
BULL. AUSTRAL. MATH. SOC. 90C29, 90C30

VOL. 67 (2003) [429-443]

5-STRICTLY QUASI-CONCAVE VECTOR MAXIMISATION

HONG-BIN DONG, XUN-HUA GONG, SHOU-YANG WANG AND LUIS COLADAS

In this paper, we discuss the relationship among the concepts of an 5-strictly qua-
siconcave vector-valued function introduced by Benson and Sun, a C-strongly quasi-
concave vector-valued function and a C-strictly quasiconcave vector-valued function
in a topological vector space with a lattice ordering. We generalise a main result
obtained by Benson and Sun about the closedness of an efficient solution set in mul-
tiple objective programming. We prove that an efficient solution set is closed and
connected when the objective function is a continuous 5-strictly quasiconcave vector-
valued function, the objective space is a topological vector lattice and the ordering
cone has a nonempty interior.

1. INTRODUCTION

In vector optimisation, the closedness and connectedness of an efficient solution set
is an interesting topic (see [2]). But very few researchers have studied the closedness of
an efficient solution set for a vector optimisation problem (see [5, 11, 13]).

On the other hand, many authors investigated the following open problem: whether
the efficient solution set is connected when the objective function / = (fi, / 2 , . . . , /„) is
strictly quasiconcave (that is, for each i e {1,2, . . . , n } , the real-valued function /< is
strictly quasiconcave) on a convex compact set A (see [1, 3, 4, 8, 12]).

In an infinite dimensional space, Fu and Zhou [6, 7] investigated the connectedness of
the efficient solution set for a C-strictly quasiconcave vector optimisation problem under
the condition that the efficient solution set is closed. Fu and Zhou [7] gave an example
to illustrate that even if the objective function is continuous and C-strictly quasiconcave
and the feasible set is compact, the efficient solution set is not necessarily connected.

Recently, Benson and Sun [2] introduced a new concept for a strictly quasiconcave
vector-valued function. This concept is an important tool for studying closedness and
connectedness of the efficient solution set for a strictly quasiconcave vector optimisation
problem.
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In this paper, we discuss the relationship among the concepts of an 5-strictly quasi-
concave vector-valued function introduced by Benson and Sun [2], a C-strongly quasi-
concave vector-valued function and a C-strictly quasiconcave vector-valued function in
a topological vector space with a lattice ordering. We generalise a main result obtained
by Benson and Sun about the closedness of an efficient solution set in multiple objec-
tive programming. We prove that an efficient solution set is closed and connected when
the objective function is a continuous S-strictly quasiconcave vector-valued function, the
objective space is a topological vector lattice and the ordering cone has a nonempty
interior.

2. DEFINITIONS AND LEMMAS

Let A" be a real topological vector space and Y be a. real ordered vector space whose
partial order is introduced by a closed convex pointed cone C. We write

yi ^ y2 if and only if y2 - j/i 6 C

and
?/i < j/2 if and only if y2 - 2/1 S int C,

for any 2/1,2/2 € Y.

For any 2/1,2/2 € Y, let inf{2/1,2/2} denote the infimum of 2/1,2/2, that is, j/t
€ inf{yuy2}+C,i = 1,2, and if?/ € Y with y{ Gy + C,i = 1, 2, then mi{yuy2} €y + C.
In other words, inf{5/1,3/2} is the largest lower bound of the set {2/1,2/2}- Since C is a
pointed cone, inf{yi,y2} is unique. Let sup{yi,y2} denote the supremum of 2/1,2/2- An
ordered vector space Y is called a vector lattice if inf{3/1,3/2} and sup{yi,y2} exist for
each pair (2/1,2/2) € Y x Y.

Define \y\ = sup{2/, -y}. A subset B of a vector lattice Y is said to be solid if
b 6 B and \y\ ^ \b\ imply that y £ B. Let Y be a topological vector space with a lattice
ordering. We say that Y is locally solid if the solid neighbourhoods of 0 form a local
base. A Hausdorff topological vector space Y is said to be a topological vector lattice if
Y is locally solid (see [9, 10]).

Throughout the paper, we always assume that X is a real topological vector space
and Y is a topological vector space with an ordering cone C.

Now we consider the following vector optimisation problem:

(VOP) max{/(x) :xGA},

where A is a nonempty subset in X and / : A —> Y is a vector-valued function.

E(f(A), C) denotes the set of all the efficient points of f{A), and E(A, f, C) denotes

the set of all the efficient solutions of vector optimisation problem, that is,

E(f(A),C) = {ye f(A) :(y + C)n f(A) = y}
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and
E(A,f,C) = {x€A: f(x) £ E(f(A),C)}.

Let F denote a set-valued map from B C Y to X with F(y) ^ 0 for all y £ B.

We say that F is lower semicontinuous at j/o € 1? if for any net {ya : a £ 1}
converging to y0 and any x0 £ F(y0), there exists a net {xa : a £ / } such that xQ e F(ya)
and {a;Q : a 6 / } converges to XQ. We say that F is lower semicontinuous on B C K if F
is lower semicontinuous at every point y £ B.

DEFINITION 2.1: Let Ac Xbe convex, and let h be a real-valued function defined
on A. Then h is said to be

(a) quasiconcave on A if h(tx\ + (1 — ija^) ^ min{/i(xi), /i(a;2)} for any X\,x2

€ > M € (0,1);

(b) strictly quasiconcave on 4 if /i(izi + (1 - t)x2) > min{h(xi),h(x2)} for
any xu x2 £ A, h{xi) ^ h(x2), t £ (0,1).

Benson and Sun [2] introduced the following concepts:

DEFINITION 2.2: Let f(x) - (fi{x), f2(x),..., fP{x))T be a p-dimensional continu-
ous vector-valued function defined on the convex set A c Rn. Then / is said to be

(a) quasiconcave on A when the level set M(y) = {x £ A : f(x) ^ y} is convex

for any y £ Rp satisfying M(y) ^ 0;

(b) strictly quasiconcave on A when / is quasiconcave on A and the set-valued

mapping M(y) = {x 6 A : f{x) ^ y} is lower semicontinuous on G

= {y€RP: M(y) # 0}.

REMARK 2.1. The concept of a strictly quasiconcave vector-valued function introduced
by Benson and Sun is an important tool for studying the closedness of an efficient solution
set. When p = 1, the equivalence between Definition-2.2 (a) and Definition 2.1 (a) is well
known. When X — Rn, Benson and Sun [2] pointed out if the real-valued function / is
continuous, then Definition 2.1 (b) is equivalent to Definition 2.2 (b). But for the general
case, it is still an open question whether Definition 2.1 (b) is equivalent to Definition 2.2
(b).

Now we extend the above concepts to a topological vector space. In order to avoid
any misunderstanding, we give the name of an S-strictly quasiconcave function.

DEFINITION 2.3: Let A be a nonempty convex subset of X. A vector-valued function
/ : A -t Y is said to be

(a) quasiconcave on A when the level set M(y) — {x 6 A : f(x) > y} is convex

for any y €Y satisfying M(y) 7̂  0;

(b) S-strictly quasiconcave on A when / is quasiconcave on A and the set-

valued mapping M(y) = {x € A : f(x) ^ y] is lower semicontinuous on

G = {y £ R» : M{y) ^ %}.
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We also need the following concepts.

DEFINITION 2.4: (See [6].) Let Y be a topological vector lattice with the ordering
cone C. A vector-valued function / : A C X —> Y is said to be

(a) C-strictly quasiconcave when / is quasiconcave and

f(txx + (1 - t)x2) G int{f(Xl), f(x2)} +C\{0}

for any xx,x2 G A, f(xx) =£ f(x2), and t G (0,1).
(b) C-strongly quasiconcave when / is quasiconcave and

f(txx + (1 - t)x2) G inf{/(xi), f(x2)} + intC

for any xx,x2 € A, xx ^ x2, and t G (0,1).

REMARK 2.2. It is easy to see that / is quasiconcave if and only if

f(txx + (1 - t)x2) G inf{f(xx), f(x,)} + C,

for any xx,x2 € A, and t G (0,1).

Let Y be a topological vector lattice with the ordering cone C. Let e 6 int C. Define
a real-valued function from Y to i? by

(1) g(y) = sup{* € R : ?/ G te + C}, y£Y.

This function is well defined and has the following properties.

L E M M A 2 . 1 .

(i) min{g(yx),g(y2)} < 9(inf{yuy2});

(ii) £ is increasing, that is, ifyx ^ y2, then g(yx) < ff(y2);

(iii) g is strictly increasing, that is, ifyx < y2, then g(yx) < g(y2);

(iv) g is continuous.

P R O O F : It is similar to the proof of [5, Lemma 1-4]. D

LEMMA 2 . 2 .

(i) inf{t/i + u, 7/2 + u} = u + inf{yx, y2}, for any yx, y2, u€Y.

(ii) Ifyx,y2 € intC, then inf{yx,y2} G intC.

P R O O F : (i) is evident.

For (ii), let yx,y2 G intC, then there exists a neighbourhood U of 0 such that

For any u G U, we have y,- + u G C, i = 1,2. Therefore,

inf{yx,y2} + u = M{yx +u,y2 + u} G C
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It follows that
mi{yuy2} + UcC.

This means that inf {2/1,2/2} € intC. D

LEMMA 2 . 3 . If f : A C X —• Y is an S-strictly quasiconcave vector-valued func-
tion, then g o f is an S-strictly quasiconcave real-valued function, where g is defined by

PROOF: First, we would like prove that L(r) = {x € A : g o /(x) ^ r} is convex for
any scalar r € R satisfying L(r) ^ 0. Let 11,12 € I<(r), then

(2) gof(xi)^r,gof(x2)^r.

Let y = inf{/(a;i),/(a;2)}, then /(xi) ^ y,f(x2) ^ y, and 11,12 € {x e /I : /(x) ^ j/}.
Since / is quasiconcave, {x e A: f(x) ^ y} is convex. Therefore, we have

txl + {l-t)x2e{xeA:f{x)^y}, for all t e ( 0 , l ) ,

that is,

(3) / ( t n + (1-0*2) ^ y = inf{/(xi),/(x2)}.

It follows from (2), (3) and Lemma 2.1 that

r < min{s o f(Xl), g o /(x2)} ^ g(ini{/(xi), /(x2)}J

), for all t e ( 0 , l ) .

Hence, tx\ + (1 - t)^2 € £(r), for all t e (0,1). This means that L(r) is convex, and
therefore, g o / is quasiconcave.

Now we show that L(r) is lower semicontinuous on G' — {r 6 it : L(r) / 0}.
Suppose that the net {ra : a € /} converges to r* and x* € L(r*), then

(4) ffo/(i')^r'.

We define
M(y) = {x 6 A : /(x) ^ »}, y e F

and
2/a = /(1*) + (fo - r*)e, for all a € /.

Thus, yQ -¥ f(x*) and x* € M(/(x*)). Since / is S-strictly quasiconcave, there exists a
net {xa : a £ /} such that xQ € M(yQ) and xa -» x*. We have /(xQ) ^ yo. Since 5 is
increasing, we have

(5) 9°f(xa)^g(ya)-
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Noting that (4), (5) and

= sup{t e R : f(x') + (ra - r*)e 6 te + C)

= supjt 6 R : f(x') e[t- (ra - r')]e + c

= ra-r*+gof(x'),

we obtain

ya) = ra-r* +go f(x') *f ra - r* +r* = ra

Hence, xa € L(ra), a € I and xa —> x*. This implies L(r) is lower semicontinuous on G'.

By Definition 2.3, go f is 5-strictly quasiconcave on A. D

Benson and Sun [2] had the following result:

Let h be a continuous real-valued function defined on the convex set A C R". If h is
quasiconcave on A and L(r) = {x G A : h(x) ^ r} is a lower semicontinuous set-valued
mapping on G' = {r 6 R : L(r) ^ 0}, then h is strictly quasiconcave on A.

In order to investigate the connectedness of an efficient solution set in a topological
vector space, we need to extend the above result to a topological vector space.

LEMMA 2 . 4 . Let Abe a convex subset of topological vector space X. Ifh : A -> R
is a continuous and S-strictly quasiconcave function, then h is a strictly quasiconcave
function.

PROOF: Assume that h is a continuous 5-strictly quasiconcave real-valued function
on A. Suppose to the contrary that h is not strictly quasiconcave on A. Then there exist
xx,x2 £ A with h(xx) ^ h(x2) and t0 e (0,1) such that

h(toxi + (1

Let x° = toxi + (1 - to)x2 and h(x{) < h(x2). We have

h(x°) ^ h(Xl).

On the other hand, since h is quasiconcave,

h(xo)^mm{h(x1),h(x2)}.

We get

(6) h{x°) = h{Xl).

By the quasiconcavity of h, we have

(7) /i(te, + (1 - t)x°) > min{/i(n), h(x0)} = h{x°), for all * e (0,1).
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First, we prove h(txi + (1 - t)x°) ^ h(x°) for all t G (0,1). Suppose to the contrary that
there exists i G (0,1) such that

h(t'xi + (1 - t')x°) > h(x°).

Let x0 = t'xi + (1 - t')x°, then

(8) h(xQ) > h(x°).

Obviously, there exists ti G (0,1) such that

x° — tixo + (1 - ti)x2.

By the quasiconcavity of h, we have

(9) h(x°) >mm{h{xo),h(x2)}.

If h{x0) ^ h(x2), by (9), h(x°) ^ /i(x2) > h(xi), which contradicts (6). If h{x0)

< h(x2), by (9), we have h(x°) > /i(a;o), which contradicts (8). Hence,

(10) h(txx + (1 - i)x°) ^ h{x°), for all t G (0,1).

By (7), (10) and (6), we have

(11) h(txl + (l-t)x°)=h{x°) = h(x1), for all t G ( 0 , l ) .

Next, we show that there exist x* G (xi,x°) and a neighbourhood U(x*) of x* such
that

h(u) ^ h{x') for all u G tf(x*).

Since h(x2) > /i(xi), fl/2(/i(xi) + h(x2)),h(x2) + l j is an open neighbourhood of
h(x2) and h is continuous at x2) there exists an open neighbourhood U(x2) of x2 such
that

i(ft(xi) + /i(x2)) < h(x), for all x G £/(x2).

Hence,

(12) /i(*i) < J(M^i) + M^)) <M^). fora11 x

Pick x* G (x!,x°) - {tei + (1 - t)x° : t G (0,1)} and x " G (x°,x2) = {tx° + (1 - t)x2 :

t G (0,1)} such that

x (x

By (11) and (12),
h(x') < h{x), for all x G U{x2).
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Let

JB = X° + U { { « ( X - X ° ) : X € U(X2)} : - 1 ^ * ^

It is clear that x° + t(U(x2) - x°) C B, for each - 1 ^ t s% 0.
To show x* G intS. By x° = l/2(x'+x**) andx" = tx° + (l-t)x2, where 0 < t < 1,

we have
2x° - x* = tx° + (1 - t)x2.

Hence,
x* = - ( 1 - t)(x2 - x°) + x° e - (1 - t) [U{x2) - x°] +x°cB.

This means that x* € intB.
Since h is continuous at x* and (h(x') - l,l/2(/i(x*) + h(x2))j is an open neigh-

bourhood of h(x*), there exists a neighbourhood t/(x*) of x* such that U(x*) C B and

/»(u) < i ( / i ( i ' ) + h(x2)), for all u € I/(x').

This, together with h(x*) = h(xi) and (12), yields that

(13) h(u) < h{x), for aU u € l/(x') and for all x € U(x2).

Assume that there exists u € U(x*) such that

(14) h{u) > h{x*).

It follows from u € U{x*) C B tha t u - t(x~x°) + x°, where - 1 < t ^ 0 and x G f/(x2).

We have

Since x* € (xi,x°) and by (11), h(x') = h(x°). By the quasiconcavity of h, (13) and
x € U(x2),

h{x*) = h{x°) > min{/i(u),/i(x)} = h(u),

which contradicts (14). Hence, we have

(15) h(u) < h{x*) for all u e f/(x*).

Finally, we show that h is not 5-strictly quasiconcave on A. Let r* — h(x'), then

x* €L(r*) = {i€i4:fc(a:)^»-*}.

Let rn = l/n[h(x2)] + (1 - l/n)/i(x*). Thus, rn -^ r*.
It is clear that {rn} is a net and /i(x2) ^ rn. We know that {rn} C & = {r € R :
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For any sequence {xn} satisfying xn e L(rn), we have

(16) h(xn) >rn>r*= h(x').

By (15) and (16), {xn} can not converge to x*. Hence, L(r) is not lower semicontinuous
at r* 6 G'. This means that the real-valued function h is not 5-strictly quasiconcave on
A.

This contradicts the assumption that h is an 5-strictly quasiconcave function on A.
Therefore, h is strictly quasiconcave. D

3. RELATION AMONG VARIOUS QUASICONCAVITIES

The concept of an 5-strictly quasiconcave vector-valued function is a key tool for
us to study the closedness and the connectedness of an efficient solution set. First we
discuss relation among 5-strictly quasiconcave, C-strongly quasiconcave, and C-strictly
quasi-concave vector-valued functions.

THEOREM 3 . 1 . Let Y be a topological vector lattice with the ordering cone C.
If f : A C X -> Y is a continuous and C-strongly quasiconcave function and A is a
compact convex set, then f is S-strictly quasiconcave on A.

PROOF: Suppose that / is not an 5-strictly quasiconcave function on A, then
M(y) = {x 6 A : f(x) ^ y} is not lower semicontinuous on G = {y : M{y) ^ 0}. Hence,
there exists y* € G such that M(y) is not lower semicontinuous at y*. By the definition,
there exist x* € M(y*), an open neighbourhood U(x*) of x* and a net {ya : a € 1} C G
such that ya —>• y* and

(17) M(yo) n U(x') = 0, for all a el.

Pick xa € M(yQ), for each a £ I. We have

(18) f(xa) > ya, for all a € I.

Since {xa} C A and A is compact, we can assume that xa —> io 6 A. Taking the
limit on both sides of (18), we get

f(xo) > y',

since / is continuous and ya -¥ y*.

If xo = %*> * n e n xa —> x*. Since U(x*) is a neighbourhood of x*, there exists a<j € /
such that xa € U(x*), for all a~^ a0- Hence,

xa€M(ya)nU(x'),

which contradicts (17).
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If x0 ^ x*, since / is C-strongly quasiconcave and f(x0) ^ y* and f(x*) ^ y", we
have

f[(l/k)x0 + (1 - l/k)x*] 6 inf{/(xo),/(z*)} + i n t C G y" + intC.

Let uk = (l/k)x0 + (1 — l/k)x*, then u* -> x* as A; —» oo, and

(19) f(uk) - y* G int C, for all jfc = 1,2,...

Pick A; such that uk G t/(i*). For this k, it follows from (19) that there exists a
symmetric neighbourhood £/(0) of 0 such that

Since T/Q —>• j / * , there exists an a such that

va - y' e tf(0).

Therefore,

/(«*) - 2/a = /(ufc) - y* - (ya - y*) G f(uk) - y* + U(0) C C.

We obtain that f(uk) ^ ya, and hence uk € M(t/a) n U(x*), which contradicts (17).
Therefore, / is 5-strictly quasiconcave. D

REMARK 3.1. It is clear that an 5-strictly quasiconcave function is not necessarily C-
strongly quasiconcave.

In order to prove that an 5-strictly quasiconcave function is a C-strictly quasiconcave
function when the ordering cone C has a nonempty interior, we need the following lemma.

LEMMA 3 . 1 . Let Y be a topoiogical vector lattice with the ordering cone C. If

j/i, j/2 € int C, 2/1 ^ 2/2, then there exists a function

g(y) = sup{t 6 R:y£te + C}, y&Y,

such that 5(2/1) ^ 5(2/2), wiere e € i n t C

PROOF: By 2/1,2/2 € int C, and yx ^ 2/2, we have either 2/1 < 2/2, or 2/i ^ 2/2 + C1 and

2/2^2/ i+ C. We can pick y' G 1/1 + intC and y" 6 2/2 - intC, such that y ,y" G intC

and 2/1 £ 2/" + C.
Let e = inf{y ,y"}. By Lemma 2.2, e € i n t C Denote

g(y) = sup{t G R:yete + C}, y€Y.

It is clear that g satisfies the properties stated in Lemma 2.1. Since e = inf{y',2/"}

< y" < 2/2 and g is strictly increasing, 1 = s(e) < 5(2/2)-
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I f 9{yi) < 1, then g(yi) ± g(y2). Suppose that 3(2/1) ^ 1, then yx € g{y\)e + C,
therefore, j/i € e + C. We obtain

e < inl{yuy"} ^ ini{y',y"} = e,

Hence,
e = mi{yuy"} = inf{?/',t/"}.

Since yx < y and 7/1 ^ y" + C, we have

e = inf{i/i,y»} <y',e ^y" and e^y".

Therefore, j / ' = e + Co and y" = e + c, where Co € int C, c 6 C\{0}.

By Lemma 2.2, we have

inf{?/',y"} = inf{e + co,e + c} = inf{co,c} + e.

By c0 S int C, there exists a symmetric neighbourhood U(0) of 0 such that CQ + U(0) c C.
Since there exists 0 < t < 1 such that - t c € £/(0), we have

inf{co, c} ^ inf{co - tc + tc, tc}.

Since Co - tc 6 Co + C/(0) C C,
Co -tc + tc^ tc

and
inf{co,c} ^ tc^O.

Therefore,
inf{y',y"} - e - inf{co,c} € C\{0}.

This contradicts that e = inf{?/',j/"}. Hence, we have g(yi) < 1 < 5(2/2)- The proof is
completed. D

REMARK 3.2. It is easy to see that for any fixed b € Y, the function h(-) = /(•)
+ 6 is 5-strictly (C-strictly) quasiconcave if and only if /(•) is 5-strictly (C-strictly)
quasiconcave. If intC ^ 0, A is a compact convex subset of X and / : A —¥ Y is
continuous, then there exist c e int C, a neighbourhood f/(0) of 0 and t > 0 such that

c+[ / (0) C intC

and
f(A) C tt/(O).

Therefore,
tc + f{A) C tc + tU(0) = t(c + U(0)) CfmtC C intC.

Let h(x) =tc + f{x),x € A.
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Then, h(A) C intC. As mentioned above, h(x) and f(x) have the same S-strictly
(C-strictly) quasiconcavity on A.

THEOREM 3 . 2 . Let Y be a topological vector lattice with the ordering cone C. If
intC 7̂  0, A is a compact convex subset ofX, and if f : A C X -» Y is continuous and
S-strictly quasiconcave on A, then f is C-strictly quasiconcave on A.

PROOF: By Remark 3.2, we can assume that f{A) C intC. If / is not C-strictly
quasi-concave, then there exist xx,x2 € A with f(xi) / f(x2) and t0 € (0,1) such that

(1 - to)x2) i inf{/(n), f(x2)} + C\{0}.

Since / is quasiconcave and by Remark 2.2,

/ ( t on + (1 - to)x2) e inf{/(si), /(i2)} + <7.

It follows that
+ (1 - to)x2) = i

Let z° = toxi + (1 — to)x2, then

/(xo)=inf{/(x1)J /(a :2)}.

Since f{x\) / /(a;2) and f(xi),f(x2) € intC, by Lemma 3.1, there exists

g(y) = sup{t € R:y£te + C}, y&Y,

where e € intC and g o f(x\) ^ go f(x2). By Lemma 2.1, we have

(20) 5(inf{/(x1),/(x2)}) =g°f(x°)>min{gof(x1),g°f{x2)}.

On the other hand, we have f(x°) ^ /(xi) and /(x°) ^ /(x2). Since g is increasing,
we have g o f(x°) ^ g o f(xi) and g o f(x°) ^ g o f(x2). Hence,

(21) g o /(x°) ^ min{5 o f(Xl), g o /(x2)}.

FVom (20) and (21), we obtain

(22) g o f(x°) =go f(toxl + (1 - to)x2) = min{g o }{x{),go }{x2)}.

By Lemma 2.3 and Lemma 2.4, g o / is a strictly quasiconcave real-valued function.
Noticing that ff o /(xi) j ^ j o /(x2), we have

{l -to)x2) >mm{gof(Xl),gof(x2)},

which contradicts (22). Hence, / is C-strictly quasiconcave on A.
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The following example shows that a C-strictly quasiconcave vector-valued function
is not necessarily strictly quasiconcave.

EXAMPLE 3.1. Let C = R\ C R2 and / = (fu /2) : [-1,1] -> R2, where

It is clear that / is C-strictly quasiconcave. If / is 5-strictly quasiconcave, by [2, The-
orem 2.4.], / i must be a strictly quasiconcave real-valued function. But, f\ is not a
strictly quasiconcave function, which is a contradiction. Therefore, / is not S-strictly
quasiconcave.

4. CLOSEDNESS AND CONNECTEDNESS

THEOREM 4 . 1 . Let A be a compact convex subset of topological vector space X
and let Y bea topological vector lattice with the ordering cone C. Assume that f : A —>Y
is a continuous S-strictly quasiconcave function, then E(f(A),C) and E(A,f,C) are
closed.

PROOF: Let a net {ya : a € / } C E(f(A),C) and ya —> y0. Since / is continuous
and A is a compact set, f(A) is compact. Since C is a closed convex pointed cone, the
topology of Y is Hausdorff (see [9]), so f(A) is closed. Thus, there exists x0 6 A such
that y0 = f(x0) € f(A). If y0 £ E(f(A),C), then there exists x° € A such that

Let
M(y) = {xeA: f(x) >y}, ye Y.

We have M(/(z0)) ^ ®- Since / is S-strictly quasiconcave, by Definition 2.3, M(y) is
lower semicontinuous at f(xo)- Noticing that ya —> j/o = fixo) and x° € M(/(xo)), by
the lower semicontinuity of M, there exists a net {xa : a € / } such that xa 6 M(ya) and
xa -» x°. We have

(23) f{(xa))>ya, for all a el.

Since f(x°) ^ / ( io) and Y is Hausdorff, there exist a neighbourhood U(f(x0)) of
f{xQ) and a neighbourhood C/(/(x0)) of f(x°) such that

(24) U{f(x°))nU(f(xo))=<D.

Since j / a —• y0 = f(xo) and / ( i a ) —> f{x°), there exists 3̂ 6 / such that

f(xa)eU{f(x0)) and yQ
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By (24) and (23),

(25) f{xa) / ya and f{xa) ^ ya.

This follows that ya g E(f(A),C), which contradicts that ya e E(f(A),C). Hence,
E(f(A), C) is closed. It is easy to see that E(A, f, C) is also closed. D

Theorem 4.1 is a generalisation of [2, Theorem 3.3 ] which is one of the main result
in [2]. The conditions of Theorem 4.1 are general and our proof is direct.

LEMMA 4 . 1 . ([6]) Let Abe a. compact convex subset of topological vector space
X. Let Y be a topological vector lattice with ordering cone C. Assume that f : A —» Y is
a continuous, C-strictly quasiconcave function and E(f, A, C) is closed. Then E(f, A, C)
is closed and connected.

Combining Theorem 4.1, Lemma 4.1 and Theorem 3.2, we can immediately get the
following theorem.

THEOREM 4 . 2 . Let A be a compact convex subset of topological vector space X
and Y be a topological vector lattice with the ordering cone C. Assume that f : A—*Y
is a continuous S-strictly quasiconcave function and int C ^ 0, then E(f, A, C) is closed
and connected.
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