# A NUMERICAL CRITERION OF QUASI-ABELIAN SURFACES

#### SHIGERU IITAKA

#### § 1. Statement of the result

At first, we fix the notation. Let k = C and we shall work in the category of schemes over k. For an algebraic variety V of dimension n, we have the following numerical invariants:

 $P_m(V)$  = the *m*-genus of V,

q(V) = the irregularity of V,

 $\kappa(V)$  = the Kodaira dimension of V;

 $\overline{P}_m(V) = ext{the logarithmic } m ext{-genus of } V,$ 

 $\bar{q}(V)$  = the logarithmic irregularity of V,

 $\bar{\kappa}(V)$  = the logarithmic Kodaira dimension of V.

Note that the latter three invariants have been introduced in [1], [2]. About seventy years ago, F. Enriques obtained the following numerical criterion of abelian surfaces: Let V be an algebraic surface (i.e., n=2). Then V is birationally equivalent to an abelian surface if and only if  $P_1(V) = P_4(V) = 1$  and q(V) = 2.

A slightly weaker version of this criterion is the following: V is birationally equivalent to an abelian surface if and only if  $\kappa(V) = 0$ , q(V) = 2.

Our purpose here is to prove the following numerical criterion of quasi-abelian surfaces, which is a counterpart of the Enriques criterion in proper birational geometry.

THEOREM I. Let V be a non-singular algebraic surface. The quasi-Albanese map  $\alpha_V: V \to \tilde{\mathscr{A}}_V$  is birational and there is an open subset  $V^0$  of V such that  $\alpha_V | V^0: V^0 \to \tilde{\mathscr{A}}_V - \{p_1, \dots, p_\tau\}$  is proper birational, if and only if  $\bar{\kappa}(V) = 0$ ,  $\bar{q}(V) = 2$ .

We have introduced WWPB-equivalence in [5]. By definition,

Received October 17, 1977.

 $\alpha_V: V \to \tilde{\mathcal{A}}_V$  is the WWPB-map. Thus, Theorem I is restated as follows:

THEOREM I\*. Let V be an algebraic surface. V is WWPB-equivalent to a quasi-abelian surface if and only if  $\bar{\kappa}(V) = 0$  and  $\bar{q}(V) = 2$ .

WWPB-equivalence seems very unnatural. However, a WWPB-map  $\varphi$  between affine normal varieties turns out to be an isomorphism. Hence if we restrict ourselves to affine normal surfaces, we obtain the following more natural

THEOREM II. Let V be an affine normal surface. Then V is isomorphic to  $G_m^2$  if and only if  $\bar{\kappa}(V) = 0$  and  $\bar{q}(V) = 2$ .

*Remark.* Recently, K. Ueno [9] has obtained the following numerical criterion of abelian varieties of dimension 3: Let V be an algebraic variety of dimension 3. Then V is birationally equivalent to an abelian variety of dimension 3 if and only if  $\kappa(V) = 0$  and q(V) = 3.

We make the following

CONJECTURE. Let V be an affine normal algebraic variety of dimension n. Then V is isomorphic to  $G_m^n$  if and only if  $\bar{\kappa}(V)=0$  and  $\bar{q}(V)=n$ .

A partial solution of this conjecture is Theorem 12 [3], by which we prove

THEOREM III. Let V be an algebraic variety of dimension n with  $\bar{\kappa}(V)=0$ . Suppose that there is a dominant strictly rational map of V into  $G_m^n$ . Then the quasi-Albanese map  $\alpha_V:V\to G_m^n$  is birational. V is WWPB-equivalent to  $G_m^n$  via  $\alpha_V$ . Moreover, if V is affine and normal,  $\alpha_V$  is an isomorphism.

We recall the following genera.  $\bar{P}_1(V)$  is called the logarithmic geometric genus and denoted by  $\bar{p}_g(V)$ . When dim V=1,  $\bar{p}_g(V)$  coincides with  $\bar{q}(V)$ , which is indicated by  $\bar{g}(V)$ .  $\bar{g}(V)$  is the logarithmic genus of the algebraic curve V. If  $V=P^1-\{a_0,\cdots,a_m\}$ , then  $\bar{g}(V)=m$ .

Let  $\overline{V}$  be a complete non-singular algebraic variety and  $\overline{D} = \sum D_j$  a reduced divisor on  $\overline{V}$ . We say that  $\overline{D}$  is a divisor of simple normal crossing type if each  $D_j$  is non-singular and  $\sum D_j$  has only normal crossings. If  $\overline{D}$  is a divisor of simple normal crossing type, then we

say that  $\overline{V}$  is a completion of  $V = \overline{V} - \overline{D}$  with smooth boundary. Note that  $\text{Reg }(\overline{D}) = \bigcup (D_i - \bigcup_{j=i} D_j)$ , which consists of non-singular points of  $\overline{D}$ . By definition, letting  $K(\overline{V})$  be a canonical divisor on  $\overline{V}$ , we have

$$ar{P}_m(V) = \dim H^0(\overline{V}, \mathscr{O}(m(\overline{K}+\overline{D})))$$
 and  $ar{\kappa}(V) = \kappa(K(\overline{V})+\overline{D}, \overline{V})$  .

The main tools of this paper are the universality of quasi-Albanese map [2] and fundamental theorems on logarithmic Kodaira dimension ([1] and [3]). For instance,

- 1. Let  $f: V_1 \to V_2$  be a dominant morphism with connected fibers. Then  $\bar{\kappa}(V_1) \leq \bar{\kappa}(f^{-1}(v)) + \dim V_2$ , v being a general point.
  - 2. Furthermore, when dim  $f^{-1}(v) = 1$ , we have

$$\bar{\kappa}(f^{-1}(v)) + \bar{\kappa}(V_2) \leq \bar{\kappa}(V_1)$$
.

This is Kawamata's Theorem [7].

- 3. Let  $f: V \to W$  be a dominant morphism with dim  $V = \dim W$ . Then  $\bar{\kappa}(V) \geq \bar{\kappa}(W)$ ,  $\bar{q}(V) \geq \bar{q}(W)$ , and  $\bar{P}_m(V) \geq \bar{P}_m(W)$ .
- 4. Moreover, if f is proper and birational and  $\bar{\kappa}(W) \geq 0$ , then for any closed set  $\Delta$ , we have

$$\bar{\kappa}(V-\Delta)=\bar{\kappa}(W-f(\Delta)).$$

This follows from Theorem 13 [3].

#### § 2. Half-point attachment

Let S be a non-singular algebraic surface. There exists a completion  $\overline{S}$  of S with smooth boundary  $\overline{D}$ . Take a non-singular point p of  $\overline{D}$  and perform a monoidal transformation with center p, which we write  $\mu: \overline{S}_1 = Q_p(S) \to \overline{S}$ . Then  $\mu^*(\overline{D}) = \mu^{-1}(\overline{D}) = \overline{D}_1 + E$ , where  $\overline{D}_1$  is the proper transform of  $\overline{D}$  by  $\mu$ . Write  $S_1 = \overline{S}_1 - D_1$ , which contains S as an open subset, for  $\overline{S}_1 - \overline{D}_1 \supset \overline{S}_1 - \overline{D}_1 - E = \overline{S} - \overline{D} = S$ . We say that  $S_1$  is a half-point attachment to S or that S is obtained from  $S_1$  by deleting one half-point. Then

$$K(\overline{S}_1) + \overline{D}_1 = \mu^*(K(S) + D),$$

where  $K(\bar{S})$  denotes a canonical divisor on  $\bar{S}$ . Hence  $\bar{P}_m(S) = \bar{P}_m(S_1)$  for any  $m \geq 1$  and  $\bar{\kappa}(S) = \bar{\kappa}(S_1)$ . We have  $\bar{q}(S) = \bar{q}(S_1)$  or  $\bar{q}(S) = \bar{q}(S_1) + 1$ , according to the property of the irreducible component  $C_1$  containing

p. In fact, let  $\overline{D}=C_1+C_2+\cdots+C_s$  be a sum of prime divisors  $C_f$ . Then  $D_1=C_1^*+C_2+\cdots+C_s$ ,  $C_1^*$  being the proper transform of  $C_1$  by  $\mu$ . Furthermore, put  $S_2=\overline{S}_1-C_2-\cdots-C_s=Q_p(\overline{S}-C_2-\cdots C_s)$ . Then  $q(S_2)=q(\overline{S}-C_2-\cdots-C_s)=\overline{q}(S)$  or  $\overline{q}(S)-1$ . Since  $S_2\supset S_1$ , if  $\overline{q}(S_2)=\overline{q}(S)$ , then  $\overline{q}(S_1)=\overline{q}(S)$ . If  $\overline{q}(S_2)=\overline{q}(S)-1$ , then in view of Theorem 1 [2], there are  $m_1\neq 0$ ,  $m_2,\cdots,m_s$  such that

$$m_1C_1 + \cdots + m_sC_s = 0$$
 in  $H^2(\overline{S}, \mathbb{Z})$ .

From this, it follows that

$$m_1(C_1^* + E) + \cdots + m_s C_s = 0$$
 in  $H^2(\bar{S}_1, Z)$ .

By Theorem 1 in [2], we conclude that  $\bar{q}(S_1) = \bar{q}(S) - 1$ . Thus we obtain

THEOREM 1. Let  $S_1$  be a half-point attachment to S at  $P \in C_1 \subset D$  in which  $\overline{D}$  is the smooth boundary of S. Then  $\overline{P}_m(S_1) = \overline{P}_m(S)$ , for  $m = 1, 2, \cdots$ . Moreover, if  $C_1$  is cohomologically independent of  $C_2$ ,  $\cdots$ , and  $C_s$ , then  $\overline{q}(S_1) = \overline{q}(S)$ . Otherwise,  $\overline{q}(S_1) = \overline{q}(S) - 1$ .

Conversely, let E be a closed curve in S. If  $E \cong P^1$  and  $E^2 = -1$ , then E is contracted to a non-singular point. E is called an exceptional curve of the first kind in S. Furthermore, if  $\overline{E}$  (the closure of E in  $\overline{S}$ ) is an exceptional curve of the first kind and if  $(\overline{E}, \overline{D}) = 1$ , then E is called a  $\overline{D}$ -exceptional curve in S (See Sakai [8]). Contracting the  $\overline{E}$  to a non-singular point, we obtain a complete surface  $\overline{S}_0$  and a divisor  $\overline{D}_0 = C_1' + C_2 + \cdots + C_s$ ,  $C_1'$  being the image of  $C_1$ . Putting  $S_0 = \overline{S}_0 - \overline{D}_0$ , we see that S is a half-point attachment to  $S_0$ .

Let  $\mathscr{D}_{j}$  be the connected component of supp  $(\overline{D})$  and denote by the same symbol  $\mathscr{D}_{j}$  the reduced divisor whose support is  $\mathscr{D}_{j}$ . Then we have

$$D = \mathscr{D}_1 + \cdots + \mathscr{D}_r$$
.

We assume that  $\kappa(\mathcal{D}_1, \bar{S}) \geq \cdots \geq \kappa(\mathcal{D}_r, \bar{S})$ . We have three cases.

Case a:  $\kappa(\mathcal{D}_1, \overline{S}) = 2$ . We use the following

PROPOSITION 1. Let  $\overline{D}$  be a reduced divisor  $\sum C_j$  on  $\overline{S}$ . Then  $\kappa(\overline{D},S)=2$  if and only if there exists an effective divisor  $m_1C_1+\cdots+m_sC_s$  with positive self-intersection number.

*Proof.* The proof of if-part is easy. We assume that  $\kappa(\bar{D}, \bar{S}) = 2$ .

Then there is m > 0 such that  $|mD| - |mD|_{\text{fix}}$  is not composite with a pencil. Writing  $\mathscr{E}_m = |mD|_{\text{fix}}$  we have  $|mD| = |D_m| + \mathscr{E}_m$ ,  $D_m$  being the general member of  $|mD| - \mathscr{E}_m$ . Then  $D_m^2 > 0$ . Hence

$$D_m = \sum a_i C_i \in |mD| - \mathscr{E}_m$$
. Q.E.D.

PROPOSITION 2. Notations being as in Proposition 1, the intersection matrix  $[(C_i, C_j)]$  is not negative semi-definite if and only if  $\kappa(\overline{D}, \overline{S}) = 2$ . If  $[(C_i, C_j)]$  is negative semi-definite, then  $\kappa(\overline{D}, \overline{S}) \leq 1$ . Conversely, if  $\kappa(\overline{D}, \overline{S}) = 1$ , then  $[(C_i, C_j)]$  is negative semi-definite that has 0 eigen value.

The proof is easy and omitted.

In the case a, choose  $D_1=a_1C_1+\cdots+a_sC_s$  whose support  $\subset \mathscr{D}_1$  with  $a_j>0$  and  $D_1^2>0$  by Proposition 1. Then  $(D_1,\mathscr{D}_2)=\cdots=(D_1,\mathscr{D}_s)=0$ . By the algebraic index theorem due to Hodge, we see that the intersection matrices of  $\mathscr{D}_2,\cdots,\mathscr{D}_s$  are negative definite. Hence any irreducible component E in  $\mathscr{D}_2+\cdots+\mathscr{D}_s$  is cohomologically independent of  $\mathscr{D}_1+\cdots+\mathscr{D}_s-E$ . Therefore, by Theorem 1, if a  $\bar{D}$ -exceptional curve E has a common point with  $\mathscr{D}_2$ , then  $\bar{q}(S)=\bar{q}(S_0)$ . Note that  $\kappa(\mathscr{D}_2,\bar{S})=\cdots=\kappa(\mathscr{D}_s,\bar{S})=0$ .

Case b:  $\kappa(\mathcal{D}_1, \bar{S}) = 1$ . There is t > 0 such that

$$\kappa(\mathcal{D}_1, \bar{S}) = \cdots = \kappa(\mathcal{D}_t, \bar{S}) = 1, \ \kappa(\mathcal{D}_{t+1}, \bar{S}) = \cdots = \kappa(\mathcal{D}_s, \bar{S}) = 0.$$

Then consider the  $\mathscr{D}_1$ -canonical fiber space  $\psi: \overline{S} \to \Delta$ . Since  $\mathscr{D}_1$  is connected,  $\mathscr{D}_1 = \psi^{-1}(a_1)$  for some  $a_1$ . Moreover  $(\mathscr{D}_j, \mathscr{D}_1) = (\mathscr{D}_j, \psi^{-1}(u)) = 0$  for a general  $u \in \Delta$ . Hence  $\mathscr{D}_j \leq \psi^{-1}(a_j)$ . If  $j \leq t$ , then  $\psi^{-1}(a_j) = \mathscr{D}_j$ . If t > j, then  $\mathscr{D}_j$  is an incomplete fiber  $\subseteq \psi^{-1}(a_j)$ . In this case  $\kappa(\overline{D}, \overline{S}) = 1$ .

Case c: 
$$\kappa(\mathcal{D}_1, \bar{S}) = \cdots = \kappa(\mathcal{D}_r, \bar{S}) = 0$$
. Then  $\kappa(\bar{D}, \bar{S}) = 0$ .

# § 3. Surfaces with $\bar{k}=0$ and $\bar{q}=2$

Let S be a non-singular surface with  $\bar{\kappa}(S)=0$  and  $\bar{q}(S)=2$ . Consider the quasi-Albanese map  $\alpha_S$  of S. By B we denote the closed image of S in the quasi-Albanese variety  $\tilde{\mathscr{A}}_S$  of S. We prove that  $B=\tilde{\mathscr{A}}_S$ . Actually if  $B\neq \tilde{\mathscr{A}}_S$ , then  $\bar{\kappa}(B)>0$  by Theorem 4 in [2]. Since  $\tilde{\mathscr{A}}_S$  is 2-dimensional by  $\bar{q}(S)=2$ ,  $B\neq \tilde{\mathscr{A}}_S$  implies that B is a non-singular curve by Proposition 5 and Corollary 1 in [2]. In view of Kawamata's theorem [7], we have

 $\bar{\kappa}(\alpha^{-1}(s)) + 1 \ge \bar{\kappa}(s) = 0 \ge \bar{\kappa}(\alpha^{-1}(b)) + \bar{\kappa}(B)$  for a general  $b \in B$ .

This implies that  $\bar{\kappa}(B) = 0$ , a contradiction. Therefore,  $B = \tilde{\mathscr{A}}$ . In other words,  $\alpha_S$  is dominant. Hence  $\bar{p}_q(S) = \bar{P}_2(S) = \cdots = 1$ .

Case 1: q(S)=2. Then  $\mathscr{J}_S$  is an abelian surface. Let  $\bar{S}$  be a completion of S with smooth boundary  $\bar{D}$ .  $\alpha=\alpha_S$  defines a rational map  $\bar{\alpha}:\bar{S}\to\mathscr{A}_S$ , which turns out to be a morphism by the minimality of  $\mathscr{A}_S$ . Hence  $0\leq \kappa(\bar{S})\leq \bar{\kappa}(S)=0$  and so  $\bar{\alpha}$  is the Albanese map of  $\bar{S}$ . By the classification theory of algebraic surfaces by Enriques-Kodaira, we see that  $\bar{\alpha}$  is birational and hence  $\alpha_S$  is birational. By Theorem 5 [3] (§ 1.4), we see that

$$\bar{\kappa}(S) = 0$$
 if and only if  $\bar{\alpha}_*(\bar{D}) = 0$ .

Hence  $\alpha_S(S)$  is  $\mathscr{A}_S$  or a complement of a finite set of points in  $\mathscr{A}_S$ . Since  $\overline{\alpha}(\overline{D})$  is a finite set of points  $\{p_1, \dots, p_s\}$ ,  $\overline{D} \subset \alpha^{-1}\{p_1, \dots, p_\tau\}$  and  $\overline{S} - \bigcup \overline{\alpha}^{-1}(p_j) \subset S$ . We can say that  $\alpha = \overline{\alpha} | S : S \to \mathscr{A}$  is a *WWPB*-map (see [5]). Hence S is *WWPB*-equivalent to an abelian surface.

Case 2: q(S)=0. Then  $\tilde{\mathscr{A}}_S$  turns out to be an algebraic torus  $G_m^2$ . Since  $G_m^2 \cong G_m \times G_m$ , we have the projection  $\pi$  of the product  $G_m^2 \to G_m$ . Then  $\varphi=\pi\alpha_S\colon S\to G_m$  is a dominant morphism. Moreover, for a general  $u\in G_m$ ,  $\alpha_S\mid \pi^{-1}(u):\varphi^{-1}(u)\to G_m=\pi^{-1}(u)$  is dominant and so  $\varphi^{-1}(u)$  is not complete. Consider the Stein factorization  $\varphi_1\colon S\to \mathcal{A}$ ,  $\tau\colon \mathcal{A}\to G_m$  of  $\varphi\colon S\to G_m$ . Applying Kawamata's Theorem [7] we obtain

$$0 = \bar{\kappa}(S) \geq \bar{\kappa}(\varphi_1^{-1}(u)) + \bar{\kappa}(\Delta) .$$

In general, we have

$$0 = \bar{\kappa}(S) \leq \bar{\kappa}(\varphi_1^{-1}(u)) + \dim \Delta$$
 and  $\bar{\kappa}(\Delta) \geq \bar{\kappa}(G_m) = 0$ .

From these, it follows that  $\bar{\kappa}(\Delta) = 0$  and  $\bar{\kappa}(\varphi_1^{-1}(u)) = 0$  and hence  $\Delta = G_m$  and  $\varphi_1^{-1}(u) = G_m$ . By the universality of quasi-Albanese map, we have a morphism  $\varphi_2 \colon G_m^2 \to \Delta = G_m$  and the commutative diagram Fig. 2. Since  $\varphi_1 \colon S \to \Delta$  has connected fibers,  $\varphi_2$  has connected fibers, too. Therefore, in view of Theorem 4 [2] and its corollary, we see that  $\varphi_2 \colon G_m^2 \to G_m^{\text{\tiny{\'e}}}$  is

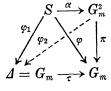
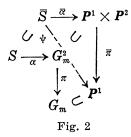


Fig. 1.

the projection of a decomposition:  $G_m^2 \cong G_m \times G_m$ . Thus we have shown that  $\varphi: S \to G_m$  has connected fibers. Let  $G_m \times G_m \subset P^1 \times P^1$  be the natural open immersion and let  $\bar{\pi}$  denote the natural projection:  $P^1 \times \bar{P}^1 \to P^1$  which is the rational map defined by  $\pi$ . Choosing a suitable completion  $\bar{S}$  of S with smooth boundary  $\bar{D}$ , we have a proper morphism  $\bar{\alpha}: \bar{S} \to P^1 \times P^1$  whose restriction to S is  $\alpha_S$ .

We assume that  $\alpha_S$  is proper and that  $\overline{D}$  is connected. Write  $\psi = \overline{\pi} \cdot \overline{\alpha}$ , which is a completion of  $\varphi$  (Fig. 2). Denote by H the horizontal component of  $\overline{D}$  with respect to  $\psi$ . Then  $(\psi^*(a), H) = 2$  for any  $a \in P^1$ , because  $\psi^{-1}(u) - \overline{D} = \psi^{-1}(u) - H \cong G_m$  for a general  $u \in P^1$ .



We shall study singular fibers of  $\varphi$ .

LEMMA 1. Let  $\bar{S}$  be a completion of a non-singular surface S with connected smooth boundary  $\bar{D}$ . Suppose that there is a surjective morphism  $\psi: \bar{S} \to \Delta$  whose general fiber  $\psi^{-1}(u)$ , u being a general point of  $\Delta$ , is  $P^1$  and  $(\bar{D}, \psi^{-1}(u)) = m$ . Then any singular fiber  $\psi^{-1}(a) \cap S = \sum \Gamma_j$  has the property that  $\sum \bar{g}(\Gamma_j) \leq m-1$  where the  $\Gamma_j$  are irreducible components.

*Proof.* Denote by  $\bar{\Gamma}_j$  the closure of  $\Gamma_j$  in  $\bar{S}$ . Then  $\psi^{-1}(a) = \bar{\Gamma}_1 + \cdots + \bar{\Gamma}_s + D_1 + \cdots + D_r$  is a sum of irreducible components in which  $D_j \leq \bar{D}$ . Let H be the horizontal component of  $\bar{D}$ . Then  $\mathscr{D} = D_1 + \cdots + D_r + H + \psi^{-1}(u)$  is connected. We indicate by  $G(\mathscr{D})$  the (dual) graph of  $\mathscr{D}$ : Letting  $\alpha_0$  be the number of vertices of  $G(\mathscr{D})$  (=the number of irreducible components of  $\mathscr{D}$ ) and  $\alpha_1$  the number of edges and  $h(\mathscr{D})$  the cyclotomic number of  $G(\mathscr{D})$  (=the number of loops in  $G(\mathscr{D})$ ), we have

$$\alpha_0 - \alpha_1 = 1 - h(\mathcal{D}) .$$

It is clear that  $h(\mathcal{D} + \Gamma_1 + \cdots + \Gamma_s) = \overline{p}_g(\overline{S} - H - \psi^{-1}(a) - \psi^{-1}(u)) = m-1$ . Counting  $\alpha_0$  and  $\alpha_1$  of  $G(\mathcal{D} + \Gamma_1 + \cdots + \Gamma_s)$ , we get

$$\alpha_0 - \alpha_1 + s - \sum (\mathcal{D}, \bar{\Gamma}_1) = 1 - (m-1) = 2 - m$$
.

Moreover, by  $-\sum \bar{g}(\Gamma_j) = s - \sum (\mathcal{D}, \bar{\Gamma}_j)$ , we obtain

$$\sum_{i} \bar{g}(\Gamma_i) \leq m - 1$$
. Q.E.D.

In our case m in Lemma 1 is one. Hence  $\bar{g}(\Gamma_j) \leq 1$  and  $\sharp \{j \; ; \; g(\Gamma_j) = 1\} \leq 1$ .

Let  $a \in G_m = \mathbf{P}^1 - \{0, \infty\}$  and use the following notation:

$$\psi^*(a)=m_1C_1+\cdots+m_{\sigma}C_{\sigma}$$
 ,  $\psi^{-1}(a)=C_1+\cdots+C_{\sigma}$  ,  $I=\{i\in [1,\cdots,\sigma]\,;\, C_i\subset ar{D}\}$  ,  $I^c=[1,\cdots,\sigma]-I$  .

We assume that  $\sigma \ge 2$ . Then there is a component, say  $C_1$ , which is an exceptional curve of the first kind.

Case (i):  $1 \in I$ . Contracting  $C_1$  to a non-singular point p, we have a projective surface  $\bar{S}_1$  and a birational morphism  $\mu \colon \bar{S} \to \bar{S}_1$  such that  $C_1 = \mu^{-1}(p)$ . We claim that

(\*) 
$$\overline{\alpha}(C_i)$$
 is a point, if  $j \in I$ .

Actually, since  $\alpha$  is proper, letting  $X = \mathbf{P}^1 \times \mathbf{P}^1 - G_m^2$ , we have  $\overline{\alpha}^{-1}(X) = \overline{D}$ . Hence  $\overline{\alpha}(C_j) \subset X \cap (\mathbf{P}^1 \times (a)) = a$  finite set. In particular,  $\overline{\alpha}(C_1)$  is a point. Therefore,  $\overline{\alpha}_1 = \overline{\alpha} \cdot \mu^{-1} \colon \overline{S}_1 \to \mathbf{P}^1 \times \mathbf{P}^1$  is a morphism. It is clear that  $\overline{S}_1 - S$  is a divisor of simple normal crossing type.  $\overline{\alpha}_1 | S = \alpha$  is proper. Hence we can replace  $\overline{S}$  by  $\overline{S}_1$ . Repeating such contractions, we arrive at the following

Case (ii):  $1 \in I^c$ . Since  $C_1 \not\subset D$ , we know  $\bar{g}(C_1 - C_1 \cap \bar{D}) \leq 1$  by Lemma 1. Hence  $(C_1, \bar{D}) = 0, 1, 2$ .

Case (ii-a):  $(C_1, \overline{D}) = 0$ . Contracting  $C_1$  to a non-singular point, we obtain a non-singular surface  $S_1$  and a proper birational morphism  $\mu: S \to S_1$ . Since  $\alpha(C_1)$  is complete in  $G_m^2$ ,  $\alpha(C_1)$  is a point and hence  $\alpha_1 = \alpha \cdot \mu^{-1}$  is a proper morphism. Replacing S by  $S_1$ , we can assume that such  $C_1$  does not exist.

Case (ii-b):  $(C_1, \overline{D}) = 1$ . Then  $\Gamma_1 = C_1 - C_1 \cap \overline{D} \cong G_a$ . Hence  $\alpha(\Gamma_1)$  is a point in  $G_m^2$ . In fact, if  $\alpha(\Gamma_1)$  were a curve,  $\bar{\kappa}(\alpha(\Gamma_1)) \leq \bar{\kappa}(\Gamma_1) = \bar{\kappa}(G_a) = -\infty$ . This contradicts the Ueno-type theorem (Theorem 4 [2]) to the effect that  $\bar{\kappa}(B) \geq 0$  if  $B \subset G_m^n$ . Therefore  $\bar{\alpha}(\bar{\Gamma}_1) = a$  point on  $X = \mathbf{P}^1 \times \mathbf{P}^1 - G_m^2$ . Hence  $\bar{\Gamma}_1 \leq D = \bar{\alpha}^{-1}(X)$  for  $\alpha$  is proper. This con-

tradicts the assumption  $1 \in I^c$ . Hence the case (ii-b) does not occur.

Case (ii-c):  $(\overline{C}_1, \overline{D}) = 2$ . We divide the case in the following way: Subcase I:  $(H, C_1) = 2$ . Since  $2 = (H, \psi^*(a)) = m_1(H, C_1) + m_2(H, C_2) + \cdots$ , it follows that  $m_1 = 1$ ,  $(H, C_2) = \cdots = 0$ . Then, there exists an exceptional curve of the first kind, say  $C_2$ . In fact, if  $C_j^2 \leq 0$  for  $j = 2, \dots, \sigma$ , then

$$-2 = (K(\bar{S}), \psi^*(a)) = (K(\bar{S}), C_1) + m_2(K(\bar{S}), C_2) + \cdots \ge -1.$$

This is a contradiction. By assumption,  $2 \in I^c$ . Moreover, by Lemma 1 we have  $\bar{g}(C_2 - C_2 \cap \bar{D}) = 1$ . Hence  $(C_2, \bar{D}) = 0$  or 1. Thus we arrive at the case (ii-a) or (ii-b).

Subcase II:  $(H, C_1) = 1$ . By the same argument as in Subcase II, we have an exceptional curve of the first kind  $C_2, 2 \in I^c$ . Hence  $(C_2, \overline{D}) = 0$  or 1.

Subcase III:  $(H, C_1) = 0$ . In view of  $(C_1, \overline{D}) = 2$ , there exist  $2, 3 \in I$  satisfying that  $(C_1, C_2) = (C_1, C_3) = 1$ . By the logarithmic ramification formula for  $\alpha: S \to G_m^2$ , we obtain

$$K(\bar{S}) + \bar{D} = \bar{R}_{\alpha}$$
.

Write  $\Gamma_1 = C_1 - \bar{D} \approx G_m$  and consider the singular fiber:

$$\varphi^{-1}(a) = \Gamma_1 + \Gamma_2 + \cdots + \Gamma_s.$$

Since  $\overline{D}$  is connected, by Lemma 1, we see that

$$\Gamma_j \simeq G_a \quad {
m or} \quad { extbf{\it P}}^{\scriptscriptstyle 1} \quad {
m for} \ \ j \geqq 2 \ .$$

Hence  $\alpha(\Gamma_j)=$  a point. This implies that  $\bar{\Gamma}_j \leq \bar{R}_\alpha$  for  $j \geq 2$ . Moreover, for any  $i \in I$ , we infer that  $C_i \leq \bar{R}_\alpha$  from the following

LEMMA 2. Let  $f: V_1 \to V_2$  be a dominant morphism of an n-dimensional non-singular algebraic variety  $V_1$  into another n-dimensional algebraic variety  $V_2$ . Let  $\overline{V}_i$  be a completion of  $V_i$  with smooth boundary  $\overline{D}_i$  for each i such that  $\overline{f}: \overline{V}_1 \to \overline{V}_2$  defined by f is a morphism. Let  $p \in \overline{V}_1$  and  $q = \overline{f}(p)$  be closed points and choose systems of regular parameters  $(z_1, \dots, z_n)$  and  $(w_1, \dots, w_n)$  around p and q, respectively as follows:  $\overline{D}_1$  is defined by  $z_1 \cdots z_r = 0$  locally at p and p is defined by p and p

$$\bar{f}^*(W_j) = \sum n_{ji}\Gamma_i + some \ effective \ divisor$$
.

Then

$$\bar{R}_f \geq \sum_i \left(\sum_{j=s+1} n_{ji}\right) \Gamma_i$$
 locally at  $p$ .

*Proof.* By the assumption, for  $j \ge s + 1$  we have

$$w_j = \eta_j \cdot \prod z_i^{n_{ji}}$$
 .

Hence

$$egin{aligned} dw_j &= d\eta_j \prod z_i^{n_{ji}} + \eta_j \prod z_i^{n_{ji}} n_{ji} rac{dz_i}{z_i} \ &= \prod z_i^{n_{ji}} \left\{ d\eta_j + \eta_j \sum n_{ji} rac{dz_i}{z_i} 
ight\}. \end{aligned}$$

Therefore, combining this with (dL/L) in § 3 of [1], we obtain

$$egin{aligned} rac{dw_1}{w_1} \wedge \cdots \wedge rac{dw_s}{w_s} \wedge dw_{s+1} \wedge \cdots \wedge dw_n \ &= \prod z_{\imath}^{\Sigma_{nji}} arphi(z) rac{dz_1}{z_1} \wedge \cdots \wedge rac{dz_r}{z_r} \wedge dz_{r+1} \wedge \cdots \wedge dz_n \ , \end{aligned}$$

where  $\varphi(z)$  is a regular function at p.

A local equation defining  $\bar{R}_f$  at p is  $\prod z_i^{n_{fi}} \varphi(z)$ . This implies that

$$\bar{R}_f \geq \sum_i \left(\sum_{j=s+1} n_{ji}\right) \Gamma_i$$
 locally at  $p$ . Q.E.D.

We claim that  $\bar{R}_{\alpha} \geq C_1$ . Otherwise,

$$\bar{R}_a = aC_2 + bC_3 + \Theta \qquad (\Theta > 0)$$

induces that

$$(\overline{R}_{\alpha}, C_1) = \alpha + b + (\Theta, C_1) \geq 2$$
.

On the other hand,

 $(\bar{R}_a, C_1) = (K(\bar{S}), C_1) + (\bar{D}, C_1) = -1 + 2 = 1$ . This is a contradiction. Therefore,  $\bar{R}_a \ge \psi^{-1}(a)$ . From this it follows that

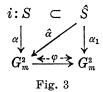
$$\kappa(\bar{R}_a, \bar{S}) \ge \kappa(\psi^{-1}(a), \bar{S}) = \kappa(a, \mathbf{P}^1) = 1$$
.

This is a contradiction. Therefore, the Subcase III does not occur.

Accordingly, after contracting exceptional curves of the first kind

in  $\psi^{-1}(a)$ , we conclude that  $\psi^*(a) = P^1$ . This implies that  $\psi^{-1}(G_m)$  is a  $P^1$ -bundle over  $G_m$ , which turns out to be the product  $P^1 \times G_m$ . Therefore  $S = \varphi^{-1}(G_m) = G_m \times G_m$ . Thus we can summarize the above result as follows: If  $\alpha_S$  is proper and  $\overline{D}$  is connected, then S is obtained from  $G_m^2$  by successive blowing ups.

Consider the general case in which  $\alpha_S$  may not be proper. But, assume that  $\bar{D}$  is connected. Using the notation at the beginning of Case (2), put  $\hat{S} = \bar{\alpha}^{-1}(G_m^2)$  and  $\hat{\alpha} = \bar{\alpha} | \hat{S}$ . Since  $S \subset \hat{S}$ , it follows that  $\bar{\kappa}(\hat{S}) \leq \bar{\kappa}(S) = 0$ . There is a dominant morphism  $\hat{S} \to G_m^2$ . Hence  $\bar{F}_m(\hat{S}) \geq 1$  and so  $\bar{P}_m(\hat{S}) = 1$  for any  $m \geq 1$ . Let  $\hat{D} = \bar{S} - \hat{S}$  and  $\mathcal{D}_1$  the connected component of  $\hat{D}$  containing  $H + \psi^{-1}(0) + \psi^{-1}(\infty)$ . Then  $\kappa(\mathcal{D}_1, \bar{S}) \geq \kappa(H + \psi^{-1}(0) + \psi^{-1}(\infty), \bar{S}) = 2$ . Hence writing  $\hat{D}$  as a sum of connected components  $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_r$ , we have  $\kappa(\mathcal{D}_2, \bar{S}) = \dots = \kappa(\mathcal{D}_r, \bar{S}) = 0$ . Moreover, any E is cohomologically independent of  $\mathcal{D}_1, \mathcal{D}_2 - E, \dots, \mathcal{D}_r$ . Hence  $\bar{q}(\bar{S} - \mathcal{D}_1) = \bar{q}(\hat{S}) = 2$ . Consider the quasi-Albanese maps of the inclusion  $\hat{S} \to S' = \bar{S} - \mathcal{D}_1$ . First we shall prove that the quasi-Albanese map  $\alpha_1$  of  $\hat{S}$  is  $\hat{\alpha}$ . Denoting by i the inclusion  $S \subset \hat{S}$ , we have the homomorphism  $i_* : G_m^2 \to G_m^2$  such that  $i_* \cdot \alpha = \alpha_1 \cdot i$  (Fig. 3).



By the universality of quasi-Albanese map, we have a morphism  $\varphi: G_m^2 \to G_m^2$  such that  $\varphi \cdot \alpha_1 = \hat{\alpha}$ . Then

$$i_* \cdot \varphi \cdot \alpha_1 = i_* \cdot \hat{\alpha} = i_* \cdot \hat{\alpha} = \alpha_1$$
.

Hence  $i_* \cdot \varphi = \text{id}$ . This implies that  $\varphi$  is injective. Since  $\hat{\alpha}$  is dominant,  $\varphi$  is the étale covering. Therefore  $\varphi$  is an isomorphism. Hence  $\alpha_1 = \hat{\alpha}$ . Then denote by  $\alpha'$  the quasi-Albanese map of  $S' = \overline{S} - \mathcal{D}_1$ . We have the following diagram:

Since  $j_*$  is a homomorphism and  $G_m^2$  is an algebraic torus,  $j_*$  turns out to be the étale covering, which is proper. Recalling that  $\hat{\alpha}$  is proper, we have a proper morphism  $j_* \cdot \hat{\alpha} = \alpha' \cdot j$ . Hence  $\hat{S} = S'$ . Therefore, we can conclude that  $\hat{D}$  is connected.

By the previous result,  $\hat{\alpha}$  is a proper birational morphism. Moreover, write  $F = \hat{\alpha}(\overline{D} \cap \hat{S})$ , which is a closed set. Then by Theorem 12 [3], we have

$$\bar{\kappa}(S) = \bar{\kappa}(\hat{S} - \hat{\alpha}^{-1}(F)) = \bar{\kappa}(G_m^2 - F).$$

Hence  $\bar{\kappa}(S) = 0$  implies that F is a finite set of points by Proposition 10 [2]. Then  $\bar{D} \subset \bar{\alpha}^{-1}(X) \cup \hat{\alpha}^{-1}(F) = \hat{D} \cup \hat{\alpha}^{-1}(F)$ . Since  $\bar{D}$  is connected, this means that  $F = \phi$  and  $\bar{D} = \hat{D}$ . Thus we establish the following

THEOREM 2. Let S be a non-singular surface with connected smooth boundary. Suppose that  $\bar{\kappa}(S) = q(S) = 0$  and  $\bar{q}(S) = 2$ . Then S is obtained from  $G_m^2$  by successive blowing ups.

We shall study the general case in which  $\overline{D}$  may not be connected. Note that  $\overline{D} \geq H + \psi^{-1}(0) + \psi^{-1}(\infty)$ . Since  $H + \psi^{-1}(0) + \psi^{-1}(\infty)$  is connected, we denote by  $\mathscr{D}_1$  the connected component of  $\overline{D}$  that contains  $H + \psi^{-1}(0) + \psi^{-1}(\infty)$ . Note that  $\kappa(H + \psi^{-1}(0) + \psi^{-1}(\infty), \overline{S}) = 2$  and so  $\kappa(\mathscr{D}_1, \overline{S}) = 2$ . We write  $\overline{D}$  as a sum of connected divisors  $\mathscr{D}_1, \mathscr{D}_2, \dots, \mathscr{D}_s$ . By the remark at the end of § 2, each intersection matrix of  $\mathscr{D}_j$  ( $j \geq 2$ ) is negative definite. Hence  $\overline{q}(\overline{S} - \mathscr{D}_1) = \overline{q}(\overline{S} - \overline{D}) = 2$ . The graph  $G(\mathscr{D}_1)$  contains  $G(H + \psi^{-1}(0) + \psi^{-1}(\infty))$  which has one loop. Hence  $\overline{p}_q(\overline{S} - \mathscr{D}_1) \geq 1$ . By the fact that  $\kappa(\overline{S} - \mathscr{D}_1) \leq \kappa(S) = 0$ , we have  $\kappa(\overline{S} - \mathscr{D}_1) = 0$ . Hence applying Theorem 2, we conclude that  $\overline{S} - \mathscr{D}_1$  is obtained from  $G_m$  by successive blowing ups. Since each  $\mathscr{D}_j$  ( $j \geq 2$ ) consists of  $P^1$  in  $\overline{S} - \overline{\mathscr{D}}_1$ , it follows that  $\alpha(\mathscr{D}_j) = p_j$  a point for each  $j \geq 2$ , where  $\alpha$  is the quasi-Albanese map of  $\overline{S} - \mathscr{D}_1$ . Hence we have

$$S^0 = S - \bigcup lpha^{-1}(p_j) \stackrel{lpha}{\longrightarrow} G_m^2 - \{p_2, \cdots, p_s\}$$

and  $S^0: S^0 \to G_m^2 - \{p_2, \dots, p_s\}$  is a proper birational morphism.

Case 3: q(S)=1. Then the Albanese map of the quasi-Albanese variety  $\tilde{\mathscr{A}}_s$  is a surjective morphism  $\pi:\tilde{\mathscr{A}}_s\to E, E$  being the Albanese variety of S, which is an elliptic curve. Any fiber of  $\pi$  is  $G_m$  and so  $\varphi=\pi\cdot\alpha:S\to E$  is an algebraic fibered surface whose fibers are  $G_m$ . In fact, by the same reasoning as in the case 2, we can conclude that

 $\varphi$  has connected fibers. Indicate by  $\bar{Z}$  the completion of  $Z=\bar{\mathscr{A}}$  with smooth boundary  $\Delta$  which was constructed in § 10 [2]. Since  $\bar{Z}\to E$  is the  $G_m$ -bundle whose fibers are  $P^1$ ,  $\Delta$  is a sum of two sections  $\Delta_1$  and  $\Delta_2$ .  $\bar{q}(Z)=q(Z)+1=2$  implies that  $\Delta_1$  and  $\Delta_2$  have the same class in  $H^2(\bar{Z},Z)$  by Theorem 1 in [2]. We choose a completion  $\bar{S}$  of S with smooth boundary  $\bar{D}$  such that a rational map  $\psi:\bar{S}\to E$  defined by  $\varphi$  and a rational map  $\bar{\alpha}:\bar{S}\to\bar{Z}$  defined by  $\alpha$  are both morphisms. Using the same argument as in the case 2, we conclude that  $\alpha$  is birational. Moreover, letting  $\mathscr{D}_i$  be the connected components of  $\bar{D}$  containing  $D_i$ , we know that  $\bar{D}=(\mathscr{D}_1+\mathscr{D}_2)=\mathscr{D}_1\cup\mathscr{D}_2$  if and only if  $\alpha$  is proper. Therefore, if S is a non-singular surface with  $\bar{\kappa}(S)=0$ , q(S)=1 and  $\bar{q}(S)=2$ , then the quasi-Albanese map  $\alpha:S\to Z$  is dominant and satisfies the property to the effect that the composition:

$$S - \bigcup \alpha^{-1}(p_i) \longrightarrow S \rightarrow Z - \{p_1, \dots, p_r\}$$

is proper. Hence S is WWPB-equivalent to Z.

*Remark.* The proof of the case q(S) = 0 could be replaced by the much easier argument in the proof of Theorem 12 [3]. However, our proof will do for the case q(S) = 1.

#### § 4. Proof of Theorem II

In this section by S we denote an affine normal algebraic surface with  $\bar{\kappa}(S) = 0$  and  $\bar{q}(S) = 2$ . We use the following

LEMMA 3. Let V be an affine normal variety and consider a completion  $\overline{V}$  of  $\overline{V}$ . Then the algebraic boundary  $\overline{D} = \overline{V} - V$  is connected, provided that dim  $V \geq 2$ . When  $\overline{V}$  is normal and  $\overline{D}$  is a reduced divisor,  $\kappa(\overline{D}, \overline{V})$  is equal to dim V.

The proof follows from the connectedness principle. Q.E.D.

Let  $\mu\colon S^*\to S$  be a non-singular model and let  $S^*$  be a completion of  $S^*$  with smooth boundary  $D^*$ . Then  $D^*$  is connected and  $\kappa(D^*,\bar{S}^*)=2$ . Hence  $q(S)\leq 1$ , and so the quasi-Albanese map  $\alpha^*\colon S^*\to \tilde{\mathscr{A}}_S$  is proper and birational. Hence  $\alpha=\alpha_S\colon S\xrightarrow{\mu^{-1}}S^*\to \tilde{\mathscr{A}}_S$  is also a proper birational map. If q(S)=0, then  $\tilde{\mathscr{A}}_S=G^*_m$  is affine. By Lemma 1 [3],  $\alpha_S$  turns out to be an isomorphism. Hence  $S \cong G^*_m$ . If q(S)=1,  $\mathscr{A}_S=Z$  is a  $G_m$ -bundle over E. From  $\kappa(D^*,\bar{S}^*)=2$ , it follows that

 $\kappa(\varDelta_1 + \varDelta_2, \bar{Z}) = 2$ . Since  $\varDelta_1$  is cohomologous to  $\varDelta_2$ , we have  $\varDelta_1^2 = (\varDelta_1, \varDelta_2) > 0$  for  $\kappa(\varDelta_1 + \varDelta_2, \bar{Z}) = 2$ . Hence  $\varDelta_1$  and  $\varDelta_2$  are both ample and so  $\varDelta_1 + \varDelta_2$  is ample. This implies that  $Z = \bar{Z} - (\varDelta_1 + \varDelta_2)$  is an affine surface. Thus Z is a quasi-abelian surface which is an affine algebraic group. This is a contradiction.

EXAMPLE. Let  $\bar{Z}=P^{\scriptscriptstyle 1}\times E$  and  $\varphi\colon E\to P^{\scriptscriptstyle 1}$  a rational function. Then the graph  $\Gamma_\varphi$  has the following property:

 $\Gamma_{\varphi}^2=2\cdot \deg \varphi,\ \deg \varphi=[k(E):k(\textbf{\textit{P}}^1)]\ \ \text{and if}\ \deg \varphi>0,\ \ \text{then}\ \ Z=\bar{Z}-\Gamma_{\varphi}$  is affine and  $\bar{k}(Z)=-\infty,\ \bar{q}(Z)=0.\ \ \ \text{Put}\ S=\bar{Z}-(\Gamma_{\varphi}+\Gamma_{\psi}),\ \varphi\neq\psi.$  Then S is affine and  $\bar{q}(S)\geq 1$  and  $\bar{k}(S)\geq 0.$  Moreover

 $\bar{q}(S) = 2$  if and only if  $\deg \varphi = \deg \psi$ ,

 $\bar{\kappa}(S)=0$  if and only if  $\varphi$  and  $\psi$  are constants and hence,  $S=E imes G_m$ .

## § 5. Surfaces with $\bar{\kappa}(S) = 0$ , $\bar{q}(S) = 1$

Let S be a non-singular surface with  $\bar{\kappa}(S)=0$  and  $\bar{q}(S)=1$ . The quasi-Albanese variety  $Y=\tilde{\mathscr{A}}_S$  is an elliptic curve or  $G_m$  according to q(S)=1 or 0. Then quasi-Albanese map  $\alpha\colon S\to Y$  has connected fibers. Let  $C_u=\alpha^{-1}(u)$  be a general fiber. Then by Kawamata's theorem,

$$0 = \bar{\kappa}(S) \ge \bar{\kappa}(C_u) + \bar{\kappa}(Y) \ge \bar{\kappa}(C_u).$$

Hence  $\kappa(C_u)=0$ . However,  $\kappa(Y)=0$ ,  $\kappa(C_u)=-\infty$  do not hold at the same time. Moreover, if S is affine, then  $Y=G_m$  and  $C_u=G_m$ .

EXAMPLE. Let  $S = \operatorname{Spec} C[x, y, 1/F]$ ,  $F = x^m y - 1$ . Then  $\overline{P}_1(S) = \overline{P}_2(S) = \cdots = 1$ ,  $\overline{\kappa}(S) = 0$  and  $\overline{q}(F) = 1$ .

## § 6. Surfaces with $\bar{\kappa}(S) = -\infty$ and $\bar{q}(S) \ge 1$

Let S be a non-singular surface with  $\bar{\kappa}(S) = -\infty$  and  $\bar{q}(S) \geq 1$ . Consider the quasi-Albanese map  $\alpha: S \to Y = \mathscr{A}_S$ . By Kawamata's theorem, a general fiber  $C_u$  is of elliptic type, that is,  $C_u = P^1$  or  $G_a$ .

THEOREM 3. Let  $F \in C[x, y]$  and S = Spec C[x, y, 1/F]. Assume that  $\bar{\kappa}(S) = -\infty$ . Then there are new variables  $u, v \in C[x, y]$  such that  $C[x, y] = C[u, v], F = F_0(u) \in C[u]$ .

*Proof.* Let R be the integral closure of C[F] in C[x, y]. Then R is normal and  $\bar{g}(\operatorname{Spec} R) \leq \bar{q}(A^2) = 0$ . Hence  $\operatorname{Spec}(R) = G_a$ , in other words, R = C[f] such that  $f - \lambda$  is irreducible for a general  $\lambda$ . Since

 $F \in C[F] \subset R = C[f]$ , F is a polynomial of f and  $f: A^2 \to A^1$  is the Stein factorization of  $F: A^2 \to A^1$ . Write  $F = a_0 \prod (f - a_j)^{e_j}, e_j > 0$ . Then  $V(F) = V(f - a_1) \cup \cdots \cup V(f - a_s)$ . Hence  $\bar{\kappa}(A^2 - V(f - a_1)) \leq \bar{\kappa}(A^2 - V(F)) = -\infty$ . Applying Kawamata's theorem to  $f - a_1: A^2 - V(f - a_1) \to C^*$ , we have for general  $\lambda$ ,  $V(f - \lambda) \cong G_a$ . Hence by Jung-Gutwirth-Nagata's pencil theorem, there are new variables  $u, v \in C[x, y]$  such that C[x, y] = C[u, v] and  $f - a_1 = u$ . Q.E.D.

COROLLARY 1. If dim Aut  $C[x, y, 1/F] \ge 3$ , then  $F = F_0(u)$  as in the theorem above. If dim Aut C[x, y, 1/F] = 2, then  $C[x, y, 1/F] = C[u, v, u^{-1}, v^{-1}]$ .

*Proof.* If dim Aut  $C[x,y,1/F] \ge 3$ , then by Theorem 7 [1], we conclude that  $\bar{\kappa}(A^2 - V(F)) = -\infty$ . Then, apply Theorem 3. Note that Aut  $C[x,y,1/(\Pi(x-a_j))]$  contains T such that Tx=x,  $Ty=y+\alpha_0+\alpha_1x+\cdots+\alpha_dx^d$ ,  $\alpha_i$  belonging to C. Hence dim Aut  $C[x,y,1/\Pi(x-a_j)]=\infty$ . The assumption dim Aut C[x,y,1/F]=2 implies that  $\bar{\kappa}(\operatorname{Spec} C[x,y,1/F])\ge 0$ . Hence by Theorem 6 [1], we conclude that  $\operatorname{Spec} C[x,y,1/F]=G_m^2$ .

COROLLARY 2. Let  $R_0 = C[x, y, 1/F]$  and  $R_1, R_2$  be integral domains which are finitely generated over C. Then we have two cases: Case 1. Any C-isomorphism  $\Phi: R_0 \otimes R_2 \Rightarrow R_1 \otimes R_2$  induces the isomorphism  $\varphi: R_0 \Rightarrow R_1$  such that  $\Phi = \varphi \otimes 1$ . Case 2.  $R_0 \Rightarrow C[u, 1/f(u)][v]$ . In this case, let  $R_1 = R_0$  and  $R_2 = C[w]$ . Define  $\Phi$  by  $\Phi(v) = v + w$ ,  $\Phi(u) = u$ ,  $\Phi(w) = w$ . Then  $\Phi$  does not induce  $\varphi$  as in case 1.

*Proof.* Combining Theorem 1 in [6] with Theorem 3, we are through. Note that the corollary is an affirmative solution of the conjecture in [6].

THEOREM 4. Let  $R_0 = \mathbf{C}[x,y,x^{-1},y^{-1}]$  which is  $\Gamma(G_m^2,\mathcal{O})$  and let  $R_1$  and  $R_2$  be integral domains that are finitely generated over  $\mathbf{C}$ . Assume that  $\Phi: R_0 \otimes R_2 \Rightarrow R_1 \otimes R_2$ . Then  $R_0 \Rightarrow R_1$ .

*Proof.* Let  $V_1 = \operatorname{Spec} R_1$ . Then by the isomorphism  $\Phi$ , we have  $\bar{\kappa}(V_1) = 0$  and  $\bar{q}(V_1) = 2$ . Hence the normalization of  $V_1$  is  $G_m^2$  by Theorem II. Counting the irreducible components of the singular set:

we have Sing  $(V_1) = \phi$ . Hence  $V_1 = G_m^2$ . Q.E.D.

## § 7. Polynomials $\varphi(x, y)$

Let  $\varphi \in C[x,y]-C$  and let  $S=D(\varphi)=A^2-V(\varphi)$ . If  $\bar{\kappa}(S)=1$ , then there is a surjective morphism  $f:S\to \mathcal{A},\mathcal{A}$  being a rational curve, for  $g(\mathcal{A})\leq q(S)=0$ . Hence  $f=\psi/\varphi^a$  for some  $\psi\in C[x,y]$ . Moreover, for a general  $\lambda,V(\psi-\lambda\varphi^a)-V(\varphi) \cong G_m$ . Such  $\varphi$  is called a  $G_m$ -polynomial, which will be studied in a forthcoming paper. We have the following table:

| $\widetilde{\kappa}(D(\varphi))$ | $ar{q}(D(arphi))$ | φ                                   | $S = D(\varphi) = A^2 - V(\varphi)$                        |
|----------------------------------|-------------------|-------------------------------------|------------------------------------------------------------|
| ∞                                | ≧1                | $\varphi = \varphi_0(u)$            | $S=A^1\times C$                                            |
| 0                                | 1                 | for example $\varphi = xy^m - 1$    | $f\colon S{ ightarrow} G_m$ , general fiber being $G_m$    |
|                                  | 2                 | $\varphi = u^r v^s$                 | $S=G_m^2$                                                  |
| 1                                | ≧1                | $G_m$ -polynomial                   | $f: S \rightarrow \mathcal{A}$ , general fiber being $G_m$ |
| 2                                | ≧1                | polynomial of<br>hyperbolic<br>type | hyperbolic type                                            |

TABLE

Referring to the following result by Sakai:

Theorem (Sakai [8]). If  $\bar{\kappa}(V) = \dim V$ , then V is measure-hyperbolic, we obtain the Brody-type Theorem:

THEOREM 5.  $D(\varphi)$  is measure-hyperbolic if and only if  $\bar{\kappa}(D(\varphi)) = 2$ , that is,  $D(\varphi)$  is of hyperbolic type.

*Remark*. In order to generalize the theorem above, we have to study the following surfaces.

- A. Surfaces with  $\bar{\epsilon}(S)=-\infty$ ,  $\bar{q}(S)=0$ . These might be called logarithmic rational surfaces.
- B. Surfaces with  $\bar{\kappa}(S) = 0$ ,  $\bar{q}(S) = 0$ . These might be called logarithmic K3 surfaces.

After the completion of this paper, Kawamata succeeded in generalizing our Theorem I\* and obtained Theorem 5 ([7]). His proof is quite different from ours.

#### REFERENCES

- [1] S. Iitaka, On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis and Algebraic Geometry, in honor of K. Kodaira, Iwanami (1977), 175-189.
- [2] —, Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. of Tokyo, 23 (1976), 525-544.
- [3] —, Some applications of logarithmic Kodaira dimension, Proc. Int. Symposium on Algebraic Geometry, Kyoto (1977), 185-206.
- [4] —, On the Diophantine equation  $\varphi(X, Y) = \varphi(x, y)$ , J. für r.u.a. Math., 298 (1978), 43-52.
- [5] —, Finiteness property of weakly proper birational maps, J. Fac. Sci. Univ. of Tokyo, 25 (1978), 1-11.
- [6] S. Iitaka and T. Fujita, On cancellation theorems for algebraic varieties, J. Fac. Sci. Univ. of Tokyo, 24 (1977), 123-127.
- [7] Y. Kawamata, Addition Theorem of logarithmic Kodaira dimension, Proc. Int. Symposium on Algebraic Geometry, Kyoto (1977), 207-217.
- [8] F. Sakai, Kodaira dimensions of complements of divisors, Complex Analysis and Algebraic Geometry, in honor of K. Kodaira, Iwanami (1977), 239-257.
- [9] K. Ueno, On algebraic threefolds of parabolic type, Proc. Japan Acad., 52 (1976), 541-543.
- [10] S. Iitaka, Classification of algebraic varieties, Proc. Japan Acad., 53 (1977), 103-105.
- [11] —, On logarithmic K3 surfaces, to appear in Osaka J. of Math.

Department of Mathematics University of Tokyo