

1 + (
4np̂(1 − p̂)/z2

λα/2

)
2
(
1 + (

n/z2
λα/2

))
)

is a (1 − α)-level CI. For simplicity, we denote the two parts as U1 and U2. Note that λ
is not necessarily deterministic. Instead, it can be dependent on the data as long as it stays
within the interval [0, 1 − (4C/

√
nα)]. In fact, we may choose λ carefully such that U1 ≤ U2

is guaranteed for sufficiently large n. Specifically, the following theorem proposes another
valid CI.

Theorem 5. (Relaxed BE CI under the standard setting.) Assume that p< 1
2 . Let λ= 1 −

(2C̃/
√

nα), where

C̃ =
(

C√
p̂(1 − p̂)

)
∧
(

u
√

nα

2

)
.

Here, u< 1 is any constant such that 4C2/u2α2 < z2
(1−u)α/2. In the case that p̂ = 0 or 1, natu-

rally we set C̃ = u
√

nα/2. Then there exists N0, which does not depend on p and p̂, such that,
for any n>N0,

p̂BE
u =

1 + (2np̂/z2
λα/2) +

√
1 + (

4np̂(1 − p̂)/z2
λα/2

)
2
(
1 + (

n/z2
λα/2

)) , p̂BE
l = 0

is a valid (1 − α)-level CI for p. In particular, N0 can be chosen as

(
4C

uα

)2

∨ 12z2
(1−u)α/2C2

z2
(1−u)α/2u2α2 − 4C2

.

Actually, p̂BE
u itself is a valid (1 − α/2)-level confidence upper bound for p, which is higher

than the nominal level 1 − α. The series of relaxations makes this CI more and more conser-
vative, but we will show that the upper bound still has a similar scale to p̂CLT

u and p̂Wilson
u .
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Namely, we can derive that |p̂BE
u − p̂CLT

u | is bounded by order 1/n. In other words, though p̂CLT
u

has undesirable coverage probability in the rare-event setting, it is not ‘too far’ from a valid
upper bound. The following theorem states this result.

Theorem 6. (Half-width of the BE CI under the standard setting.) Assume that p< 1
2 , abd p̂BE

u
is as defined in Theorem 5. Then there is a constant C0, which does not depend on p and p̂,
such that

∣∣p̂BE
u − p̂CLT

u

∣∣≤ C0/n.

Note that the bound in Theorem 6 can be rephrased as
∣∣p̂BE

u − p̂CLT
u

∣∣≤ C0p̂/ŝ. In other
words, p̂BE

u differs from p̂CLT
u by a higher order than the half-width of the CLT CI in terms

of ŝ, while all quantities scale with p̂ in a similar manner. Compared to Theorem 4, we see in
Theorem 6 that p̂BE

u is substantially tighter than p̂Chernoff
u when ŝ increases, although due to the

implicit constant C0 it may not be the case for small ŝ.

6. Developments under targeted stopping

We now present our results for the targeted stopping setting, following the roadmap for the
standard setting presented earlier. Namely, we first present the construction of the Chernoff
and BE CIs (Section 6.1), followed by analyses of half-widths for all CIs (Section 6.2).

6.1. Derivation of new confidence intervals

To construct the new CIs under the targeted stopping setting, we again relax the confi-
dence region (5) via Chernoff’s inequality and the BE theorem. Nevertheless, now we need to
deal with the distribution of N instead of p̂ as in (4). Hence, as we show below, the specific
derivations of applying Chernoff’s inequality and the BE theorem differ from the standard
setting.

6.1.1. Chernoff CI. First, we propose a Chernoff CI similar to the one in the standard setting.
By Markov’s inequality,

P(N ≥ x) ≤ e−tx
E(etN) = e−tx

(
pet

1 − (1 − p)et

)n0

, 0< t<− log (1 − p).

Then, for x> n0/p,

P(N ≥ x) ≤ min
0<t<− log (1−p)

e−tx
(

pet

1 − (1 − p)et

)n0

= (1 − p)x−n0xxpn0

(x − n0)x−n0nn0
0

.

Similarly,

P(N ≤ x) ≤ etx
E(e−tN) = etx

(
pe−t

1 − (1 − p)e−t

)n0

, t> 0,

and thus, for 0< x< n0/p,

P(N ≤ x) ≤ min
t>0

etx
(

pe−t

1 − (1 − p)e−t

)n0

= (1 − p)x−n0xxpn0

(x − n0)x−n0nn0
0

.

Therefore, FN(N) ≥ α/2, FN−(N) ≤ 1 − α/2 implies that

N ≥ n0

p
and

(1 − p)N−n0 NNpn0

(N − n0)N−n0 nn0
0

≥ α

2
or N ≤ n0

p
and

(1 − p)N−n0 NNpn0

(N − n0)N−n0 nn0
0

≥ α

2
.
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Finally, we get that {
0< p< 1:

(1 − p)N−n0 NNpn0

(N − n0)N−n0 nn0
0

≥ α

2

}
is a valid (1 − α)-level confidence region for p under the targeted stopping setting. After
simplification, we summarize our result in the following theorem.

Theorem 7. (Validity of the Chernoff CI under targeted stopping.) Suppose that we keep sam-
pling from Bernoulli(p) until we get n0 successes, and the sample size is denoted by N. Then

{
0< p< 1: pn0 (1 − p)N−n0 ≥ α

2

(
n0

N

)n0
(

1 − n0

N

)N−n0
}

(7)

is a valid (1 − α)-level confidence region for p.

It is easy to verify that f (p) = pn0 (1 − p)N−n0 − (α/2)(n0/N)n0 (1 − n0/N)N−n0 is increas-
ing in [0, n0/N] and decreasing in [n0/N, 1]. Moreover, we observe that f (0) = f (1)< 0 and
f (n0/N)> 0. Thus, (7) is actually an interval, and we could use the bisection method to numer-
ically compute the bounds. Nevertheless, this CI is not as easy to study analytically as under
the standard setting, so we will not include its half-width result in the following section.

6.1.2. BE CI. Now we apply the BE theorem again. We still assume that p< 1
2 is known a

priori. By the theorem, we get∣∣∣∣P
(

N − n0/p√
n0(1 − p)/p2

≤ x

)
−�(x)

∣∣∣∣≤ CρN

σ 3
N
√

n0
, (8)

∣∣∣∣P
(

n0/p − N√
n0(1 − p)/p2

≤ x

)
−�(x)

∣∣∣∣≤ CρN

σ 3
N
√

n0
, (9)

where σ 2
N =E(Ni − 1/p)2 = (1 − p)/p2 and ρN = E|Ni − 1/p|3.

We need to deal with ρN first. In fact, we know that

p3ρN = p3E

∣∣∣∣Ni − 1

p

∣∣∣∣
3

= E|pNi − 1|3 ≤ 1 + 3pE(Ni) + 3p2
E(N2

i ) + p3
E(N3

i ).

Since Ni ∼ Geometric(p), we know that

E(Ni) = 1

p
, E(N2

i ) = 2 − p

p2
, E(N3

i ) = p2 − 6p + 6

p3
,

and thus p3ρN ≤ p2 − 6p + 6 + 3(2 − p) + 3 + 1 = p2 − 12p + 16 ≤ 16. Hence,

CρN

σ 3
N
√

n0
= Cp3ρN

(1 − p)3/2√n0
≤ C′

(1 − p)3/2√n0
,

where C′ = 16C is an absolute constant.
By setting x =√

(p2/n0(1 − p))(N − (n0/p)) in (8) and x =√
(p2/n0(1 − p))((n0/p) − N) in

(9), we get ∣∣∣∣FN(N) −�

(
Np − n0√
n0(1 − p)

)∣∣∣∣≤ C′√
n0(1 − p)3

,

∣∣∣∣1 − FN−(N) −�

(
n0 − Np√
n0(1 − p)

)∣∣∣∣≤ C′√
n0(1 − p)3

.
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Hence, FN(N) ≥ α/2, FN−(N) ≤ 1 − α/2 implies that

p ≥ n0/N and �

(
n0 − Np√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2
or

p ≤ n0/N and �

(
Np − n0√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2
.

Thus, we have developed a valid confidence region under this particular setting that is similar
to the one in Section 5.

Theorem 8. (Validity of the BE CI under targeted stopping.) Suppose that we keep sampling
from Bernoulli(p) until we get n0 successes, and the sample size is denoted by N. Assume that
p< 1

2 . Then

{
0< p ≤ n0

N
∧ 1

2
: �

(
Np − n0√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2

}

∪
{

n0

N
≤ p<

1

2
: �

(
n0 − Np√
n0(1 − p)

)
+ C′√

n0(1 − p)3
≥ α

2

}
(10)

is a valid (1 − α)-level confidence region for p. Here, C′ is a universal constant. In particular,
we can pick C′ = 16C, where C is the constant in the BE theorem.

Note that when n0 is not large enough, we have C′/
√

n0(1 − p)3 ≥ α/2 anyway. That is to
say, this confidence region is not really practical. However, it could still provide an insight into
how close the CLT or Wilson intervals are to a valid one.

6.2. Analyses of half-widths

As mentioned before, under the targeted stopping setting, the Chernoff CI is no longer easy
to analyze. Thus, in this subsection we only cover the analyses for the CLT, Wilson, and BE
CIs. For the first two, as the formulas of the CIs are the same as the standard setting, we simply
present the results here. For the BE CI, the main idea of the derivations is similar to the standard
setting, but there are differences in the technical details. In particular, we are now able to get a
non-trivial lower bound.

6.2.1. CLT and Wilson CIs. Under the targeted stopping setting, the formulas of the CLT
and Wilson CIs are the same as under the standard setting with p̂ = n0/N. Thus, clearly
we still have that p̂CLT

u,n0
− p̂ = p̂ − p̂CLT

l,n0
=�(p̂/

√
n0) =�(

√
n0/N), and that

∣∣p̂Wilson
u,n0

− p̂CLT
u,n0

∣∣=
O(1/N) = O(p̂/n0),

∣∣p̂Wilson
l,n0

− p̂CLT
l,n0

∣∣= O(1/N) = O(p̂/n0).

6.2.2. BE CI. Similar to Section 5, the confidence region (10) could be further relaxed.
However, unlike in the standard setting, now the error term C′/

√
n0(1 − p)3 could be well

controlled for tiny p and as a result we are able to get a non-trivial lower bound in this case.
More concretely, for any 0<λ< 1,

0< p< 1,
C′√

n0(1 − p)3
≥ (1 − λ)

α

2
=⇒ p ≥ 1 −

(
4C′

n0(1 − λ)2α2

)1/3

.
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If we could find 0<λ< 1 such that (4C′2/n0(1 − λ)2α2)1/3 = 1
2 then, for any 0< p< 1

2 ,

C′√
n0(1 − p)3

≤ (1 − λ)
α

2
.

As a result, any p in (10) must satisfy

0< p ≤ n0

N
∧ 1

2
, �

(
Np − n0√
n0(1 − p)

)
≥ λα

2
or

n0

N
≤ p<

1

2
, �

(
n0 − Np√
n0(1 − p)

)
≥ λα

2
.

After simplification, we get

0< p ≤ n0

N
, �

(
Np − n0√
n0(1 − p)

)
≥ λα

2
=⇒ p ≥

2Nn0 − z2
λα/2n0 −

√
4z2
λα/2Nn0(N − n0) + z4

λα/2n2
0

2N2
,

n0

N
≤ p< 1, �

(
n0 − Np√
n0(1 − p)

)
≥ λα

2
=⇒ p ≤

2Nn0 − z2
λα/2n0 +

√
4z2
λα/2Nn0(N − n0) + z4

λα/2n2
0

2N2
.

Thus, (10) could be relaxed into a valid (1 − α)-level CI, which is defined more rigorously in
the following theorem.

Theorem 9. (Relaxed BE CI under targeted stopping.) Suppose that we keep sampling from
Bernoulli(p) until we get n0 successes, and the sample size is denoted by N. Assume that p< 1

2 .

Let λ= 1 − (4
√

2C′/√n0α). Then, for any n0 > 32C′2/α2,

p̂BE
u,n0

=
2Nn0 − z2

λα/2n0 +
√

4z2
λα/2Nn0(N − n0) + z4

λα/2n2
0

2N2
,

p̂BE
l,n0

=
2Nn0 − z2

λα/2n0 −
√

4z2
λα/2Nn0(N − n0) + z4

λα/2n2
0

2N2

is a valid (1 − α)-level CI for p. Here, C′ is the same as in Theorem 8.

Finally, like in the standard setting, we will compare the difference between the BE and
CLT CIs.

Theorem 10. (Half-width of the BE CI under targeted stopping.) Assume that p< 1
2 , and that

p̂BE
u,n0

and p̂BE
l,n0

are as defined in Theorem 9. Then there is a constant C′
0, which does not depend

on p and N, such that p̂BE
u,n0

− p̂CLT
u,n0

≤ C′
0/N and p̂CLT

l,n0
− p̂BE

l,n0
≤ C′

0/N.

Therefore, under the targeted stopping setting, we could justify that the CLT CI is not too
far from a valid one in terms of both upper and lower bounds.

7. Numerical experiments

To close the paper, we perform some numerical experiments to visualize the differences
among the CIs.

7.1. Experiments under the standard setting

The true value is chosen as p = 10−6. For each of the settings n = 5/p, 10/p, 30/p, 50/p,
and 100/p we conduct 100 000 experimental repetitions and calculate the CIs with α = 0.05.
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FIGURE 3. Average values of the confidence upper and lower bounds under the standard setting.

Figure 3 and Table 3 respectively present the average values of the confidence upper and lower
bounds from the 100 000 repetitions and the coverage probabilities of the five CIs covered in
this paper.

As analyzed in Section 5.2, when np is large the CIs scale similarly, except that BE fails
to give a non-zero lower bound. While the CLT interval is closest to the truth in terms of the
mean value of the upper bound, it is not reliable, especially when np is small. For instance,
when np = 5, its coverage probability is only 0.858, which is much lower than the nominal
confidence level of 0.95. The Wilson and exact CIs are quite similar, especially for the upper
bound. However, we notice that the Wilson bound sometimes fails to achieve the nominal
confidence level, but the error in the coverage probability is acceptable to some extent. The
Chernoff and BE CIs are conservative, as expected, since they further relax the conservative
confidence region (4). We would like to point out that though the BE upper bound seems to
be much larger than the Chernoff, it decays much faster as np increases, which coincides with
Theorems 4 and 6.

7.2. Experiments under targeted stopping

Now we consider the targeted stopping setting. We again set p = 10−6. For each of the
settings n0 = 5, 10, 30, 50, 100 we conduct 100 000 experimental repetitions and calculate
the CIs with α = 0.05. Figure 4 and Table 4 respectively present the average values of the
confidence upper and lower bounds from the 100 000 repetitions and the coverage probabilities
of the CIs. Note that we do not include the BE CI since it is trivial due to the small n0, as
aforementioned.

The Chernoff CI is still conservative, as expected, since it further relaxes the conservative
confidence region (5). We focus on comparing the other three CIs. From Figure 4 we see
that, for the upper bound, the CLT bound is the closest to the truth and the Wilson bound is the
farthest. For the lower bound, the Wilson bound is the closest and the CLT bound is the farthest.
The exact bound falls in between. On the other hand, they all have a similar magnitude, and
when n0 is large they are all close to each other. In terms of coverage probability (Table 4),
the three CIs also have similar performance when n0 is large. In particular, in relation to the
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TABLE 3. Coverage probabilities of the CIs under the standard setting.

np CLT Wilson Exact Chernoff BE

5 0.869 90 0.962 52 0.979 92 0.999 30 1.0
10 0.926 01 0.962 52 0.975 42 0.997 67 1.0
30 0.931 00 0.944 76 0.955 31 0.995 60 1.0
50 0.950 98 0.945 96 0.954 51 0.996 59 1.0
100 0.945 01 0.949 20 0.954 85 0.995 75 1.0

FIGURE 4. Average values of the confidence upper and lower bounds under the targeted stopping setting.

motivation in Section 2, if we can sample until we observe enough (say 30) successes, then the
CLT CI is indeed reliable to use, although it is not guaranteed to be valid.

8. Conclusion

In this paper we have studied the uncertainty quantification, more precisely the construc-
tion, validity, and tightness of CIs, for rare-event probability using naive sample proportion
estimators from Bernoulli data. We focused on two settings, the standard setting where the
sample size is fixed, and the targeted stopping setting where the number of successes is fixed.
Under each setting, we first reviewed the existing CLT, Wilson, and exact CIs. It is known that
the CLT and Wilson CIs are not necessarily valid in the sense that the coverage probability can
be lower than the nominal confidence level, and the exact CI is valid yet its tightness is hard
to analyze. These motivated us to derive other valid CIs with more explicit expressions. More
specifically, we relaxed the exact confidence region via inverting Chernoff’s inequality and the
BE theorem to obtain Chernoff and BE CIs, respectively. Tables 1 and 2 in Section 4 provide
a comprehensive summary of our findings, and we briefly summarized our key findings in
Section 4.

https://doi.org/10.1017/jpr.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.43


Confidence intervals for naive rare-event estimators 105

TABLE 4. Coverage probabilities of the CIs under the targeted stopping setting.

n0 CLT Wilson Exact Chernoff

5 0.956 60 0.924 70 0.949 98 0.992 33
10 0.955 11 0.937 14 0.950 15 0.993 00
30 0.951 20 0.945 64 0.949 51 0.993 28
50 0.951 69 0.947 50 0.950 25 0.992 76
100 0.950 77 0.948 90 0.950 07 0.993 37

Overall, we recommend the exact CI when we want to ensure a guarantee of the nominal
confidence level, otherwise we suggest using the Wilson CI, given its excellent empirical per-
formance. Moreover, in either the standard setting or the targeted stopping setting, we have
justified that the CLT CI is not far from the valid Chernoff and BE CIs, so it also exhibits
reasonable tightness in terms of half-width. However, its coverage probability can deviate sig-
nificantly from the nominal level when np is small. The latter two intervals are conservative and
hence not recommended for use in practice, but they provide useful insights in understanding
that the CLT and Wilson CIs are relatively close to these two valid CIs.

Appendix A. Proofs

Proof of Theorem 3. We get directly from the formula for p̂Wilson
u that

∣∣p̂Wilson
u − p̂CLT

u

∣∣

=
∣∣∣∣∣
1 − 2p̂ +

√
1 + (

4np̂(1 − p̂)/z2
1−α/2

)− 2
(
1 + (

n/z2
1−α/2

))
z1−α/2

√
p̂(1 − p̂)/n

2
(
1 + (

n/z2
1−α/2

))
∣∣∣∣∣

≤
|1 − 2p̂| + |2z1−α/2

√
p̂(1 − p̂)/n| + ∣∣√1 + (

4np̂(1 − p̂)/z2
1−α/2

)− (2n/z1−α/2)
√

p̂(1 − p̂)/n
∣∣

2n/z2
1−α/2

.

We have that |1 − 2p̂| ≤ 1, |2z1−α/2
√

p̂(1 − p̂)/n| ≤ z1−α/2/
√

n, and

∣∣∣∣∣
√

1 + 4np̂(1 − p̂)

z2
1−α/2

− 2n

z1−α/2

√
p̂(1 − p̂)

n

∣∣∣∣∣
=
∣∣∣∣∣ 1√

1 + (
4np̂(1 − p̂)/z2

1−α/2
)+ (2n/z1−α/2)

√
p̂(1 − p̂)/n

∣∣∣∣∣≤ 1,

which concludes the proof for the upper bounds. The proof for the lower bound is almost the
same. �
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Proof of Theorem 4. We have

p̂Chernoff
u − p̂CLT

u =
√

2 log (2/α)p̂

n
+ ( log (2/α))2

n2
+ log (2/α)

n
− z1−α/2

√
p̂(1 − p̂)

n

≥ (√2 log (2/α) − z1−α/2
)√ p̂

n
+ log (2/α)

n
.

Similarly, we could prove the inequality for the lower bounds. �

Proof of Theorem 5. Following our derivations, it suffices to show that, for the given N0 and
any n>N0, 0 ≤ λ≤ 1 − (4C/

√
nα) and U1 ≤ U2. Obviously, 2C̃/

√
nα ≤ u< 1, so λ> 0. On

the other side, λ≤ 1 − (4C/
√

nα) holds since n ≥ (4C/uα)2.
Now we prove that U1 ≤ U2 for n>N0. Indeed, if C̃ = C/

√
p̂(1 − p̂), then U1 = p̂ ∧ (1 −

p̂) ≤ p̂ and we know that U2 ≥ p̂, so U1 ≤ U2. In the other case that C̃ = u
√

nα/2, we have

U1 = 1 −√
1 − (16C2/nu2α2)

2
= 16C2/nu2α2

2(1 +√
1 − (16C2/nu2α2))

≤ 16C2/nu2α2

2(1 + 1 − (16C2/nu2α2))
= 4C2

nu2α2 − 8C2
,

U2 ≥ 1

1 + (
n/z2

(1−u)α/2

) = z2
(1−u)α/2

z2
(1−u)α/2 + n

.

Since u is chosen such that 4C2/u2α2 < z2
(1−u)α/2 and

n ≥ 12z2
(1−u)α/2C2

z2
(1−u)α/2u2α2 − 4C2

,

we get
4C2

nu2α2 − 8C2
≤ z2

(1−u)α/2

z2
(1−u)α/2 + n

,

and hence U1 ≤ U2. Note that as u ↑ 1, 4C2/u2α2 → 4C2/α2 while z2
(1−u)α/2 → ∞, and thus

such a u exists. �

Proof of Theorem 6. We have

p̂BE
u − p̂CLT

u =
1 − 2p̂ +

√
1 + (

4np̂(1 − p̂)/z2
λα/2

)− 2
(
1 + (

n/z2
λα/2

))
z1−α/2

√
p̂(1 − p̂)/n

2
(
1 + (

n/z2
λα/2

)) .

We first deal with√
1 + 4np̂(1 − p̂)

z2
λα/2

− 2

(
1 + n

z2
λα/2

)
z1−α/2

√
p̂(1 − p̂)

n

=
(
1 − (

8z2
1−α/2p̂(1 − p̂)/z2

λα/2

))− 4z2
1−α/2p̂(1 − p̂)/n + (

4np̂(1 − p̂)/z2
λα/2

)(
1 − (

z2
1−α/2/z2

λα/2

))
√

1 + (
4np̂(1 − p̂)/z2

λα/2

)+ 2
(
1 + (

n/z2
λα/2

))
z1−α/2

√
p̂(1 − p̂)/n

.
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The denominator satisfies√
1 + 4np̂(1 − p̂)

z2
λα/2

+ 2

(
1 + n

z2
λα/2

)
z1−α/2

√
p̂(1 − p̂)

n
≥
(

2
√

np̂(1 − p̂)(z1−λα/2 + z1−α/2)

z2
λα/2

)
∨1.

Note that (z1−λα/2 + z1−α/2)/z2
λα/2 increases with the value of λ. Since λ≥ 1 − u> 0, we can

find a constant C1 such that√
1 + 4np̂(1 − p̂)

z2
λα/2

+ 2

(
1 + n

z2
λα/2

)
z1−α/2

√
p̂(1 − p̂)

n
≥ (C1

√
np̂(1 − p̂)) ∨ 1.

Then we deal with the numerator. We know that zα/2 =�−1(α/2) and zλα/2 =�−1(λα/2). By
Taylor expansion, we have

1

z2
λα/2

= 1

z2
α/2

− 2
√

2π

z3
α/2

ez2
α/2/2(λ− 1)

α

2
+ r(λ).

Here, r(λ) is continuous in λ and r(λ)/(1 − λ) → 0 as λ ↑ 1. We also know that 1 − λ≤ u, and
thus |r(λ)/(1 − λ)| = |(√nαr(λ))/(2C̃)| is bounded by a constant. Hence, |√np̂(1 − p̂)r(λ)| is
bounded by a constant. We have

1 − z2
1−α/2
z2
λα/2

= 2
√

2π

z1−α/2
ez2

1−α/2/2 C̃√
n

− z2
1−α/2r(λ).

Thus, the numerator satisfies∣∣∣∣∣
(

1 − 8z2
1−α/2p̂(1 − p̂)

z2
λα/2

)
− 4z2

1−α/2p̂(1 − p̂)

n
+ 4np̂(1 − p̂)

z2
λα/2

(
1 − z2

1−α/2
z2
λα/2

)∣∣∣∣∣
≤ 1 + 8p̂(1 − p̂) + 4z2

1−α/2p̂(1 − p̂)

n
+ 4np̂(1 − p̂)

z2
λα/2

(
2
√

2π

z1−α/2
ez2

1−α/2/2 C̃√
n

− z2
1−α/2r(λ)

)
.

Clearly, the first three terms divided by the denominator are bounded by some constants. Now
we consider the fourth term. Since |√np̂(1 − p̂)r(λ)| is bounded, we can also get that the fourth
term divided by the denominator is bounded by some universal constant.

Therefore, combining the above results, we know that∣∣∣∣∣1 − 2p̂ +
√

1 + 4np̂(1 − p̂)

z2
λα/2

− 2

(
1 + n

z2
λα/2

)
z1−α/2

√
p̂(1 − p̂)

n

∣∣∣∣∣≤ C2,

where C2 is a positive constant. We also have

2

(
1 + n

z2
λα/2

)
≥ 2n

z2
(1−u)α/2

.

Hence, the error term satisfies∣∣∣∣∣
1 − 2p̂ +

√
1 + (

4np̂(1 − p̂)/z2
λα

)− 2
(
1 + (

n/z2
λα

))
z1−α

√
p̂(1 − p̂)/n

2
(
1 + (

n/z2
λα

))
∣∣∣∣∣≤ C0

n
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for some constant C0. From the above derivations, we find that C0 only depends on α and the
choice of u. �

Proof of Theorem 9. If n0 > 32C′2/α2, then 0<λ< 1. The validness of the CI is justified
by the derivations above the theorem. �

Proof of Theorem 10. We have

p̂BE
u,n0

− p̂CLT
u,n0

= − z2
λα/2n0

2N2
+
√

z2
λα/2n0(N − n0)

N3
+ z4

λα/2n2
0

4N4
− z1−α/2

√
n0(N − n0)

N3

= (z2
λα/2 − z2

1−α/2)n0(N − n0)/N3 − (
n0z2

λα/2z1−α/2/N2
)√

n0(N − n0)/N3√
z2
λα/2n0(N − n0)/N3 + z4

λα/2n2
0/4N4 + z2

λα/2n0/2N2 + z1−α/2
√

n0(N − n0)/N3
.

First, for the denominator:√
z2
λα/2n0(N − n0)

N3
+ z4

λα/2n2
0

4N4
+ z2

λα/2n0

2N2
+ z1−α/2

√
n0(N − n0)

N3
≥
√

z2
λα/2n0(N − n0)

N3

= z1−λα/2
√

n0(N − n0)

N3
.

Next, for the numerator:(
z2
λα/2 − z2

1−α/2
)
n0(N − n0)

N3
− n0z2

λα/2z1−α/2
N2

√
n0(N − n0)

N3
≤
(

1 − z2
1−α/2
z2
λα/2

)
z2
λα/2n0(N − n0)

N3
.

As mentioned in the proof of Theorem 6, we have

1

z2
λα/2

= 1

z2
α/2

− 2
√

2π

z3
α/2

ez2
α/2/2(λ− 1)

α

2
+ r(λ),

1 − z2
1−α/2
z2
λα/2

=
√

2π

z1−α/2
ez2
α/2/2

C′
1√
n0
α− r(λ)z2

α/2,

where r(λ) is continuous in λ and r(λ)/(1 − λ) → 0 as λ ↑ 1. We know that 1 − λ= C′
1/

√
n0

for some constant C′
1 > 0 from the choice of λ. For n0 > 32C′2/α2, λ is bounded away from

0, and hence |r(λ)/(1 − λ)| = |√n0r(λ)/C′
1| has a constant upper bound. Hence, there exists a

constant C′
2 > 0 such that(

1 − z2
1−α/2
z2
λα/2

)
z2
λα/2n0(N − n0)

N3
≤ C′

2√
n0

z2
λα/2n0(N − n0)

N3
.

Combining the results, we get

p̂BE
u,n0

− p̂CLT
u,n0

≤ C′
2√
n0

z1−λα/2
√

n0(N − n0)

N3
≤ C′

2z1−λα/2
N

≤ C′
3

N
,

where C′
3 > 0 is a constant and we get the last inequality since λ has a non-zero lower bound.

Now notice that p̂CLT
l,n0

− p̂BE
l,n0

= p̂BE
u,n0

− p̂CLT
u,n0

+ z2
λα/2n0/N2 and z2

λα/2n0/N2 ≤ z2
λα/2/N =

O(1/N). Therefore, we could find a constant C′
0 such that the theorem holds. �
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