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A NUMERICAL CRITERION OF QUASI-ABELIAN SURFACES
SHIGERU IITAKA

§1. Statement of the result

At first, we fix the notation. Let k¥ = C and we shall work in the
category of schemes over k. For an algebraic variety V of dimension
n, we have the following numerical invariants:

P,(V) = the m-genus of V,
q(V) = the irregularity of V,
(V) = the Kodaira dimension of V;
P, (V) = the logarithmic m-genus of V,
g(V) = the logarithmic irregularity of V,
#(V) = the logarithmic Kodaira dimension of V.

Note that the latter three invariants have been introduced in [1],
[2]. About seventy years ago, F. Enriques obtained the following
numerical criterion of abelian surfaces: Let V be an algebraic surface
(i.e., n =2). Then V is birationally equivalent to an abelian surface
if and only if P(V) = P(V) =1 and (V) = 2.

A slightly weaker version of this criterion is the following: V is
birationally equivalent to an abelian surface if and only if (V) =0,
q(V) = 2.

Our purpose here is to prove the following numerical criterion of
quasi-abelian surfaces, which is a counterpart of the Enriques criterion
in proper birational geometry.

THEOREM 1. Let V be a non-singular algebraic surface. The quasi-
Albanese map ay:V — o, is birational and there is an open subset V°
of V such that ay|V°: V°'— o7, — {py, - - -, D,} is proper birational, if and
only if ’(V) =10, g(V) = 2.

We have introduced WWPB-equivalence in [5]. By definition,
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ay:V — o7, is the WWPB-map. Thus, Theorem I is restated as follows:

THEOREM I*. Let V be an algebraic surface. V is WW PB-equivalent
to a quasi-abelian surface if and only if #(V) = 0 and g(V) = 2.

WWPB-equivalence seems very unnatural. However, a WIWWPB-map
¢ between affine normal varieties turns out to be an isomorphism.
Hence if we restrict ourselves to affine normal surfaces, we obtain the
following more natural

THEOREM II. Let V be an affine normal surface. Then V is
isomorphic to G2, if and only if #(V) =0 and q(V) = 2.

Remark. Recently, K. Ueno [9] has obtained the following numerical
criterion of abelian varieties of dimension 3: Let V be an algebraic
variety of dimension 3. Then V is birationally equivalent to an abelian
variety of dimension 3 if and only if #(V) = 0 and q(V) = 3.

We make the following

CONJECTURE. Let V be an affine normal algebraic variety of
dimension #n. Then V is isomorphic to G2, if and only if #V) = 0 and
av) =mn.

A partial solution of this conjecture is Theorem 12 [3], by which
we prove

THEOREM III. Let V be an algebraic variety of dimension n with
#(V) = 0. Suppose that there is a dominant strictly rational map of V
nto G%. Then the quasi-Albanese map oy :V — G% is birational. V is
WWPB-equivalent to G, via ay. Moreover, if V is affine and normal,
ay 1S an isomorphism.

We recall the following genera. P,(V) is called the logarithmic
geometric genus and denoted by 7,(V). When dimV =1, p,(V) coin-
cides with g(V), which is indicated by (V). g(V) is the logarithmic
genus of the algebraic curve V. If V = P'— {a,, -- -, a,}, then g(V) = m.

Let V be a complete non-singular algebraic variety and D = 3 D,
a reduced divisor on V. We say that D is a divisor of simple normal
crossing type if each D, is non-singular and > D; has only normal
crossings. If D is a divisor of simple normal crossing type, then we
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say that V is a completion of V = V — D with smooth boundary. Note
that Reg (D) = | (D; — U,.; D,), which consists of non-singular points
of D. By definition, letting K(V) be a canonical divisor on V, we have

P, (V) = dim HY(V, 0(m(K + D))) and
#V) =(K(V)+ D, V).

The main tools of this paper are the universality of quasi-Albanese
map [2] and fundamental theorems on logarithmic Kodaira dimension
(1] and [3]). For instance,

1. Let f:V,— V, be a dominant morphism with connected fibers.
Then #(V) < &#(f~'(v)) + dim V,, v being a general point.
2. Furthermore, when dim f~'(v) = 1, we have

(S 0) + (V) < (V) .
This is Kawamata’s Theorem [7].
3. Let f:V—W be a dominant morphism with dim V = dim W.
Then &(V) = &(W), (V) = ¢(W), and P, (V) = P,(W).
4. Moreover, if f is proper and birational and #(W) = 0, then for
any closed set 4, we have

AV —4) =W - f() .
This follows from Theorem 13 [3].

§2. Half-point attachment

Let S be a non-singular algebraic surface. There exists a comple-
tion S of S with smooth boundary D. Take a non-singular point » of
D and perform a monoidal transformation with center p, which we
write px:S, = Q,(8)— S. Then p*(D) = p (D) = D, + E, where D, is
the proper transform of D by x. Write S, =S, — D,, which contains
S as an open subset, for S, — D, DS, —D,—E=8—-D=S8. We say
that S, is a half-point attachment to S or that S is obtained from S,
by deleting one half-point. Then

K(S) + D, = p*(K(S) + D) ,

where K(S) denotes a canonical divisor on S. Hence P,,(S) = P,(S,) for
any m =1 and #(S) = #(S;). We have G(S) = g(S) or g(S) = g(S) + 1,
according to the property of the irreducible component C, containing
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p. In fact, let D=C, + C,+ --- + C, be a sum of prime divisors C,.
Then D, =C§f + C, + -.- + C,, Cf being the proper transform of C, by

p.  Furthermore, put S,=8 ~C,— .- —C,=Q,(S—C,— --- C).
Then ¢(S) = ¢S —C,— -+ — C) =q(S) or g(S) — 1. Since S, 2 S, if
3@S,) = q(S), then q(S) = q(S). If g(S, = q(S) — 1, then in view of
Theorem 1 [2], there are m, += 0, m,, - - -, m, such that

mC,+ -+ + m,C,=0 in HXS,2) .
From this, it follows that
m(C¥ + E)+ -+ +mCy, =0 in H¥S, 2) .
By Theorem 1 in [2], we conclude that (S, = g(S) — 1. Thus we obtain

THEOREM 1. Let S, be a half-point attachment to S at PeC, C D
in which D is the smooth boundary of S. Then P,(S) = P,(S), for
m=1,2,.... Moreover, if C, is cohomologically independent of C,,
-oo, and C,, then G(S) = g(S). Otherwise, g(S,) = q(S) — 1.

Conversely, let E be a closed curve in S. If F = P! and F* = —1,
then E is contracted to a non-singular point. FE is called an exceptional
curve of the first kind in S. Furthermore, if £ (the closure of E in
S) is an exceptional curve of the first kind and if (E,D) =1, then E
is called a D-exceptional curve in S (See Sakai [8]). Contracting the
E to a non-singular point, we obtain a complete surface S, and a divisor
Dy=C;+ C,+ --- 4 C,, C, being the image of C,. Putting S, = S, — D,,
we see that S is a half-point attachment to S,.

Let 92; be the connected component of supp (D) and denote by the
same symbol 2, the reduced divisor whose support is 2,. Then we
have

D:«@l'*‘ ctt ‘]“91"
We assume that «(2,,8) = -.- = #(2,,5). We have three cases.
Case a: £(2,,5) =2. We use the following

PROPOSITION 1. Let D be a reduced divisor >, C; on S. Then
#(D,S) =2 if and only if there exists an effective divisor m,C, + - --
+ m,C, with positive self-intersection number.

Proof. The proof of if-part is easy. We assume that (D, S) = 2.
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Then there is m > 0 such that |mD| — |mD|y, is not composite with a
pencil. Writing &, = |mD|;, we have |mD|=|D,| + &, D, being the
general member of |mD| — &,. Then D? > 0. Hence

D, =3 ,C;e|mD| — &, . Q.E.D.

PROPOSITION 2. Notations being as in Proposition 1, the intersection
matriz [(C;, C;)] is not negative semi-definite if and only if x(D,S) = 2.
If [(C;,CP] is megative semi-definite, then #(D,S) < 1. Conversely, if
£(D,S) = 1, then [(C;, C,)] is negative semi-definite that has 0 eigen value.

The proof is easy and omitted.

In the case a, choose D, =a,C, + .- + a,C, whose support C2,
with a; > 0 and D > 0 by Proposition 1. Then (D,,2,) = --- = (D, 2,)
= 0. By the algebraic index theorem due to Hodge, we see that the
intersection matrices of 2,,.---,2, are negative definite. Hence any
irreducible component E in 2, + ... + 9, is cohomologically independent
of 9, + .. + @, — E. .Therefore, by Theorem 1, if a D-exceptional curve
E has a common point with 2, then g(S) = q(S,). Note that «(2,,S)
=... =¢(2,5)=0.

Case b: £(2,,S) =1. There is ¢t > 0 such that
(2,8 = =2, =1, K(2,,,9 =+ =2, =0.

Then consider the 2,-canonical fiber space v :S-— 4. Since 2, is con-
nected, 92, = ¢ '(a,) for some a,. Moreover (92,,9) = (Z;,Vv (W) =0
for a general we 4. Hence 2, <y 'a,). If j<t, then v(a) = 2;.
If t > 7, then 2; is an incomplete fiber C v~'(a;). In this case «(D,S)
= 1.

Case ¢: (2,8 = --- =x(2,,8) =0. Then «(D,S) = 0.

§3. Surfaces with ¢ = 0 and § = 2

Let S be a non-singular surface with #(S) = 0 and g(S) = 2. Con-
sider the quasi-Albanese map ag of S. By B we denote the closed image
of S in the quasi-Albanese variety &7y of S. We prove that B = /.
Actually if B #+ 75, then #(B) > 0 by Theorem 4 in [2]. Since 7 is
2-dimensional by §(S) =2, B # &g implies that B is a non-singular
curve by Proposition 5 and Corollary 1 in [2]. In view of Kawamata’s
theorem [7], we have
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Ba™'(8) + 1 = &(s) = 0 = k(a”'(D)) + &(B) for a general beB.

This implies that #(B) = 0, a contradiction. Therefore, B = .. In
other words, s is dominant. Hence D, (S) = P(S) = --- = 1.

Case 1: q(S) =2. Then &y is an abelian surface. Let S be a
completion of S with smooth boundary D. « = ag defines a rational
map @:S — &5, which turns out to be a morphism by the minimality
of &/s. Hence 0 < #(S) < #(S) = 0 and so @ is the Albanese map of S.
By the classification theory of algebraic surfaces by Enriques-Kodaira,
we see that @ is birational and hence «g is birational. By Theorem 5
[3] (§1.4), we see that

#(S) =0 if and only if @,.(D)=0.
Hence « (S) is &/ or a complement of a finite set of points in «7g.
Since @(D) is a finite set of points {ps, - +,0}, DC aYp,, - -+, p,} and
S— Uaip,)cS. We can say that « = @|S:S — & is a WWPB-map
(see [5]). Hence S is WWPB-equivalent to an abelian surface.

Case 2: q(S)=0. Then 5 turns out to be an algebraic torus
G:. Since G, = G, X G,, we have the projection = of the product G2
— G,. Then ¢ = rag:S — G, is a dominant morphism. Moreover, for
a general u e G, ag|z'(w): o~ (u) — G, = n~'(w) is dominant and so ¢~'(w)
is not complete. Consider the Stein factorization ¢,:S—4,7:4—- G,
of p:S— G,. Applying Kawamata’s Theorem [7] we obtain

0 = &(S) = &lpr'(w) + &(4) .
In general, we have
0=#(S) < rlpr'(w) + dim4 and #(4) = &(G,) =0.

From these, it follows that #(4) = 0 and #(p;*(#)) = 0 and hence 4 = G,

and ¢r'(w) = G,. By the universality of quasi-Albanese map, we have a

morphism ¢,: G}, —» 4 = G, and the commutative diagram Fig. 2. Since

¢:: S — 4 has connected fibers, ¢, has connected fibers, too. Therefore,

in view of Theorem 4 [2] and its corollary, we see that ¢,: G}, — G ,%is
S %> @,

’

21 27
SOZI// (4 T

¥
A:Gm-'f—)Gm

Fig. 1.
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the projection of a decomposition: G2, = G, X G,. Thus we have shown
that ¢:S — G, has connected fibers. Let G, X G, C P' X P' be the
natural open immersion and let # denote the natural projection: P' x P!
— P! which is the rational map defined by x. Choosing a suitable
completion S of S with smooth boundary D, we have a proper morphism
@: S — P' X P' whose restriction to S is «s.

We assume that «g is proper and that D is connected. Write
Y = z-a&, which is a completion of ¢ (Fig. 2). Denote by H the horizontal
component of D with respect to 4. Then (y*(a), H) = 2 for any ac P!,
because ¥ '(u) — D = ¢ (u) — H = G, for a general ue P

5 -2 p! x P?
(/ '\]r\\\ C/
S—>G, |7
[N
G, <
Fig. 2

We shall study singular fibers of o.

LEMMA 1. Let S be a completion of a non-singular surface S with
connected smooth boundary D. Suppose that there is a surjective mor-
phism : S — 4 whose general fiber ~'(u),u being a general point of
4, is P and (D;y~'(w)) = m. Then any singular fiber v (@) N S = I,
has the property that > g(I';) < m — 1 where the I'; are trreducible
components.

Proof. Denote by I'; the closure of I, in S. Then +'(a) = I,
+ oo+ I+ D+ -+« + D, is a sum of irreducible components in which
D, < D. Let H be the horizontal component of D. Then 9 = D, +
«eo + D, + H + Xu) is connected. We indicate by G(2) the (dual)
graph of 9: Letting «, be the number of vertices of G(2) (=the num-
ber of irreducible components of 2) and «, the number of edges and
n(2) the cyclotomic number of G(2) (=the number of loops in G(2)),
we have

o, —a,=1— D).

It is clear that W@ + I+ -+ + ) = ﬁg(g —H — @) — (W) =
m — 1. Counting «, and «, of G(Z + I', + --- + I'y), we get
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- +8s—3@,T)=1—(m—-1)=2—m.
Moreover, by —> gI")) =s — >, (2,I',), we obtain
Sgrp)<m-—1. Q.E.D.

In our case m in Lemma 1 is one. Hence g(I")) <1 and #{7; 9(I")) =1}
<1l
Let a ¢ G, = P' — {0, ©} and use the following notation:

¥*@) = mC, + -+ + m,C,,

@ =Ci+ - +C.,
I={icll, -, 0l;C, C D},
=110 —1I.

We assume that ¢ = 2. Then there is a component, say C,, which is
an exceptional curve of the first kind.

Case (i): 1lel. Contracting C, to a non-singular point p, we have
a projective surface S, and a birational morphism x:S — S, such that
C, =y '(p). We claim that

(*) @, is a point, if jel.

Actually, since « is proper, letting X = P' x P! — G?,, we have a }(X)
= D. Hence ®(C;) C X N (P! X (@) = a finite set. In particular, @(C,
is a point. Therefore, @, = @-x': S, — P! X P' is a morphism. It is
clear that S, — S is a divisor of simple normal crossing type. @,|S =«
is proper. Hence we can replace S by S,. Repeating such contractions,
we arrive at the following

Case (ii): 1el¢. Since C, ¢ D, we know §(C,— C, N D) <1 by
Lemma 1. Hence (C,,D) =0,1,2.

Case (ii-a): (C,,D) = 0. Contracting C, to a non-singular point,
we obtain a non-singular surface S, and a proper birational morphism
p:S—8,. Since a(C,) is complete in G%,a(C) is a point and hence
a, = a-p~' is a proper morphism. Replacing S by S;,, we can assume
that such C, does not exist.

Case (ii-b): (C,D)=1. ThenI,=C,— C,N D = G,. Hence a(I'y)
is a point in G2. In fact, if a(l') were a curve, &(a(l')) < &(I') =
#(G,) = —oo. This contradicts the Ueno-type theorem (Theorem 4 [2])
to the effect that #(B) =0 if B C G». Therefore @(l') = a point on
X=P xP —G% Hence I''<D =a'X) for « is proper. This con-
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tradicts the assumption 1eI¢. Hence the case (ii-b) does not occur.
Case (ii-¢c): (C,,D) =2. We divide the case in the following way:
Subcase I: (H,C) = 2. Since 2 = (H, +*(a)) = m,(H, C) + m,(H, C,)
+ ..., it follows that m, =1, (H,C,) = --- = 0. Then, there exists an
exceptional curve of the first kind, say C,. In fact, if C} <0 for
j=2,...,0, then

—2 = (K(S), v*(@) = (K(S), C) + m(K(S),Cy) + --- = —1.

This is a contradiction. By assumption, 2eI¢. Moreover, by Lemma
1 we have g(C, — C, N D) =1. Hence (C,,D) = 0or 1. Thus we arrive
at the case (ii-a) or (ii-b).

Subcase I11: (H,C) = 1. By the same argument as in Subcase II,
we have an exceptional curve of the first kind C,,2ecI¢. Hence (C,, D)
=0 or 1.

Subcase I11: (H,C) = 0. In view of (C,, D) = 2, there exist 2,3¢
satisfying that (C,C, = (C,C;) = 1. By the logarithmic ramification
formula for «:S — G2, we obtain

KS) +D=R,.
Write I', = C, — D =5 G,, and consider the singular fiber:
o Na)=T+T,+ -+ +T,.
Since D is connected, by Lemma 1, we see that
I's~G, or P' forj>2.

Hence «(I';) = a point. This implies that I'; < R, for j = 2. Moreover,
for any iel, we infer that C; < R, from the following

LEMMA 2. Let f:V,—V, be a dominant morphism of an n-dim-
ensional non-singular algebraic variety V, into another n-dimensional
algebraic variety V,. Let V, be a completion of V, with smooth boundary
D, for each i such that f:V,— V, defined by f is a morphism. Let
peV, and q = F(p) be closed points and choose systems of regular
parameters (z,, -+ -,2,) and (wy, ---,w,) around p and q, respectively as
follows: D, is defined by z,---2, = 0 locally at p and D, is defined by
W, w, =0 locally at q. Let I'; be a local divisor defined by z, =0
and 4; a local divisor defined by w; = 0. Denote by W, a local divisor
defined by w; =0 for j =2 s+ 1. We have
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F*Wj) = X n,l; + some effective divisor .
Then

v

R, ; ( 2 nﬁ)l“i locally at p.

Jj=8+1

Proof. By the assumption, for j = s + 1 we have
w; =7 [] 2.

Hence

dw, = dn; [] 21 + 95 [[ 27 0y (iZi
4

) d
= [] 2} {dm + 9 20N :i } .

(2

Therefore, combining this with (dL/L) in § 3 of [1], we obtain

G0 AN B A g A e A duw,
w, w,

= ]‘[z?"ﬁgo(z)%z‘—/\ /\—@z—’—/\dzm/\ .o Ndz,,

) 2,

where ¢(2) is a regular function at p.
A local equation defining R, at p is [] 2# ¢(2). This implies that

EgZ<ZmWE locally at p . Q.E.D.

T \sS
We claim that B, > C,. Otherwise,
R,=aC,+0C,+60 (6>0)
induces that
R,Ch)=a+b+(0O,C)=2.
On the other hand,

(R, C)=(KS),C)+ D,C)=—1+2=1. This is a contradiction.
Therefore, B, = v '(a). From this it follows that

KR S) 2 k(¥(@), ) = ke, P) = 1.

This is a contradiction. Therefore, the Subcase III does not occur.
Accordingly, after contracting exceptional curves of the first kind
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in ¢~ (@), we conclude that *(a) = P'. This implies that +%(G,) is a
P'-bundle over G,, which turns out to be the product P! X G,,. There-
fore S = ¢ (G,) = G, X G,. Thus we can summarize the above result
as follows: If ag is proper and D is connected, then S is obtained
from G2, by successive blowing ups.

Consider the general case in which «y may not be proper. But,
assume that D is connected. Using the notation at the beginning of
Case (2), put S =a(G3) and ¢ =&|S. Since S < §, it follows that
#S) < #(S) = 0. There is a dominant morphism S — G2,. Hence F,.(S)
>1and so P,(S) =1 for any m>1. Let D =S — § and 92, the con-
nected component of D containing H + ¢ '(0) + ¢ '(c0). Then £(2,,S)
=k(H + v Y0) + v Y(0),S) = 2. Hence writing D as a sum of connected
components 2,,9,, ---,9,, we have ¥(2,,8) = --- = ¥(2,,5) = 0. More-
over, any FE 1is cohomologically independent of 9,9,—E, ..., 2,.
Hence 3(S — 92,) = q(S) = 2. Consider the quasi-Albanese maps of the
inclusion $ -8 =S — 2,. First we shall prove that the quasi-Albanese
map a, of S is @ Denoting by % the inclusion S C §, we have the
homomorphism ¢, : G2 — G2, such that i,-a = «;-1 (Fig. 3).

A

S < S
e
an <-9-% G2
Fig. 3
By the universality of quasi-Albanese map, we have a morphism ¢: G,
— G2, such that ¢.-¢, = & Then
Ty ooty =1y @ =1y =0, .

Hence ¢,-¢ = id. This implies that ¢ is injective. Since & is dominant,
¢ is the étale covering. Therefore ¢ is an isomorphism. Hence o, = a.
Then denote by «’ the quasi-Albanese map of S’=S — 2,. We have
the following diagram:

i:§ < &

&l a/ la'

G, —ix—> G,
- Fig. 4
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Since j, is a homomorphism and G2 is an algebraic torus, j, turns
out to be the étale covering, which is proper. Recalling that & is
proper, we have a proper morphism j,-& = «’-j. Hence § =S’. There-
fore, we can conclude that D is connected.

By the previous result, @ is a proper birational morphism. More-
over, write F = &D N S), which is a closed set. Then by Theorem
12 [3], we have

#(S) = #(S — ¢ '(F) = /G2, — F) .

Hence #(S) = 0 implies that F' is a finite set of points by Proposition
10 [2]. Then D c & 'X) U @ '(F) = D U ¢'(F). Since D is connected,
this means that F = ¢ and D = D. Thus we establish the following

THEOREM 2. Let S be a mnon-singular surface with connected
smooth boundary. Suppose that #(S) = q(S) = 0 and G(S) = 2. Then S
18 obtained from G2, by successive blowing ups.

We shall study the general case in which D may not be connected.
Note that D = H + ¥ (0) + ¥ "' (c0). Since H + ¢(0) + (o) is con-
nected, we denote by 2, the connected component of D that contains
H + 47'(0) + ¥ (o). Note that x(H + ¥ %(0) + ¢ (c0),S) =2 and so
#(2,,8) = 2. We write D as a sum of connected divisors 2,,2,, - -, 9,.
By the remark at the end of §2, each intersection matrix of 2, (j = 2)
is negative definite. Hence 9(S — 2,) = ¢(S — D) = 2. The graph G(2,)
contains G(H + ¥7%(0) + ¥ (o)) which has one loop. Hence p,(S — 2,
> 1. By the fact that #S — 2)) < #(S) =0, we have &S — 2,) = 0.
Hence applying Theorem 2, we conclude that S — 2, is obtained from
G2, by successive blowing ups. Since each 2; (j = 2) consists of P! in
S — 2, it follows that «(2,) = p; a point for each j = 2, where « is
the quasi-Albanese map of S — 2,. Hence we have

S'=S8 — Ua—l(pj) —a)an - {pz’ o ',ps}

and §8°:8°— G2, — {p,, ---, P} is a proper birational morphism.

Case 3: q(S) =1. Then the Albanese map of the quasi-Albanese
variety <7, is a surjective morphism r: ./, — E,E being the Albanese
variety of S, which is an elliptic curve. Any fiber of = is G, and so
p=r-a:S—FE is an algebraic fibered surface whose fibers are G,.
In fact, by the same reasoning as in the case 2, we can conclude that
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¢ has connected fibers. Indicate by Z the completion of Z = &/ with
smooth boundary 4 which was constructed in §10 [2]. Since Z — E is
the G,-bundle whose fibers are P!, 4 is a sum of two sections 4, and
4,. 9(Z) = q(Z) + 1 = 2 implies that 4, and 4, have the same class in
HXZ,Z) by Theorem 1 in [2]. We choose a completion S of S with
smooth boundary D such that a rational map +:S — E defined by ¢
and a rational map @: S — Z defined by « are both morphisms. Using
the same argument as in the case 2, we conclude that « is birational.
Moreover, letting 9, be the connected components of D containing D,
we know that D=(2,+ 2,) =92, U 2, if and only if « is proper.
Therefore, if S is a non-singular surface with #(S) = 0, ¢(S) = 1 and
g(S) = 2, then the quasi-Albanese map «:S — Z is dominant and sat-
isfies the property to the effect that the composition:

S — Ua"l(pj)’_—>S—>Z - {ply ° "p'r}
is proper. Hence S is WWPB-equivalent to Z.

Remark. The proof of the case ¢(S) = 0 could be replaced by the
much easier argument in the proof of Theorem 12 [3]. However, our
proof will do for the case ¢(S) = 1.

§4. Proof of Theorem II

In this section by S we denote an affine normal algebraic surface
with #(S) = 0 and g(S) = 2. We use the following

LEMMA 3. Let V be an affine normal variety and consider a com-
pletion V of V. Then the algebraic boundary D =V — V is connected,
provided that dimV =2. When V is normal and D is a reduced
divisor, «(D, V) is equal to dim V.

The proof follows from the connectedness principle. Q.E.D.

Let yx:S* — S be a non-singular model and let S* be a completion
of S* with smooth boundary D*. Then D* is connected and x(D*, S*)
= 2. Hence q(S) <1, and so the quasi-Albanese map o*:S* — 75 is

proper and birational. Hence a¢ = ag: S i_—I>S"‘ — 5 is also a proper
birational map. If ¢(S) = 0, then &/ = G2, is affine. By Lemma 1 [3],
ag turns out to be an isomorphism. Hence S = G%. If q(S) =1, 5
=7 is a G,-bundle over E. From x(D* S*) =2, it follows that
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k(4, + 4,,Z) = 2. Since 4,.is cohomologous.to 4,, we have 4* = (4,, 4,) > 0
for x(4, + 4,,Z) = 2. Hence 4, and 4, are both ample and so 4, + 4,
is ample. This implies that Z = Z — (4, + 4,) is an affine surface. Thus
Z is a quasi-abelian surface which is an affine algebraic group. This
is a contradiction.

EXAMPLE. Let Z=P' X E and ¢:E — P' a rational function.
Then the graph I', has the following property:

I =2.deg ¢, deg ¢ = [k(E): k(PY)] and if degp > 0,then Z =Z — I,
is affine and #(Z) = —o0, §(Z) =0. PutS=2Z2— (', + I'y), ¢ # . Then
S is affine and g(S) = 1 and %(S) = 0. Moreover

g(S) = 2 if and only if deg ¢ = deg ¥,

#(S) = 0 if and only if ¢ and + are constants and hence, S = F x G,,.

§5. Surfaces with #(S) = 0, g(S) =1

Let S be a non-singular surface with #(S) = 0 and §(S) = 1. The
quasi-Albanese variety Y = &7 is an elliptic curve or G, according to
q(S) =1 or 0. Then quasi-Albanese map «:S — Y has connected fibers.
Let C, = a™'(uw) be a general fiber. Then by Kawamata’s theorem,

0=#(S) = #(C,) + &(Y) = &(C,) .

Hence #(C,) = 0. However, #(Y) =0, #(C,) = — do not hold at the
same time. Moreover, if S is affine, then ¥ = @G,, and C, = G,,.

EXAMPLE. Let S = SpecClz,¥,1/F], F = 2™y — 1. Then P(S) =
PS)=..-=1,/&S) =0 and g(F) = 1.

§6. Surfaces with #(S) = —co and g(S) = 1
Let S be a non-singular surface with #(S) = —oo and g(S) > 1.

Consider the quasi-Albanese map «:S —Y = ;.- By Kawamata’s
theorem, a general fiber C, is of elliptic type, that is, C, = P! or G,.

THEOREM 3. Let FeClx,y] and S = SpecClz,y, 1/F]. Assume
that #(S) = —oo. Then there are new variables u,v e Clx,y] such that
Clz,yl = Clu,v], F = Fy(w) € Clul.

Proof. Let R be the integral closure of C[F] in C[z,y]. Then R
is normal and g(SpecR) < §(4%) = 0. Hence Spec(R) = G,, in other
words, R = C[f] such that f — 21 is.irreducible for a general i. Since
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FeCI[F]C R =CI[f], F is a polynomial of f and f:A4*— A' is the
Stein factorization of F:A4 — 4. Write F =a,[] (f —a)%, ¢; > 0.
Then VIF) =V({(f —a) U --- UV(f —ag). Hence k(L2 —V(f —a))
#(A4 — V(F)) = —oo. Applying Kawamata’s theorem to f — a,: 4> —
V(f —a)— C*, we have for general 2, V(f — 1) = G,. Hence by
Jung-Gutwirth-Nagata’s pencil theorem, there are new variables u,v
€ Clz, y] such that C[z,y] = Clu,v] and f — a, = w. Q.E.D.

COROLLARY 1. If dim Aut Clz,y,1/F] = 3, then F = Fy(u) as in the
theorem above. If dim Aut Clz, y, 1/F]1 =2, then Clz, y, 1/F] =
Clu,v,u ', v'].

Proof. If dim Aut Clx,y,1/F] = 3, then by Theorem 7 [1], we con-
clude that #(4*> — V(F)) = —oco. Then, apply Theorem 3. Note that
Aut Clz,y,1/UI(x — ap)] contains T such that Tx =z, Ty =y + a, + a
+ oo 4 agx?, a; belonging to C. Hence dim Aut Clx, y, 1/1(x — a;)] = oo.
The assumption dim Aut Clx, y,1/F] = 2 implies that z(Spec Clz, y, 1/F])
=> 0. Hence by Theorem 6 [1], we conclude that Spec Clx, y,1/F] = G2,

COROLLARY 2. Let R,=Clz,y,1/F] and R,, R, be integral domains
which are finitely generated over C. Then we have two cases: Case 1.
Any C-isomorphism @: R, Q@ R, = R, ® R, induces the isomorphism ¢: R,
= R, such that @ = o ® 1. Case 2. R, Clu,1/f(w] [v]. In this case,
let R, =R, and R, = Clw]. Define ® by ®(w) =v + w, O(u) = u, &(w)
=w. Then @ does not induce ¢ as in case 1.

Proof. Combining Theorem 1 in [6] with Theorem 3, we are through.

Note that the corollary is an affirmative solution of the conjecture
in [6].

THEOREM 4. Let Ry = Clx,y,x"',y '] which is I'(G%,0) and let R,
and R, be integral domains that are finitely generated over C. Assume
that o: Ry QR,s R, QR,. Then R,= R,.

Proof. Let V, = Spec R,. Then by the isomorphism @, we have
£(V) =0 and g(V) = 2. Hence the normalization of V, is G? by Theo-
rem II. Counting the irreducible components of the singular set:

Sing (V, X Spec R,) = V, X Sing (Spec R,)
= Sing (V, X Spec B,) = V, X Sing (Spec R,) U Sing (V,) X Spec R,

we have Sing (V,)) = ¢. Hence V, = G2. Q.E.D.
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§7. Polynomials ¢(x, y)

Let peClz,y] — C and let S = D(p) = 4 — V(p). If &(S) =1, then
there is a surjective morphism f:S — 4,4 being a rational curve, for
9(4) < q(S) = 0. Hence f = /¢® for some + € Clz, yl. Moreover, for
a general 2, V(y — 2¢%) — V(p) = G,,. Such ¢ is called a G,-polynomial,
which will be studied in a forthcoming paper. We have the following

table:
TABLE
B(D(p)) q(D(p)) 9 S=D(p)=42—V(p)
— 0 >1 o=qo(u) S=A4'xC
1 for example J:S—Gn, general fiber
0 p=xym—1 being Gn
2 o=u"vs S=G?,
1 >1 Gm-polynomial {; éiggémg eneral fiber
polynomial of
2 =1 hyperbolic hyperbolic type

type

Referring to the following result by Sakai:
Theorem (Sakai [8]). If #(V) = dim V, then V is measure-hyperbolic,
we obtain the Brody-type Theorem :

THEOREM 5. D(p) is measure-hyperbolic if and only if #(D(p)) = 2,
that is, D(p) is of hyperbolic type.

Remark. In order to generalize the theorem above, we have to
study the following surfaces.

A. Surfaces with #(S) = —oo0, G(S) = 0. These might be called
logarithmic rational surfaces.

B. Surfaces with #(S) = 0, g(S) = 0. These might be called loga-
rithmic K3 surfaces.

After the completion of this paper, Kawamata succeeded in generalizing our
Theorem I* and obtained Theorem 5 ([7]). His proof is quite different from ours.
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