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OVOIDS AND TRANSLATION PLANES 

WILLIAM M. KANTOR 

1. In t roduc t ion . An ovoid in an orthogonal vector space V of type 
S2+(2w, q) or Î2(2w — 1, g) is a set fi of qn~l + 1 pairwise non-perpendicular 
singular points. Ovoids probably do not exist when n > 4 (cf. [12], [6]) 
and seem to be rare when n = 4. On the other hand, when n — 3 they 
correspond to affine translation planes of order g2, via the Klein cor­
respondence between PG(3> q) and the fi+(6, q) quadric. 

In this paper we will describe examples having n = 3 or 4. Those with 
n = 4 arise from PG(2, q2), AG(2, g3), or the Ree groups. Since each 
example with n = 4 produces at least one with w = 3, we are led to new 
translation planes of order q2. 

Some of the resulting translation planes are semifield planes ; others seem 
to have somewhat small collineation groups. Some of the most interesting 
planes have the following properties: 

If q = 2 (mod 3) and q > 2, there is a translation plane of order q2 

admitting an abelian collineation group P of order q2 which fixes an affine 
point, has orbit lengths 1 and q2 on the line at infinity, and contains exactly 
q elations; moreover, P is elementary abelian if q is odd, but is the direct 
product of cyclic groups of order 4 if g is even (cf. (4.5)). Another note­
worthy example we will discuss is a nondesarguesian plane of order 82 

admitting Z7 X SL(2, 4) as an irreducible collineation group (cf. (8.2)). 

The ovoids with n = 4 are related, by triality, to orthogonal spreads. 
A number of such orthogonal spreads were discussed in [4, 5], and were 
used to construct translation planes of order g3 when g is even. The latter 
planes arise from 6-dimensional symplectic spreads. Other characteristic 2 
symplectic spreads occur in [3, 4]. Here, we will construct 4-dimensional 
symplectic nondesarguesian spreads over all fields of odd non-prime order 
(cf. (5.2)). 

2. Background. A spread of a 2w-dimensional GF(q)-space V is a 
family 2 of qn + 1 subspaces of dimension n, any two of which span V. 
The corresponding translation plane A(2) of order qn has V as its set of 
points and the cosets of the members of 2 as its lines (cf. [9]). 

A symplectic spread is a spread 2 such that, for some symplectic geo­
metry on V, 2 consists of totally isotropic w-spaces. 

Received June 23, 1981 and in revised form October 28, 1981. 

1195 

https://doi.org/10.4153/CJM-1982-082-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-082-0


1196 WILLIAM M. KANTOR 

An 12+(2w, q) space V is a 2w-dimensional GF(q)-space equipped with 
a quadratic form such that totally singular w-spaces exist. (Thus, if V is 
GF(q)2n then the quadratic form is equivalent to the form ]T^=1 XiXn+i.) 
There are then two classes of totally singular «-spaces, two subspaces 
belonging to the same class if and only if the dimension of their inter­
section has the same parity as n. 

Ovoids were defined in Section 1. Note that an ovoid in an 12 (2 w — 1, q) 
space is also an ovoid in an 12+(2w, q) space of which that space is a hyper-
plane. Also, an 12+(2w, q) space cannot contain more than qn~l + 1 pair-
wise non-perpendicular singular points: ovoids are extremal with this 
property (see [12]). 

If 12 is an ovoid of an 12+(2n, q) space, a count shows that every totally 
singular n-space contains a member of 12. If x is any singular point not in 
12, then x1- C\ 12 projects onto an ovoid of x^/x. Thus, 12+ (8, q) ovoids 
produce 12+(6, q) ovoids. Similarly, 12(7, q) ovoids produce 12(5, q) ovoids 
in the same manner. 

The Klein correspondence represents PG(3, q) in an 12+(6, q) space, 
sending lines to singular points and sending points and planes to totally 
singular 3-spaces. The points of a line L of PG(3, q) are sent to the 
3-spaces of one class which contain the corresponding singular point x\ 
the planes containing L are sent to the remaining totally singular 3-spaces 
containing x. A spread of a 4-dimensional GF{q)-space is sent to an ovoid 
of the 12+(6, q) space. Similarly, a 4-dimensional symplectic spread pro­
duces an 12(5, q) ovoid. If 12 is an ovoid of an 12(5, q) or 12+(6, q) space, 
let A (12) denote the corresponding translation plane of order q2. The plane 
A(12) is desarguesian if and only if dim (12) = 4; in this case, (12) is an 
12~(4, q) space, and 12 consists of all its singular points. 

Under the Klein correspondence, 

(2.1) (1, a, b, c, d, - ad - be) <^ ((1, 0, c, - d), (0, 1, a, b)). 

Let 12 be an 12+(6, q) ovoid, and set G = PTO+(6, q)n. If y is a singular 
point not in 12, then Gy may not act on A(y± P\ 12). For, Gy may induce 
both collineations and correlations of PG(3, q). However, its subgroup of 
index at most 2 inducing collineations does, indeed, act on A^y1- P\ 12). 

The triality principle in a sense generalizes the Klein correspondence. 
Let P denote the set of singular points of an 12+(8, q) space V, let Mi and 
M 2 be the two classes of totally singular 4-spaces of V, and let L be the 
set of totally singular 2-spaces of V. A triality map is a mapping r sending 
L —> L and P —» Mi —» M2 —> P which preserves incidence between 
members of L and members of P W Mi U M2 ([13]). Here, r induces an 
outer automorphism of the projective orthogonal group Pl2+(8, q); this 
automorphism will also be called r. If 12 is an ovoid of V then 12T is an 
orthogonal spread: a family of q3 + 1 totally singular 4-spaces partition­
ing the (g3 + 1)(<?4 — 1)/(<Z — 1) singular points of V. (Note that an 
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orthogonal spread is not a spread as defined at the beginning of this 
section: any two members span V, but there are only g3 + 1 members 
instead of qA + 1.) Conversely, if 2 is an orthogonal spread of V and 
2 C Mi, then ST-1 is an ovoid of V. Consequently, the orthogonal spreads 
described in [4, 5] can be used here. Moreover, if x Ç P — 12, the ovoid in 
xL/x produced by xL C\ 12 corresponds, under r, to the spread 

{XT n M\M e i2r, XT n M ^ 0} 

of the 4-space xT. We will call the resulting translation plane A(xJ- P\ 12). 

3. 12+(8, q) ovoids when q ^ 3. There are unique 12+(8, q) ovoids when 
q ^ 3 ([11], [4]). While they exhibit exceptional behavior, they also 
provide simple illustrative examples. Our discussion follows [7, § 2D]. 

Example 1. Let ei, . . . , e$ be the standard basis for V = GF(2)9. 
Define a quadratic form Q on F by requiring that Q(et) = 0 and (eu ej) 
= 1 for i T6 j . The radical of V is (r) = (Se<). Set et = et + (r). Then 
12 = {(ëi)|l g Î ^ 9) is an ovoid in the 12+(8, 2) space V/(r), whose 
stabilizer in 0+(8, 2) is 59. Moreover, 59 has exactly two orbits of singular 
points. If x = (ëi + ë2 + ë3 + ë4) then A(x± C\ 12) is the desarguesian 
plane of order 4, and Sb is induced on the plane by (59)z. 

Example 2. Let ely . . . , e8 be the standard basis of V = GF(3)8, and 
define Ç by requiring that Q(e{) = 1 and (eu e3) = 0 for i ?± j . This turns 
V into an 12+ (8, 3) space. Let 12 consist of the points (et + #7 + 0s) with 
i ^ 6, ( — e* + e7 + es) with i ^ 6 ,and (X7*=i e*e*) w i t n e* ^ G F (S) and 
X~Ii=i €* = 1. Then 12 is an ovoid lying in H = (e1 — eg)-1, and the Weyl 
group W of type £ 7 acts 2-transitively on 12 [7, § 2D]. Moreover, W has 
exactly 2 orbits of singular points xoi HAiv = e\ + e2 + 3̂ and x = (v), 
then Wv = 56 X 53 induces PSL(2, 9) • Z2 on x-1 P\ 12. It is easy to check 
that dim (x, x1- P\ 12)/x = 4, so that A(xx P\ 12) is desarguesian. 

Similarly, W is transitive on the singular points not in H. Each such 
point has the form (n + e1 — e%) with n £ H and Q(n) = 1. Thus, we 
must consider the ovoid nL C\ 12 of n1- C\ H. If » = e6 then w1- P\ 12 con­
sists of the points (et + e7 + es) and ( — e2- + e1 + e8) with t ^ 5, and 
hence spans n1- C\ H. Thus, A(n± O 12) is the nearfield plane of order 9, 
and its canonical involution on Lœ is evident (cf. [2, p. 232]). The group 
Z2 4 X S5 acting on Lœ is equally visible. 

These ovoids will reappear in later sections. 

4. Unitary ovoids. An 12+(8, q) ovoid associated with the unitary group 
PGU{Z,q) when g = Oor 2 (mod 3) was studied in [4,§ 6]. In this section, 
we will describe an equivalent ovoid, obtained by changing coordinates 
in order to simplify calculations. 
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Let g be a power of a prime p. Set K = GF(q) and L = GF(q2). If 
a € L set â = aç, r ( a ) = a + 5 and TV (a;) = aâ. If £ 7̂  3 let co3 = 1 7̂  co. 

If i f = (MO) is a 3 X 3 matrix over L, set tr (M) = S /*„, M = (/Z0) 
and M1 = (/x;î)-Set 

/ = 

Let V be the i£-space of those matrices M such that tr (M) = 0 and 
J-^MJ = MK Then dim V = 8. Write 

<2(M) = - J^ fiiifljj + 53 MoM̂r 

Then Q is a quadratic form on V, with associated bilinear form 

Q(M + N) - Q(M) - Q(iV) = tr (MN). 

Explicitly, V consists of the matrices 

(a p c\ 
(4.1) M = 7 a jf Jwitha,/3, 7 6 L;a , ft, c G X ; a n d a + T(a) = 0, 

\6 7 5 / 

and Ç is defined by 

(4.2) Q(M) = a2 + aâ + â2 + T($y) + be. 

Thus, if p = 3 then rad V = (I). Moreover, V is an 12+ (8, q) space if and 
only if q = 2 (mod 3) ([3, (6)]). In this section, we will always assume that 
q = 0 or 2 (mod 3). 

Let G denote the unitary group G ï/(3, 5) of all invertible 3 X 3 matrices 
4̂ over L such that J~lAJ = {Âl)~l. Then G acts on F by conjugation, 

inducing PGU(3, q) there. Moreover, G preserves Q [4, (6.2)]. Note that 
G preserves the form (p, a, r) —•> T(pr) + N(<r) on L3. 

Transvections in G have the form I + F with F2 = 0. Here, 

I + J~lYJ = (J + F 0 _ 1 = J - F' . 

Let ? = -6. Then I = ^ F G F. Thus, 

12 = \(x)\o ^ x e v, x2 = 0} 
consists of q* + 1 singular points, permuted by G in its natural 2-transi-
tive permutation representation. No two members of 12 are perpendicular: 
12 is an ovoid if p ^ 3, and projects onto an ovoid of V/(I) if p = 3 
[4, (6.12)]. 

This ovoid can be described explicitly, as follows. If v = (p, a, r) 3̂  0 
and T(pr) + 7V((r) = 0, then vlvJ lies in V and has square 0. This pro­
duces all (g3 + l)(g — 1) nonzero matrices appearing in the definition 
of 12. 
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S e t X œ = (1 0 0) !(1 0 0 ) / a n d 

X[p,<r] = UJ(p o 1)/ 

lp pa N(p)\ 
= I d N(a) pa whenever T{p) + N(a) = 0. 

\1 P I 
Then 

(4.3) Û = \(XJ, (X[p, a])\T(p) + N(a) = 0}. 

The stabilizer of (Xm) in G has a Sylow p-subgroup U of order g3, con­
sisting of the matrices 

/ l - M X\ 
£/[X, n] = 0 1 ju with r(X) + iV(/t) = 0. 

\ 0 0 1/ 

(Note that £/[X, ju]^k. T] = U[\ + a — pr, p. + r].) Moreover £/ is transi­
tive on S - \(XJ}. 

If <f> 6 i * set £>(<*>) = diag (<*», 1, <?-'). Then £>(<*>) 6 G, D(<p) fixes 
< O a n d <X[0,0]>, and 

(4.4) Z ? ^ ) - ^ ! * , <r]Z>(0) = X[pN(<l>)-1, <r*-»]tf(«). 

We are now in a position to consider the translation planes determined 
by 12. 

Set 

/0 1 0\ 
F = 0 0 1 1 . 

\ 0 0 0 / 

Then F G 7 ,Q(F) = 0 a n d X c o F = F Z œ = 0. By (4.3), 

F ^ - n i 2 = {(Zœ), (X[p,cr])|r(p) + i \ » = 0 , 7 » = 0 } . 

Also, 

UY = { C7[X, M]|T(X) + A » = 0, 7 » = 0}. 

THEOREM 4.5. Letq = 0 or 2 (mod 3) and g > 3. Se/ A = A( Y1- n 12). 
77tew the following hold. 

(i) A is a nondesarguesian translation plane of order q2. 
(ii) Aut A fixes a point xœ at infinity. 

(iii) UY induces an abelian collineation group P transitive on Lœ — {xœ\. 
(iv) If p 9e 3 then P contains exactly q dations. If p = 3 then P consists 

of dations. 
(v) If p 9e 2 then P is elementary abelian. If p = 2 then P is the direct 

product of \0g2q_ cyclic groups of order 4. 
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(vi) There is a cyclic collineation group of order q — 1 normalizing P 
and faithful on Lœ. 

(vii) The normaliser of P in (Aut A) 0 has a subgroup of order q2{q — l ) 2 

(viii) The kernel of A is G F (q). 

(ix) If p — 3 then A is defined by a symplectic spread. 

Proof. Since UY has the s t ructure indicated in (v) , both (iii) and (v) 
are clear. Let 1 9e A — U[\, ju] ë UY- Then A induces an elation on A 
if and only if p ^ 3 and it induces the identi ty on (Xœ, Y)±/(XœJ F ) , or 
p = 3 and it induces the identi ty on (Xœ, Y)À-/(Xœ, Y, I). By (4.2), 
(Xœ, Y)1- consists of all matrices (4.1) with T(y) = 0 and b = 0. Since 
7 = —7 and /I = — M, 

/ - M 7 0' C \ 
4 - ^ 4 - M = 1 0 2 M 7 0' 

\ 0 0 - M T / 

with c' £ K and 0' = - a /Z - /i27 + /za + X7. Thus , A~lMA — Me 
(XœJ Y) for all M € <ZŒf F)-1 if and only if £/ = 0. This proves (iv) 
when p 9* S.Up = 3 then 

0' = - a / z + y(-T(\)) - aT(a) - \y 

= ~/z(-« + a) - 7(X - X) e K\ 
since ny £ i£, (iv) holds. 

By (4.4), {D{<t>)\4> G £*} induces the cyclic group in (vi), while (vii), 
(viii) and (ix) are obvious. (Note t ha t the involutory field automor­
phism of GF(q2) induces a polarity of P G ( 3 , g), and hence does not act 
on A.) 

Moreover, if p 9^ 3 then (iv) yields (i) and hence (ii). Thus , we mus t 
prove (vi) and show tha t (i) holds when q > 3 = p. Before doing this, 
we will provide a slightly more compact description for the ovoid pro­
duced by Y± H 12. 

By (4.2), Y±/(Y) consists of the matrices (4.1) with rT(y) = 0 and 
($ read mod K. Thus , F 1 / ' ( F ) can be identified with 

V* = {(a,P + K,y,b,c)\a,P,y G L, b, c £ K and T(y) = 0}, 

with Q inducing 

Q*(a, P + K, 7, b, c) = a2 + aâ + à2 + T(py) + be. 

In this notat ion, Y1- C\ 12 produces the set 12* consisting of the points 
( 0 , 0 , 0 , 0 , 1 ) and 

(p, pa + K, â, 1, pp) with T(a) = 0 = T{p) + N(a). 

Now let p = 3. We must show tha t W = (12*, (1 , 0, 0, 0, 0) ) coincides 
with V*. Clearly, IF contains ( 1 , 0 , 0 , 0 , 0 ) , ( 0 , 0 , 0 , 0 , 1 ) , (0, 0 , 0 , 1 , 0 ) , and 

https://doi.org/10.4153/CJM-1982-082-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-082-0


OVOIDS AND TRANSLATION PLANES 1201 

(p, pa + K, <x, 0, 0) whenever T(a) = 0 = T(p) + N(<j). Set a = 0 and 
p ^ O , and deduce that (a, 0, 0, 0, 0) G W for all a. Hence, so is (0, pa- + 
K, a, 0, 0). Fix p, <r ^ 0 with 7 » = 0 = T(p) + N(a), and let k £ X 
- GF(3).Then 

(0, feV + i£, &â, 0, 0) - &3(0, per + K, ôr, 0, 0) 

= (0,0, (* - &3)<r, 0, 0) e W. 

Consequently W = V*. This completes the proof of (4.5). 

Remark. The planes in (4.5) are not the only planes behaving as in 
(4.5i-vi). Others exist for at least some odd prime powers q. The planes 
in (4.5) with q = 5 (mod 6) can be shown to coincide with those found 
by Walker [15]; those with q = 2 or 3 (mod 6) appear to be new. 

We now turn to other planes produced by 12. 

THEOREM 4.6. Let q = 2 (mod 3) and q > 2. Set Y' = diag (co, 1, œ) 
and A' = A(F / J- P\ 12). Then A' is a nondesarguesian plane. It has a 
collineation of order q2 — 1 fixing two points at infinity and transitively 
permuting the remaining points at infinity. 

Proof. By (4.2), Yf is singular and F/J- consists of those matrices (4.1) 
for which 

a + T(a) = 0 = a + T(wa). 

Since dimx L = 2 and 7"(co) = T(œœ), we can write a = kœ with k £ K. 
By (4.3), 

F - L H û = { <*«,>, ( X [ £ û , cr]>|jfe = JV(er)}. 

By (4.4), {D(<j>)\(j) G -£*} has the desired transitivity properties. That dim 
(Y', Y' C\ 12) > 5 is proved as in the preceding theorem. 

Remarks. Since a £ i^o, F / J- /(F /) can be identified with K © L © L 
© X, with Q inducing Q*(&, 0, 7, c) = T(fiy) + 5c. The corresponding 
ovoid is 

(4.7) {(0,0 ,0 ,1) , <l,iV(<x)™, <r, iV(cr)2)|c7 € L | . 

If g = 2 (mod 3), the group G has exactly 3 orbits of singular points of 
V with orbit representatives (Xœ), (F) and (Y'). Similarly, if p = 3 
there are just 2 orbits of singular points, along with 1 orbit of non-
singular points (N) for which N1-/ {I) is an 12+(6, q) space. One such N 
is A7 = diag (X, 0, X), where X Ç L* and T(\) = 0. 

THEOREM 4.8. If q = 0 (mod 3) Jfeen A(A-L P\ 12) is a nondesarguesian 
plane, and admits a collineation of order q2 — 1 behaving as in (4.6). 
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The proof is similar to the preceding ones. In fact, the matrix (4.1) is 
in N1- if and only if 7>A) = 0 = T(\) ; that is, if and only if a £ K. 
Thus, the required ovoid can be described precisely as in (4.7), with co 
replaced by 1. 

For q = 0 or 2 (mod 3), a spread of L © L corresponding to the ovoid 
(4.7) can be described as follows. Fix w, 6 6 L with ir Q K and 0 = —6. 
Then the spread consists of 0 X L together with the i^-subspaces 

((1,0), (TT, N(a)aœd)) for a G L. 

5. Some 5- and 6-dimensional ovoids. Let K = GF(q), where q is 
odd and not a prime. Fix a nonsquare n of K, and automorphisms a and 
r of K at least one of which is nontrivial. 

Equip V = K& with the quadratic form Q(x, y, z, u, v, w) = xw + yv 
+ zu. Let 12 consist of the points 

(0 ,0 ,0 ,0 ,0 , 1) 
(1, y, z, zT, — nya, — zT+1 + ny°+i), y, z £ K. (5.1) n § ^ ^T _ < r ^ T + 1 , M/l,ff+l 

Then 12 consists of g2 + 1 pairwise non-perpendicular singular points. 
If r = 1 or a = 1 then (12) is a nonsingular hyperplane of V. In all 

other cases, (12) = F. This proves the following result. 

PROPOSITION 5.2. (i) A(12) is nondesarguesian. (ii) / / r = 1 9^ a or 
a = 1 T6- T then A (12) arises from a symplectic spread. 

The plane A(12) is a semifield plane: the orthogonal transformations 

(x, y, z, v, w) —» (x, 3/ + ax, z + èx, w + &% *> — wa°x, 

w + wa'y — ap — bTz — bu — bT+1x + na*+1x) 

all preserve 12, send £> = (0, 0, 0, 0, 0, 1 ) to itself, and induce the identity 
on p±/p. 

In fact, A(12) is a known plane. By (2.1), (1, a, b, c, df — ad — be) cor­
responds to the 2-space 

[ (X, XM) \X G K2} of K2 0 K2, where M 
\a b) 

Replacing M by its transpose and using (5.1), we obtain a plane coordi-
natized by one of the semifields discovered by Knuth [8] (cf. [2, 5.3.6]). 

Remark. By [1], if an ovoid 12 of V consists of the points (0, 0, 0, 0, 0, 1 ) 
and (1, yj z, z,f(y), — z2 — yf(y)) for y, z £ K, then 12 is equivalent to 
(5.1) for some n and a. Presumably, the ovoids in (5.1) can all be charac­
terized in an analogous manner. 
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6. Ree-Tits ovoids. Let K = GF(q) and V = K\ where q = 32e~K If 
a Ç K set a* = az\ so that a°2 = a3. Equip V with the quadratic form 
QipCi) = x4

2 + X1X7 + x2x6 + XsXs- The Ree-Tits ovoid 12 consists of the 
q3 + 1 singular points 

( 0 , 0 ,0 ,0 ,0 ,0 , 1) 

(1, x, 3>, 2,2/, */, w) with x, y, s G i£, 

where 
u == x2y — xz + ya — xa+3 

v = #*<y«- — 2;°" + xy2 + yz — x2ff+3 

w = %za — x<T+13'<T — xa+3y + x2;y2 — ^ff+1 — z2 + x2<r+4 

([14]). The Ree group i?(<z) acts 2-transitively on 12, and has exactly 3 
orbits of singular points of V; orbit representatives are (0, 0, 0, 0, 0, 0, 1 ), 
(0, 0, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 1, 0, 0). The second and third of these 
produce the following 5-dimensional ovoids: 

(6.1) 

and 

(0 ,0 ,0 ,0 ,1) 

(l,y, z, y°, - y'+1 - z2) with y, z (= K; 

(6.2) 
(0 ,0 ,0 ,0 ,1) 

, x, z, — z — x ,xz— z + x ) with x, s G A. 

Ovoid (6.1) appears in Section 5 (with n = — 1 and r = 1). 
Ovoid (6.2) gives rise to 4-dimensional symplectic spread. If q = 3, the 

resulting plane is desarguesian ; if q > 3 it is not. A Frobenius group of 
order q(q — 1) acts on the ovoid, with orbits of length 1, q and q(q — 1). 
This group is generated by the following orthogonal transformations 
(where b G K and k G K*): 

(t, x, zf v, w) —> (/, x, y + bt, v — bct, w + b°x + bz + b2t) 
and 

(t, x, 2, v, w) —> (f, foe, fo^2, &2<r+3z;, &2<r+%). 

Its Sylow 3-subgroup contains no dations. 
A further class of planes arises from 12 using nonsingular points of V. 

There is just one R(q)-orbit of nonsingular points n of V such that 
nL C\ V is an 12+ (6, q) space. One such point is n = (0, 0, 0, 1, 0, 0, 0) 
(which is perpendicular to the totally singular 3-space ((0, 0, 0, 0, 0, 0, 1), 
(0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0, 0))). This produces an ovoid nL Pi 12. 
Projecting into six dimensions, we obtain the ovoid 

(0 ,0 ,0 ,0 ,0 ,1 ) 

, x, y, x y + y —x , x y + xy — x 
<T+1 a I <r+3 | 2 2 <r+l , 2<r+4\ - , i ~ Tr 

— x y + x y + x y — y + x ) with x,y £ K. 

(6-3) „ „ 2 . <r <r+3 <r a . 2 2cr+3 
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Even when q = 3, this ovoid spans the 6-space (compare Section 3) , so 
t ha t we obtain a nondesarguesian plane for each q. T h e Ree group only 
provides a collineation group of order q — 1, consisting of the orthogonal 
transformations 

(/, x, y, u, v, w) —• (/, kx, ka+ly, ka+zu, k2a+sv, k2<T+4w). 

7. D e s a r g u e s i a n ovoids . Let g be a power of 2. Set K = GF(q), 
F = GF(q*), and V = K 0 F © F 0 K. Equip V with the quadra t ic 
form Q(a, 0, a, d) = ad + T{fiy), where T : F —> K is the trace map . 

The following set of points is an ovoid 12 (compare [4, (8.1)]): 

( 0 , 0 , 0 , 1 ) 

(ltttt^\N(t)) fort £ F, 

where N(t) = tl+M\ There is a group G = P 5 L ( 2 , ç3) of orthogonal 
transformations acting 3-transitively on 12. This group has exactly one 
further orbit of singular points, of which x = (0, 0, 1, 0) is a representa­
tive. Note t ha t 12' = xx C\ 12 consists of the points 

( 0 , 0 , 0 , 1) 

( 1 , / , tq+q2,N(t)) where T(t) = 0. 

The stabilizer of x in G has order q2(q — 1). I ts subgroup of order q2 con­
sists of all t ransformations 

(a, 13, 7, d) -> (a, as + 0, a s ^ 2 + j3Qsq2 + 0«V + y, 

aN(s) + T((3sq+q2) + T(ys) + d) 
with T(s) = 0. 

T H E O R E M 7.1. If q > 2 then A (12') zs a nondesarguesian semifield plane 
of order q2. 

Proof. T h e plane is nondesarguesian since dim (12') = 7. In order to 
prove t h a t it is a semifield plane, it suffices to show tha t P induces the 
identi ty on (x, y)L/{x, y), where y = (0, 0, 0, 1). Here, (x, y)1- consists of 
all vectors (0, 0, y, d) such t h a t T(fi) = 0. I t then suffices to note t h a t 
0*V + Pqsq2 G K whenever T(p) = 0 = T(s). (Namely, 

((3sQ + l3qs)Q = pQsq2 + j3q2sQ = (3q(s + s9) + (0 + 0*)*' 

= 05* + 0*5.) 

Remark 1. T h e plane A (12') of order g2 has been constructed using 
GF(qz). This unusual means of describing a plane of order g2 is remark­
able, in view of the following relationship between 12 and AG(2, qz). 

If r is a suitable triali ty map , then 12r is the orthogonal spread which is 
called desarguesian in [4, 5 ] ; one of its intersections with a nondegenerate 
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hyperplane arises from the usual AG{2, qz) spread. For this reason, 12 
deserves to be called the desarguesian ovoid in V. 

Remark 2. A presemifield for this plane can be described as follows. 
Let W = Ker T. Then F = K 0 W; let T denote the corresponding pro­
jection onto W. Fix a basis <r, r of W. Then 

(aa + br) >r = (ar + brM2)ir 

defines the desired presemifield on W (where a, b G K, r £ W). 

8. Dye's ovoid. Exactly one further 12+(8, a) ovoid is presently known. 
It is an 12+ (8, 8) ovoid 12, discovered by Dye [3, § 4]. 

Let {{ef)\l S i S 9} be an 12+(8, 2) ovoid; then£?«i et = 0 (cf. Section 
3). Embed the 12+(8, 2) space into an 12+(8, 8) space. If 0 G G F (S) and 
03 + <£2 + 1 = 0 , then 12 consists of the points 

<<?<>, 1 ^ *' ^ 9, 
(0e* + </>2e,- + 04^) with i, j , k distinct. 

Clearly, PTO+(8, 8)« ^ 59 X Z3 (with Z3 fixing each ef) ; in fact, these 
groups coincide (cf. [4, § 9]). Set G = A9 X Z3. If y is a singular point not 
in 12, then Ĝ  acts on A(y-L P\ 12). We will mention properties of A(y± P\ 12) 
for four choices of y. 

Example8.1. y = (e6 + 7̂ + £s + e9). Here, ( y x n 12) = (^1,^2,^3,^4,^5), 
A(y-L P\ 12) is desarguesian, and Gy induces 55 on A(y± P\ 12). 

Example 8.2. y = (e6 + e7 + <t>e* + 4>-1 e9>. If Û' = 3H- H 12, then 
A(12') has the following properties. 

(i) A(12') is a nondesarguesian plane of order 82. 
(ii) There is a collineation group SL(2, 4) fixing 7 subplanes of order 4 

containing 0 which are permuted transitively by the homologies of A (12') 
with center 0. 

(iii) Z7 X SL(2, 4) acts irreducibly on the 4-dimensional G F (8) -space 
underlying A (12') ; the representation is exactly the same as for A G (2, 43). 

(iv) All involutions in 5L(2, 4) are elations. 
(v) 5L(2, 4) has orbit lengths 5, 20, 20, 20 on Lœ. 

(vi) There is a collineation group S$ whose transpositions are Baer in­
volutions and whose orbit lengths on Lœ are 5, 20, 40. 

(vii) Elements of order 3 of SL(2, 4) fix exactly 8 points on Lœ. 

Proof. Here 12' consists of the 65 points spanned by the following vectors 
(where i, j ^ 5, i 9^ j) 

<t>4et + <t>2e8 + 0e9 

<t>2ei + ^ej + (j)e8 

4*i + 4% + <t>2e6 

<t>et + tfej + 02e7. 
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The first 5 of these vectors have sum $4(tf6 + e7 + <j>e8 + <t>~le<è), and hence 
determine the subplanes appearing in (ii). Since Gy induces Sb on A(Œ'), 
all remaining assertions also follow easily from the above list of vectors. 

Remarks. 1. There are many other subplanes of order 4. Since 

<t>4eb + <t>2es + 0e9 = 4>40i + e2 + e3 + e4) 

+ 04Oe + e-j + <t>e8 + «"^g), 

these can be obtained, for example, by using (wi,w2, ̂ 3,^4, </>4 ô + </>2£s + #£9) 
whenever #1, u2, Vz, v\ are among the above 65 vectors and 

U\ + u2 G (ei + e2 + a(e6 + e7)) and 

3̂ + VA 6 (̂ 3 + 4̂ + a(e6 + e-i) ) 

for some a G GF(8). There are several different ways to choose the pairs 
\uu u2) and {*/3, v±). 

2. A more compact description of A (12') can be obtained as follows. Set 

s = ei + e2 + e3 + £4 + ^5, /* = e* + s for 1 :g t ^ 5, and 

g* = efc + 05 for fe = 6, 7. 

Then 

y^ = y J_ (fi,/2>/8,/4,/6> J. fe, g7> 

with 

QttO = 0 = (ftt gk), (fufj) = 1 = (g6, gy) for i ^ J, 

<2fe) = </> and / 1 + / 2 + / 3 + / 4 + / 5 = 0. 

The ovoid of (/1, /2, /3, /4, /s, g6, £7) upon which Î2' projects consists of 
the points 

(ft), <4fi + <t>4fj + **&>, Wi + tffj + 03(£6 + £7)> 

with i,j ^ 5, i ^ j , and k = 6, 7. 

3. It follows readily from the preceding remark that Aut A (12') = 
Z7 X So. 

Example 8.3. y = (e5 + e6 + tfr1*? + 0~2^s + 0~4^9>. Here, Gy ^ SA 

X Z3, where the Z3 is nonlinear, induces (7, 8, 9), and fixes exactly 5 
points of yL C\ £2: (et), 1 ^ i ^ 4, and (</>4e7 + 0̂ 8 + 0^9). Moreover, 
Gv induces 54 on each of the resulting 7 subplanes AG(2, 4). 

Example 8.4. y = (f>4 + e5) + *(«e + e7) + O + l)(e8 + e9)). 
Once again ( ^ H O ) = y1-. This time, Gy ^ Z2

2 X 53 ; its Sylow 2-sub-
groups induce exactly 6 Baer involutions and 1 nontrivial elation. 
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9. Concluding remarks. 1. Most of the automorphism group of each 
of the planes studied in [4, 5] could be obtained using the associated 
orthogonal spread. However, for the planes discussed here the groups 
induced by Aut A and TO+(8, q)a on Lœ need not coincide (cf. (3.2) and 
(8.1)). It would be desirable to know how close they are in each case we 
have discussed. 

2. We have surveyed all the known 12+(8, q) ovoids. Are there further 
examples? 

3. Presumably, planes of the form A(xJ- Pi 12) have intrinsic properties 
not shared by most translation planes. However, I know no such property. 

4. The duals of the planes (4.5) with q = 2 (mod 3) can be derived so 
as to obtain planes of type II.1, as in [10]. 
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