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Abstract

Objective: Screening individuals admitted to the hospital for Clostridioides difficile presents opportunities to limit transmission and hospital-
onset C. difficile infection (HO-CDI). However, detection from rectal swabs is resource intensive. In contrast, machine learning (ML) models
may accurately assess patient risk without significant resource usage. In this study, we compared the effectiveness of swab surveillance to daily
risk estimates produced by an ML model to identify patients who will likely develop HO-CDI in the intensive care unit (ICU) setting.

Design: A prospective cohort study was conductedwith patient carriage of toxigenicC. difficile identified by rectal swabs analyzed by anaerobic
culture and polymerase chain reaction (PCR). A previously validated ML model using electronic health record data generated daily risk of
HO-CDI for every patient. Swab results and risk predictions were compared to the eventual HO-CDI status.

Patients: Adult inpatient admissions taking place in University of Michigan Hospitals’medical and surgical intensive care units and oncology
wards between June 6th and October 8th, 2020.

Results: In total, 2,979 admissions, representing 2,044 patients, were observed over the course of the study period, with 39 admissions devel-
oping HO-CDIs. Swab surveillance identified 9 true-positive and 87 false-positive HO-CDIs. TheMLmodel identified 9 true-positive and 226
false-positive HO-CDIs; 8 of the true-positives identified by the model differed from those identified by the swab surveillance.

Conclusion: With limited resources, an ML model identified the same number of HO-CDI admissions as swab-based surveillance, though it
generated more false-positives. The patients identified by the ML model were not yet colonized with C. difficile. Additionally, the ML model
identifies at-risk admissions before disease onset, providing opportunities for prevention.

(Received 21 November 2022; accepted 20 February 2023; electronically published 24 April 2023)

Hospital-onset Clostridioides difficile infections (HO-CDIs) are the
most common nosocomial diarrheal illness, leading to significant
morbidity and mortality among hospitalized patients.1,2 Early
identification of HO-CDI could help decrease risks of morbidity
and mortality.3,4 In particular, screening and isolating individuals
colonized with C. difficile could reduce the number of HO-CDI
cases.5,6 However, due to a lack of strong evidence, the IDSA does
not recommend the implementation of screening and isolation of
asymptomatic carriers.7

Screening is primarily conducted by detecting the presence of
toxigenicC. difficile in rectal swabs via anaerobic culture or directly

with polymerase chain reaction (PCR). Swabs require collection
and testing materials (ie, swabs, media, and PCR reagents), and
swab collection imposes an additional workflow burden on busy
nursing staff. Thus, swab-based surveillance is invasive and
resource intensive. Additionally, the collection is invasive because
the swabbing process collects material from the rectal mucosa.

In contrast, machine learning (ML) patient-risk stratification
models embedded in electronic health record (EHR) systems assess
patient risk noninvasively and without interrupting existing work-
flows. Several ML models exist for identifying patients at risk of
HO-CDI.8–10 To date, researchers have extensively validated an
approach for predicting HO-CDI using ML that generates daily
risk estimates based on the contents of the EHR.8,11–13 However,
how to best use these risk estimates to target interventions remains
unclear. Specifically, the extent to which patients identified as high-
risk by the algorithm are already colonized with C. difficile is
unknown. Such knowledge could inform model use.
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We need to understand whether and how the populations iden-
tified by rectal swab surveillance and ML approaches differ. To
address these gaps, we sought to answer the following questions:
Does an ML approach have comparable performance in the early
detection of HO-CDI when compared to rectal swab surveillance?
And do both approaches identify the same populations? In answer-
ing these questions, we compared the populations identified by
rectal swab surveillance versus a validated ML model identifying
those at risk for HO-CDI among a population of intensive care unit
(ICU) and oncology patient admissions.

Methods

Outcome

The outcome of interest in this study was primary, nonrecurrent
hospital-onset CDI (HO-CDI), defined by the Centers for
Disease Control and Prevention (CDC) as a positive clinical labo-
ratory test >3 days after admission to a healthcare facility and not
occurring within 8 weeks after successful treatment of a prior CDI
episode.14 Prediction of the outcome was analyzed at the level
of each admission. During the study period, the University of
MichiganHospitals used a 2-step, in-house clinical testing protocol
for CDI.15,16 Briefly, patients with new-onset diarrhea and clinical
suspicion of CDI first underwent testing via enzyme immunoassay
(EIA) for glutamate dehydrogenase (GDH) antigen and C. difficile
toxins TcdA and TcdB (C. Diff Quik Check Complete, TechLab,
Blacksburg, VA), the combination of which yielded good sensi-
tivity.17 If the results for GDH and toxins TcdA and TcdB were
discordant, a PCR for toxin B determined the final test result
reported to the clinician.

Study cohort

As part of a pre-existing, separate, and ongoing VRE surveillance
program at our hospital, patients aged 18 years or older admitted to
University of Michigan Hospital ICUs and oncology wards
between June 6 2020 and October 8, 2020, had rectal swabs col-
lected on admission to the unit, weekly, and at discharge from
the unit. Our study cohort included all admissions that had 1 or
more swabs collected and had ML model risk estimates calculated.
We excluded admissions in which the outcome of primary, non-
recurrent HO-CDI could not be met, admissions with inpatient
stays <3 calendar days, and admissions who instead met criteria
for community-onset CDI by positive clinical CDI testing the first
2 calendar days of admission or in the 14 calendar days before
admission. Additionally, we excluded admissions who had success-
ful treatment in the 8 weeks prior to admission date and who had
rectal swabs collected after clinical CDI tests.

The study was approved by the institutional review board of the
University of Michigan Medical School (no. HUM00147185 and
no. HUM00170413).

Swabs

Rectal swabs were collected as a part of the University of Michigan
Hospitals’ VRE surveillance protocol. The nursing staff was
instructed to either pass the flocked-E swab through the anal verge
or dip it in a fresh stool sample. Swabs were placed in containers
with Amie’s media, and 100 μL aliquots were frozen and stored at
−80° C for analysis in batches 6–12 months later. Aliquots were
anaerobically cultured for 24 hours in sodium taurocholate cyclo-
serine-cefoxitin-fructose (TCCFB) media; any growth was then
plated on commercially available CHROMagar plates with

conditions designed for selective growth of C. difficile, and single
colonies were used for subsequent confirmation of taxonomy and
toxigenicity using C. difficile-specific 16S, TcdB, and TcdA PCR
assays.18,19

Model application

The risk of HO-CDI was calculated daily using a previously vali-
dated EHR-based ML modeling approach.11–13 Risk estimates,
based on the contents of the EHR were calculated daily for each
patient admission starting on the day 3 of the admission and until
the day of discharge or when criteria for HO-CDI were first met.

Briefly, the ML model was an L2-regularized logistic regression
model trained to stratify patients at risk of HO-CDI. The model
takes as input data pertaining to patient demographics (sex, age,
race), daily in-hospital locations (current unit), and daily clinical
characteristics (vital signs, medications, number of prior hospital-
izations, etc) and outputs a value between 0 and 1 that corresponds
to an estimate of the patient’s risk of developing CDI during
the remainder of the hospitalization. These estimates are generated
daily and updated over time as the clinical characteristics of
in-hospital locations change.20 Oh and Makar et al11 describe
the initial model development in detail.

Analysis

Swab results and model risk estimates were independently assessed
as surveillance tools for HO-CDI. Both were assessed at the level of
each admission (also known as an encounter). This is different
from analysis at the patient level because a single patient may have
multiple admissions. An admission was defined as the contiguous
unit of time between hospital admission and discharge. Over the
course of the admission, 1 ormore swabs were collected and several
ML model risk estimates were generated. We only included swabs
and risk estimates available prior to clinical CDI testing. For exam-
ple, if a clinical CDI test was ordered on day 5 of the patient admis-
sion only swab collected on day 1 and model risk estimates from
days 1–4 would be considered.

To assess the performance of both approaches, we evaluate
multiple observations (ie, multiple swabs or multiple model risk
estimates) at the level of the admission. For a given admission,
if any of the swabs (collected prior to the clinical CDI test) resulted
positive, the swab score for that admission was 1. Similarly, we used
the maximum risk estimate (prior to clinical CDI test), as the “risk
score.” To binarize the numerical risk score generated by the ML
model, we selected a threshold that yielded a sensitivity (ie, the like-
lihood deeming a patient ‘high-risk’ given that a patient admission
will experience HO-CDI) equivalent to that of the swab-based
results. These admission-level binary “scores” ensure consistent
representation and fair comparison. This evaluation is based on
the idea that once a patient exceeds some risk threshold or their
swab returns positive one would intervene.

For our primary analysis, we assessed binary classification per-
formance in the form of confusion matrices, accuracy, specificity,
positive predictive value (PPV), negative predictive value (NPV),
and F1 score (the harmonic mean of precision and recall) to
compare the 2 methods. We also examined the patient population
identified by each “surveillance” approach.

In addition to analyzing each “surveillance” approach individu-
ally, we also examined 2 approaches that combine swab and model
information. The first approach, which we refer to as “model AND
swab,” flagged a patient as high risk if the swab indicated coloni-
zation and the model produced at least 1 risk estimate above the
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threshold. The second approach, “model OR swab,” flagged
patients as high risk if either of the above criteria were met. In a
supplementary analysis, we also examined the receiver operating
characteristics of the 2 approaches.

Results

Our final study cohort included 2,044 admissions, representing
2,979 unique swabs and 1,859 patients; 39 (1.9%) admissions
met the primary outcome (Fig. 1). These admissions all had at least
1 swab collected and 1 or more model risk estimates generated
before clinical CDI testing was conducted. Reflecting a critical care
population, the median length of stay was 9 days (IQR, 5–17 days);
553 admissions (27.1%) had a prior admission in the previous 90
days (Table 1). On average, patients had 1 swab collected per
admission prior to HO-CDI (IQR, 1–2) because swabbing only
occurred upon admission to the unit, weekly and upon discharge.
In comparison, patients had, on average, 6 model risk estimates
(IQR, 3–14) because risk estimates were produced daily from cal-
endar day 3 of the admission onward, regardless of in-hospital
location.

Swab surveillance identified 96 admissions (4.7%) as colonized
with C. difficile, resulting in sensitivity of 23.1% (95% confidence
interval [CI], 11.1%– 37.8%), accuracy of 94.3% (95% CI, 93.3%–
95.3%), specificity of 95.7% (95% CI, 94.8%–96.6%), PPV of 9.4%
(95% CI, 4.3%–16.1%), NPV of 98.5% (95%CI, 97.9%–99.0%), and
F1 of 13.3% (95% CI, 6.2%–21.8%). Holding sensitivity equal at
23.1% (95% CI, 10.3%–37.5%) to the swabs yielded a risk estimate

threshold of 0.809 for the ML model. At this threshold, the model
identified 235 admissions (11.5%) as high-risk, yielding accuracy of
87.5% (95% CI, 86.0%–88.9%), specificity of 88.7% (95% CI,
87.3%–90.0%), PPV of 3.8% (95% CI, 1.6%–6.4%), NPV of
98.3% (95% CI, 97.7%–98.9%), and F1 of 6.6% (95% CI, 2.8%–
10.8%). These findings are summarized in Figure 2. At this sensi-
tivity level, the swab-based approach demonstrated superior
accuracy, specificity, and PPV. There was no statistical difference
between the NPV and F1 of the 2 approaches. Although both
approaches correctly identified 9 of 39 HO-CDI patients, these
were not the same patients, overlapping in only a single case.

We also evaluated the utility of the combination of swabs and
the ML model. Across all approaches, the model-AND-swab
approach yielded the highest accuracy of 97.5% (95% CI,
96.8%–98.1%) and specificity of 99.4% (95% CI, 99.0%–99.7%).
The model-OR-swab combination yielded the highest sensitivity
of 43.6% (95% CI, 27.3%–60.0%) and NPV of 98.7% (95% CI,
98.2%–99.2%). Again, these results differed because the true-
positive results identified by the swab versus the ML model only
overlapped in the case of 1 admission.

From our secondary analysis (see supplemental material), the
ML approach without a threshold outperformed the swab in terms
of AUROC (swab, 59.2%; model, 73.4%).

Discussion

In this study, we compared the HO-CDI prediction capacity of
2 surveillance approaches: swab surveillance and daily risk

Fig. 1. Cohort development. A patient admission needed to have
at least 1 swab collected and 1 or more machine learning (ML)
model risk estimates generated before clinical Clostridioides dif-
ficile infection (CDI) testing to be included in the study cohort.
Thus, swabs missing culture information and swabs collected
after the model stopped evaluating a patient (due to clinical
CDI testing) were excluded.
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estimates produced by an EHR-based ML model. We observed a
HO-CDI incidence rate of 1.9%, which is slightly higher than
the overall incidence rate across the University of Michigan
Hospitals in 2020. This difference was expected because the units
included in the study admit a greater number of critically ill

patients who are susceptible to disease. The swab-based approach
identified 4.7% of admissions as having toxigenic C. difficile and
had a sensitivity of 23.1%. When holding the sensitivity of the
ML approach equal to that of the swab approach, themodel flagged
many more admissions (ie, 11.5%) as high risk.

Overall, the swab approach yielded significantly fewer false-
positive results and had slightly better binary outcome prediction
measures: accuracy, specificity, PPV, NPV, and F1 score. Both
approaches correctly identified the same number of HO-CDI
patients (n= 9); however, they identified different populations,
with each approach identifying 8 patients that the other did not.
Thus, the combination of these 2 approaches presents an oppor-
tunity to improve surveillance.

Although the ML model-based surveillance system had slightly
worse performance in binary outcome prediction measures, it was
able to identify a subset of patients at risk for HO-CDI who were
not identified as colonized with C. difficile. Compared to the
resource-intensive swab-based approach, the ML model scales
easily to all units in a hospital and produces scores daily rather than
only weekly. Moreover, the MLmodel does not require rectal swab
collection across large populations of hospitalized patients, and it
does not depend on the implementation of specialized laboratory
tests that most medical centers are not equipped to run. The devel-
opment and integration of EHR-based ML models are not without
costs. Significant financial costs are associated with the develop-
ment and implementation of this model due to the amount of
developer time needed. Additionally, depending on the threshold
selected, the model may generate many false-positive alerts, lead-
ing to a risk of alert fatigue.

However, once implemented, a model-based approach costs
very little to apply. This means that the up-front fixed costs of a
CDI model can be amortized over many uses. For example, we
expect the CDI model implemented at the University of
Michigan Hospitals to produce >255,000 risk estimates over the
course of a year. These daily risk estimates are available for nearly
every admission, which is a major advantage compared to rectal
swabbing, which occurs at certain predetermined time points
and locations within the hospitals. Depending on the course of
the patient’s admission, they may not have a rectal swab collected
before they have a clinical CDI test conducted. For example, in this
study, we had 392 admissions who had their first rectal swabs col-
lected after a clinical CDI test had been conducted. Additionally, in
the same time that 2,979 rectal swabs were collected for the 2,044
admissions, the ML model had produced 13,162 daily risk
estimates. Combined, the lightweight resource footprint and scal-
ability make the ML model an attractive adjunct, or even stand-
alone, infection surveillance system.

Interestingly, only 1 patient who eventually went on to acquire
HO-CDI was flagged by both surveillance approaches as being
high risk. The small overlap in true positives between swab and
ML predictions suggests that these two approaches identify differ-
ent subgroups of high-risk patients. Although swab surveillance
only identifies patients already colonized with CDI, the ML model
identifies susceptible patients prior to colonization with the patho-
gen. Many of the covariates used as input to the model pertain to
susceptibility (eg, medications that suppress the immune system or
disrupt the gut microbiome). Since swab surveillance cannot
identify patients who are not already colonized, there might be
an additional advantage of the ML models in their ability to iden-
tify patients before colonization. This ability could be used to target
infection prevention and control efforts (eg, handwashing with
soap and water), preventing colonization and subsequent

Table 1. Demographics, Clinical Characteristics, Outcomes, and Surveillance
Characteristics of the Final Study Cohort

Patient Demographics
Total

(n=2,044), No. (%)a

Sex, female (per EHR) 841 (41.1)

Age at admission, median y [IQR] 61 [50–70]

Race

Asian 47 (2.3)

Black 211 (10.3)

White 1,669 (81.7)

Other 94 (4.6)

Missing 23 (1.1)

Ethnicity

Hispanic or Latino 1,770 (86.6)

Not Hispanic nor Latino 36 (1.8)

Other 238 (11.6)

Length of stay, median d [IQR] 9 [5–17]

Clinical characteristics

90-d history

Prior University of Michigan hospital admission 553 (27.1)

Immunosuppressants prior to admission 63 (3.1)

Gastric-acid suppressants prior to admission 188 (9.2)

Antibiotics prior to admission 373 (18.3)

Enteral feeding prior to admission 0 (0)

Index admission

Immunosuppressant usage 229 (11.2)

Gastric-acid suppressant usage 898 (43.9)

Antibiotic usage 1805 (88.3)

Enteral feeding usage 11 (0.5)

Admissions with prior CDI history

CDI within last 90 d 11 (0.5)

CDI within last year 26 (1.3)

Outcome surveillance

Clinical diagnosis of CDI 39 (1.9)

CDI colonization pressure cases/10,000 PD 15.7

Rectal swabs

Toxigenic C. difficile cultured from rectal swab 96 (4.7)

No. collected per admission, median [IQR] 1 [1–2]

Model

Risk estimates, median [IQR] 0.5 [0.4–0.7]

No. of scores per admission, median [IQR] 6 [3–14]

Note. EHR, electronic health record; IQR, interquartile range; PD, patient days; CDI,
Clostridioides difficile infection.
aUnits unless otherwise specified.
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infection. Moreover, the fact that the model starts producing esti-
mates early in the patient’s admission prior to admission to the
ICU provides more time to target prevention efforts.

Patients identified by the ML approach may be candidates for
interventions that protect them from potential exposures, such as
use of soap and water prior to patient contact, which reduces risk of
exposure to C. difficile spores, and that stop or de-escalate treat-
ments that increase risk of colonization and subsequent CDI, such
as broad-spectrum antibiotics and proton pump inhibitors.21 For
example, patient risk of CDI could be integrated into existing phar-
macy workflows, improving antimicrobial stewardship efforts.
Applied in a targeted manner, such interventions could help
reduce C. difficile incidence and onward transmission. Here, the
precise definition of highest risk (ie, the risk threshold) depends
on resource constraints. For example, a threshold hold associated
with the 95th percentile of risk corresponds to intervening in ∼5%
of patient encounters.

The high number of false-positive results in the ML model-
based approach drove its relatively poor performance. This is prob-
lematic for several reasons. First, it increases the overall number of
alerts and interventions, potentially increasing the overall time and
costs associated with surveillance and intervention. Second, the
large number of false-positive results may induce alert fatigue
and mistrust of the surveillance system, leading to decreased user
adoption.22

Unlike swab surveillance, which returns a binary result instead
of a continuous one, the high-risk thresholdmay be tuned to obtain
a more favorable balance of true-positive results versus false-pos-
itive results. Because the model produces a continuous estimate of
risk, by increasing the threshold at which an individual is deemed
‘high risk,’ the model can trade sensitivity for greater specificity (ie,
reducing the number of false positives) (see Supplementary Fig.
S1). Additionally, the probability of a true-positive alert can be
improved by limiting the use of the model to units with a higher
incidence of CDI. Ultimately study of user behavior and response
to the model should guide such implementation efforts.

Given the high cost of managing CDI relative to surveillance,
surveillance-based interventions may prove cost-effective.23

The relatively lower cost and flexibility of the ML approach
may provide additional value in infection prevention and early
identification of CDI in the hospital setting, as long as the costs
of false-positive results do not outweigh the benefits.

Importantly, our results may not generalize to other hospital
systems or patient populations, given that these data were only
gathered at the University of Michigan Hospitals’ adult ICU and
oncology wards. Additionally, CDI rates may substantially increase
and decrease seasonally,24 and our study only examined 4 months
over the summer and early fall. Thesemethodsmay perform differ-
ently when rates of CDI are higher or lower than in our cohort.
Moreover, the results presented were evaluated at the level of an
admission. The 23.1% sensitivity of the swab-based approach
should not interpreted as the sensitivity of an individual swab.
Finally, these data were obtained during the COVID-19 pandemic,
which may have affected our cohort’s baseline patient characteris-
tics and C. difficile hospital transmission dynamics.25

Despite these limitations, our studymotivates further investiga-
tion into the benefits of using EHR-based ML models for an accu-
rate, low-cost, and resource-sparing estimate of HO-CDI risk. To
this end, we are exploring ways in which we can use ML-based risk
estimates to guide infection prevention efforts to reduce CDI inci-
dence at the University of Michigan. In addition, our results moti-
vate further study of both swab-based and ML model-based
surveillance of CDI. Furthermore, the approaches are not mutually
exclusive and a mixed strategy using both rectal surveillance and
ML-based risk estimates could be employed to reduce the burden
of CDI in hospitals.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2023.54
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