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We demonstrate a novel instability found within unconfined viscous bands/rims, or
free-surface flows involving a longitudinal viscosity contrast. Such instabilities may be
described as viscous banding instabilities, non-porous viscous fingering instabilities or
unconfined viscous fingering instabilities of free-surface flows involving the intrusion of
a less viscous fluid into a band of more viscous fluid. A consequence of this work is
that viscous fingering instabilities, widely known to occur in porous media following the
seminal work of Saffman & Taylor (Proc. R. Soc. Lond. A, vol. 245, 1958, pp. 312–329),
also occur in non-porous environments. Although the mechanism of the viscous banding
instability is characteristically different from that of the Saffman–Taylor instability, there
are important similarities between the two. The main similarity is that a viscosity contrast
leads to instability. A distinguishing feature is that confinement, such as the rigid walls of a
Hele-Shaw cell, is not necessary for viscous banding instabilities to occur. More precisely,
Saffman–Taylor instabilities are driven by a jump in dynamic pressure gradient, whereas
viscous banding instabilities, or non-porous viscous fingering instabilities, are driven by a
jump in hydrostatic pressure gradient, directly related to a slope discontinuity across the
intrusion front. We examine the onset of instability within viscous bands down an inclined
plane, determine conditions under which viscous banding instabilities occur and map out
a range of behaviours in parameter space in terms of two dimensionless parameters: the
viscosity ratio and the volume of fluid ahead of the intrusion front.
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1. Introduction

Instabilities associated with the intrusion of a less viscous fluid into a more viscous
fluid have been known to occur in numerous natural and industrial settings, following
the seminal work of Saffman & Taylor (1958). Notable examples of related phenomena
include the oil recovery industry (Orr & Taber 1984), carbon sequestration (Cinar, Riaz
& Tchelepi 2009), the printer’s instability (Taylor 1963), fingering of granular flows
(Pouliquen, Delour & Savage 1997), the dynamics of fractures (Hull 1999), morphological
instabilities in crystal growth (Mullins & Sekerka 1964; Langer 1989; Ben-Jacob & Garik
1990) and the growth of bacterial colonies (Ben-Jacob et al. 1992). Previous studies mainly
focused on viscous fingering instabilities within confined environments, such as porous
media, including Hele-Shaw cells (Saffman 1986; Homsy 1987), or poro-elastic media
such as elastic-walled Hele-Shaw cells (Pihler-Puzovic et al. 2012). These have been
studied extensively theoretically and numerically for immiscible flows (Stokes et al. 1986;
Lenormand, Touboul & Zarcone 1988; Zhang et al. 2011) and miscible (Paterson 1985;
Tan & Homsy 1988; Zimmerman & Homsy 1991; Sahu et al. 2009; Sharma et al. 2021),
inducing enhanced fluid mixing (Jha, Cueto-Felgueroso & Juanes 2011), double-diffusive
effects (Mishra et al. 2010; Mishra, Wit & Sahu 2012; Sahu 2013), complex fingering
patterns in non-Newtonian fluids (Bhaskar et al. 1992; Lindner, Coussot & Bonn 2000;
Schift et al. 2001; Lindner et al. 2002) and in the presence of simultaneous chemical
reactions (De Wit & Homsy 1999), and the need for various control mechanisms (Nase,
Derks & Lindner 2011; Al-Housseiny, Tsai & Stone 2012; Juel 2012).

It is the aim of this work to shed light on a related class of instabilities, which do not
occur within porous media. Such unconfined, free-surface flows relate to a wide range of
physical and industrial applications across engineering, geophysics and biophysics, such
as in the chemical, manufacturing or food industry, and in nature (Davis 1983; Bankoff
& Davis 1987; Oron, Davis & Bankoff 1997; Govindarajan & Sahu 2014). These include
nanofluidics and microfluidics, coating flows, geophysical flows including lava flows and
the dynamics of glacial ice sheets, intensive processing, tear-film rupture and surfactant
replacement therapy (Craster & Matar 2009).

Particularly, we demonstrate the formation of instabilities at the interface between a less
viscous fluid intruding into a more viscous fluid in gravity-driven free-surface flow down
an inclined plane. In comparison to viscous fingering instabilities in a simple example of
a porous medium, such as a Hele-Shaw cell, the setting considered here can be described
by removing the top plate of an inclined Hele-Shaw cell, so that the upper surface is a
free boundary. Such a setting may also be described in terms of the intrusion of viscous
bands or rims of differing viscosity, or as a non-porous viscous fingering instability. Its
characteristic features include free-surface flow and a longitudinal viscosity contrast across
an intrusion front. Certain subsets of these features may or may not be of relevance to other
instabilities examined previously in the literature. We discuss some of these below.

Firstly, in addition to inherent similarities to viscous fingering instabilities in porous
media, viscous banding instabilities are related to the instabilities found in the experiments
of Kowal & Worster (2015) of lubricated viscous gravity currents, and motivated by
the large-scale flow of glacial ice sheets lubricated by a layer of sub-glacial till, for
which effective viscosity ratios are large. The mechanism is explained in the stability
analyses of Kowal & Worster (2019a,b) in various limits. In contrast to viscous bands,
lubricated viscous gravity currents involve the flow of two superposed layers of viscous
fluid of differing viscosity involving a lubrication front, which becomes unstable to small
disturbances if the underlying, lubricating layer is less viscous than the overlying layer of
viscous fluid.
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Viscous banding instabilities: non-porous viscous fingering

It is important to note, however, that viscous banding instabilities are distinct from
instabilities formed at the nose of a thin film of viscous fluid down slope (Huppert
1982a; Troian et al. 1989), even though both involve the free-surface flow of thin viscous
films. Viscous banding instabilities are also distinct from any other free-surface flows of
superposed layers of viscous fluid.

What distinguishes this instability from Saffman–Taylor fingering in a channel or porous
medium is that the former is driven by a jump in dynamic pressure gradient (e.g. Saffman
& Taylor 1958; Saffman 1986), whereas this instability is driven by a jump in hydrostatic
pressure gradient, associated with the change in slope of the upper, free surface near the
intrusion front.

In order to explore the fundamental mechanism of viscous banding instabilities, we use
lubrication theory to develop a fluid-mechanical model involving the free-surface flow of
two viscous fluids spreading under their own weight over a smooth, rigid inclined plane.
We take into account viscous and buoyancy forces and assume that the horizontal length
scale is much greater than the vertical length scale of the flow. We assume that inertial
effects and the effects of mixing and surface tension at the interface between the two
viscous fluids are negligible. Although we are primarily interested in the case in which the
viscosity of the intruding fluid is smaller than that of the fluid ahead of the intrusion front,
the applicability of our model extends to general viscosity ratios. These, however, do not
become unstable if the viscosity of the intruding fluid is sufficiently large.

We begin with a theoretical development of the fluid-mechanical model in § 2, including
a discussion of asymptotic solutions and a travelling-wave solution as the base flow.
We investigate small perturbations to the base flow in § 3, which require a numerical
treatment of a system of singular differential equations in two adjacent regions, each
with freely moving boundaries, as the thickness of the two films of fluid described by
the base flow is non-uniform and involves a singularity. We discuss the mechanism of
instability in terms of the underlying physics in § 4 and map out phase diagrams of possible
behaviours of the instability across parameter space in the discussion of results in § 5. Final
remarks, including the main findings of this work and its implications, can be found in the
conclusions in § 6.

2. Theoretical development

Consider a thin film of viscous fluid (fluid 1) of dynamic viscosity μ−, density ρ and
thickness h(x, y, t) spreading under gravity over a surface z = 0 and inclined at an angle θ

to the horizontal in the semi-infinite region −∞ < x ≤ xL( y, t). The point x = xL( y, t)
is an intrusion front, where the viscous fluid makes contact with another thin film of
viscous fluid (fluid 2) of different dynamic viscosity μ+, density ρ and thickness H(x, y, t)
occupying the region xL( y, t) ≤ x ≤ xN( y, t). As depicted in the schematic of figure 1, the
thickness of fluid 2 vanishes at the leading edge and fluid 1 is supplied at constant flux in
the far field (as x → −∞), which leads to a uniform thickness in the far field.

We assume that the length scale of each thin film of viscous fluid is much larger than
its thickness, and that the thickness gradients may be of the order of the surface slope.
We assume that the effects of inertia and surface tension are negligible and formulate a
mathematical model of the flow by applying lubrication theory.

Within the limits of lubrication theory, it is the depth-averaged flux that dictates the
behaviour of the flow to leading order. Integrating a parabolic velocity profile for such
a flow, which satisfies no-slip at the base, yields a non-zero (z-independent) velocity at
all points and a non-zero flux. This may lead to a vertical front, such as the intrusion
front here. Similar vertical fronts occur, for example, for lubricated viscous gravity
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Figure 1. Schematic diagram of the profile (a) and plan view (b) of a thin film of viscous fluid of dynamic
viscosity μ− intruding into another fluid of (different) dynamic viscosity μ+ down an inclined plane.

currents, in which a thin film of viscous fluid intrudes underneath another thin film of
viscous fluid of the same density (Kowal & Worster 2015, 2019b) or for thin films of a
single viscous fluid down an inclined plane before being smoothed off by surface tension
(Huppert 1982a). The former becomes unstable to a similar mechanism to that investigated
here. The latter becomes unstable to a different kind of frontal instability of a wavelength
chosen by a balance with surface tension.

The study most relevant to this work involves lubricated viscous gravity currents (Kowal
& Worster 2015), which are examined both with and without a density difference. The
kinematic propagation is occurring at the same time as the intrusion front becomes
perpendicular to the underlying plane, while the intrusion front, as well as each vertical
slice either side of the intrusion front, propagates kinematically at a rate determined locally
by hydrostatic forces, which are directly associated with the upper-surface slope. That
rate is the same on either side of the intrusion front, preventing the intruding fluid from
overtaking the ‘pre-existing’ fluid.

A vertical force balance within the viscous gravity current upstream and downstream of
the intrusion front yields a hydrostatic pressure within each viscous fluid, given by

p− = ρg cos θ(h − z) for x < xL, (2.1)

p+ = ρg cos θ(H − z) for xL < x < xN, (2.2)

respectively, from which it is possible to formulate and integrate (twice) the horizontal
force balance, leading to the the depth-integrated flux, per unit width, given by

q− = ρg cos θ

3μ− h3(−∇h + tan θex) for x < xL, (2.3)

q+ = ρg cos θ

3μ+ H3(−∇H + tan θex) for xL < x < xN, (2.4)
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Viscous banding instabilities: non-porous viscous fingering

where ex = (1, 0, 0) and ey = (0, 1, 0) are the unit basis vectors in the x- and y-directions,
respectively, and the gradient operator is given by ∇ = (∂/∂x, ∂/∂y, ∂/∂z). The evolution
of the thicknesses of both layers of fluid is determined via the mass conservation equations

∂h
∂t

= −∇ · q− = ρg cos θ

3μ−

[
∇ ·

(
h3∇h

)
− tan θ

∂

∂x

(
h3
)]

, (2.5)

for x < xL, and

∂H
∂t

= −∇ · q+ = ρg cos θ

3μ+

[
∇ ·

(
H3∇H

)
− tan θ

∂

∂x

(
H3
)]

, (2.6)

for xL < x < xN . The intruding fluid is supplied at constant flux in the far field, so that

q− · ex → q∞ as x → −∞. (2.7)

The normal component of the flux and the thickness of the current are both continuous
across the intrusion front, so that

q− · nL = q+ · nL at x = xL (2.8)

and

h = H at x = xL, (2.9)

where nL is the outward unit vector normal to the intrusion front x = xL. The
depth-integrated flux vanishes at the leading edge, giving

q+ · nN = 0 at x = xN, (2.10)

where nN is the outward unit vector normal to the leading front x = xN . Equivalently, this
yields the vanishing frontal thickness condition

H = 0 at x = xN . (2.11)

A fixed volume V of fluid is released ahead of the intrusion front, so that∫ xN

xL

H dx = V (2.12)

and the leading edge x = xN evolves kinematically, so that

ẋN = lim
x→xN

q · nN

H
. (2.13)

Similarly, it may be deduced that

ẋL = lim
x→xL

q · nL

H
. (2.14)

Although the last equation is redundant, we list it here for completeness.
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2.1. Asymptotics near the nose
Upon inspection of the governing equations, it follows that there is a stress singularity
at the nose x = xN , as a result of the diverging gradient of the thickness of the current
near the nose. Such a singularity occurs also for single-layer flows (see Huppert 1982b),
irrespective of any viscosity contrast. Near the nose, we have |∇H| � 1, and so the
dominant balance of the governing equation (2.6) becomes ∂H/∂t ∼ (ρg cos θ/3μ+)[∇ ·
(H3∇H)], akin to rescaled flow over a horizontal substrate. Looking for solutions of the
form H ∼ A(xN − x)p yields

H ∼
⎡
⎣ 9μ+ẋN

ρg cos θ

(
1 +

(
∂xN

∂y

)2
)−1

(xN − x)

⎤
⎦

1/3

. (2.15)

Similar asymptotic solutions have been obtained in the two-dimensional analyses of
Huppert (1982b) and Kowal & Worster (2015) and the analysis of Kowal & Worster
(2019b), for perturbations about an axisymmetric base flow. This balance is independent
of the extent of the viscous fluid ahead of the intrusion front, as well as any quantities
upstream of the intrusion front.

As discussed by Mathunjwa & Hogg (2006), in the context of the stability of the
Barenblatt–Pattle solution, by Kowal & Worster (2019a,b) in the context of the stability
of lubricated viscous gravity currents, and by others, a singularity of this type poses
problems when examining the linear stability of the underlying systems. As can be seen
by considering small perturbations to the frontal position and linearising, the perturbed
frontal thickness itself is singular. Possible remedies include transforming the dependent
variable to ensure that the gradient of the new variable is non-singular (see Mathunjwa &
Hogg 2006), adopting the method of strained coordinates (see Grundy & McLaughlin
1982) or pinning down the front (see Kowal & Worster 2019a,b). We remedy this by
adopting the latter approach.

2.2. Behaviour near the intrusion front
Within the limits of lubrication theory, the behaviour of the flow is driven locally by
buoyancy forces, associated with a depth-averaged flux, to leading order. Any vertical
shear, reflected by a parabolic velocity profile satisfying no-slip at the base, integrates
to a depth-averaged (z-independent) velocity, associated to a layer thickness, at each
cross-section in x. This may lead to a flat front, such as the intrusion front at x = xL,
translating kinematically at the depth-averaged velocity of the layer of fluid despite any
vertical shear. Physically, this may be resolved by not using lubrication theory (Goodwin
& Homsy 1991) or by including the effects of surface tension (Huppert 1982a; Troian et al.
1989; Hocking 1990).

Similar flat fronts occur for other problems modelled using lubrication theory. Examples
include the fluid–fluid intrusion front of lubricated viscous gravity currents, where a thin
film of viscous fluid intrudes underneath another thin film of viscous fluid of the same
density (Kowal & Worster 2015; 2019a), or the fluid–fluid intrusion front of thin films of a
single viscous fluid down an inclined plane, before being smoothed off by surface tension
(Huppert 1982a).

The former becomes unstable under a similar mechanism to that investigated here. The
latter becomes unstable under a different kind of frontal instability of a wavelength chosen
by a balance with surface tension.
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Viscous banding instabilities: non-porous viscous fingering

2.3. Dimensionless equations
We note that the far-field condition (2.7) implies that the current reaches towards a steady
thickness, h → h∞ as x → −∞, where

h∞ =
(

3μ−q∞
ρg sin θ

)1/3

. (2.16)

There is, therefore, a one-to-one mapping between the far-field flux and the far-field
thickness. We scale against this thickness, and change variables as follows:

(H, h, z) = h∞(H∗, h∗, z∗), (x, y) = (h∞ cot θ)(η + x∗
N, ζ ), t =

(
3μ− cos θ

ρgh∞ sin2 θ

)
τ,

(2.17a–c)

(xN, xL) = (h∞ cot θ)(x∗
N, x∗

L). (2.18)

The asterisks ∗ denote dimensionless variables. In this way, the leading front, x = xN ,
corresponds to η = 0 and the intrusion front, x = xL, corresponds to η = ηL ≡ xL − xN .

After dropping asterisks, for convenience, the transformed, dimensionless fluxes reduce
to

q− = h3
(

−∂h
∂η

+ 1
)

ex + h3
(

− ∂h
∂ζ

+ ∂xN

∂ζ

∂h
∂η

)
ey for η < ηL, (2.19)

q+ = M−1H3
(

−∂H
∂η

+ 1
)

ex + M−1H3
(

−∂H
∂ζ

+ ∂xN

∂ζ

∂H
∂η

)
ey for η > ηL. (2.20)

The governing mass conservation equations become

∂h
∂τ

− ẋN
∂h
∂η

= − ∂

∂η

(
q−

x
)−

(
∂

∂ζ
− ∂xN

∂ζ

∂

∂η

)(
q−

y

)
, for η < ηL, (2.21)

∂H
∂τ

− ẋN
∂H
∂η

= − ∂

∂η

(
q+

x
)−

(
∂

∂ζ
− ∂xN

∂ζ

∂

∂η

)(
q+

y

)
for η > ηL, (2.22)

where the subscripts x and y denote the x and y vector components, respectively, and the
overdot denotes partial differentiation with respect to τ . Similarly, the boundary conditions
become

q−
x → 1 as η → −∞, (2.23)

q−
x −

(
∂xL

∂ζ

)
q−

y = q+
x −

(
∂xL

∂ζ

)
q+

y at η = ηL, (2.24)

h = H at η = ηL, (2.25)

H = 0 at η = 0. (2.26)

The global mass conservation condition reduces to∫ 0

ηL

H dη = V (2.27)

and the kinematic condition reduces to

ẋN = lim
η→0

H−1
(

q+
x − ∂xN

∂ζ
q+

y

)(
1 +

(
∂xN

∂ζ

)2
)−1/2

. (2.28)
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K.N. Kowal

It is not necessary to use a kinematic condition for the intrusion front xL, as the global
condition (2.27) is sufficient to specify xL.

The asymptotic solution near the leading front is given, in dimensionless form, by

H ∼
⎡
⎣−3MẋNη

(
1 +

(
∂xN

∂ζ

)2
)−1

⎤
⎦

1/3

as η → 0−. (2.29)

The solutions are determined by two dimensionless parameters: the viscosity ratio M
and the fixed volume V of viscous fluid ahead of the intrusion front. Explicitly, these
dimensionless parameters are given by

M = μ+

μ− , and V = V tan θ

h2∞
. (2.30a,b)

2.4. Travelling-wave solution
The basic state, which we wish to perturb to examine its stability, takes the form of a
y-independent travelling-wave solution Ψ 0 = (h0(η), H0(η), ηL0, xN0) of unit speed in
the frame of the advancing front. Here, the subscript 0 refers to quantities corresponding
to the basic state. Without loss of generality, the origin is set to coincide with the leading
front of the current, so that η = ηN0 = 0 corresponds to x = xN0. As the travelling-wave
solution is of unit speed (equal to the far-field speed), both fronts evolve as ẋN0 = ẋL0 = 1,
so that xN0 = τ and xL0 = τ + ηL0. That is, the velocity of the travelling-wave solution is
determined fully by the upstream, far-field flux.

The depth-integrated fluxes per unit width reduce to

q−
0 = h3

0
(
1 − h′

0
)

for η < ηL0, (2.31)

q+
0 = M−1H3

0
(
1 − H′

0
)

for ηL0 < η < 0, (2.32)

where the prime ′ denotes differentiation with respect to η. After a further integration in η

and simplification, the governing equations in the two regions reduce to

h2
0
(
1 − h′

0
) = 1 for η < ηL0, (2.33)

M−1H2
0
(
1 − H′

0
) = 1 for ηL0 < η < 0, (2.34)

subject to the boundary conditions

q−
0 → 1 as η → −∞, (2.35)

h0 = H0 at η = ηL0, (2.36)

q−
0 = q+

0 at η = ηL0, (2.37)

H0 = 0 at η = 0 (2.38)

and the global mass conservation condition∫ 0

ηL0

H0 dη = V . (2.39)

The travelling-wave solution retains the inherent cube-root singularity near the leading
front, of the form

H0 ∼ (−3Mη)1/3 as η → 0−. (2.40)
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Viscous banding instabilities: non-porous viscous fingering

After a further integration of the governing equations in η, it can be seen that there is an
analytic solution, given implicitly by

h0 + 1
2

log
∣∣∣∣h0 − 1
h0 + 1

∣∣∣∣ = η − ηa, for η < ηL0, (2.41)

H0 +
√M

2
log

∣∣∣∣∣H0 − √M
H0 + √M

∣∣∣∣∣ = η − ηb, for ηL0 < η < 0. (2.42)

By applying the vanishing thickness condition (2.38), we find ηb=0. There are no explicit
formulas for the constants ηa and ηL0. These can be determined implicitly by applying the
global mass balance (2.39) and the thickness continuity condition (2.36).

Two limiting cases are worth noting: the limits of V = 0 and V → ∞. Both of these
describe the flow of a single layer of fluid of the corresponding viscosity. In the limit of
V = 0, the governing equations and boundary conditions reduce to

h2
0
(
1 − h′

0
) = 1 for η < 0, (2.43)

h3
0
(
1 − h′

0
) → 1 as η → −∞, h0 = 0 at η = 0, (2.44)

with an analytic solution given implicitly by

h0 + 1
2

log
∣∣∣∣h0 − 1
h0 + 1

∣∣∣∣ = η, for η < 0. (2.45)

In the limit of V → ∞, the governing equations and boundary conditions reduce to

M−1H2
0
(
1 − H′

0
) = 1 for η < 0, (2.46)

M−1H3
0
(
1 − H′

0
) → 1 as η → −∞, H0 = 0 at η = 0, (2.47)

with an analytic solution given implicitly by

H0 +
√M

2
log

∣∣∣∣∣H0 − √M
H0 + √M

∣∣∣∣∣ = η, for η < 0. (2.48)

Illustrative solutions for sample parameter values are shown in figure 2, along with the
V = 0 and V → ∞ limiting solutions, and the solution for −ηL0 is shown in figure 3.
The solutions are enveloped by the limiting solutions at fixed M. The solution for which
M = 1 corresponds to a classical viscous gravity current of uniform viscosity down an
inclined plane. In such a scenario, the viscous fluids to the left and to the right of the
intrusion front are identical. The scenario in which M > 1 corresponds to a less viscous
fluid intruding into a more viscous fluid. In this scenario, the upper-surface slope is
discontinuous at the intrusion front. The greater the viscosity ratio, the greater the jump
in slope. Such a change in slope corresponds to a change in hydrostatic pressure gradient,
as can be deduced from the pressure fields (2.1) and (2.2). The mechanism of instability is
directly related to such a jump in hydrostatic pressure gradient, as explained in § 4.

It is worth noting that although the slope discontinuity at the intrusion front may become
large in the limits of M → ∞ or V → ∞, the upstream upper-surface slope is never
positive with respect to the horizontal. This can be seen by solving (2.33) for h′

0, which
gives h′

0 = 1 − 1/h2
0 ≤ 1. That is, whatever the value of the parameters, the upper-surface

slope is smaller than 0 at all points (measuring the slope in coordinates aligned with the
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M = 5
M = 4

M = 3
M = 2

M = 1

V = 3
V = 2

V = 1
V = 0.5

V = 0.1

V = 0.01

2.0

1.5

1.0

0.5

2.0

1.5

1.0

0.5

0–2.0 –1.5 –1.0 –0.5

0–2.0

h 0
, H

0
h 0

, H
0

–1.5 –1.0 –0.5

(b)

(a)

η

Figure 2. (a) Base-flow solution for a range of values of the viscosity ratio M and V = 1. The jump in
upper-surface slope (hence, in the pressure gradient) at the intrusion front increases for increasing viscosity
ratios. (b) Base-flow solution for a range of values of V for M = 5. The V = 0 limit is shown as a dashed
curve and the V → ∞ limit is shown as a dotted curve.

10

–
η

L0

5

1

0.05 0.10 0.50 1.005.00 10.00

10.00

5.00

1.00

0.05

0.10

0.50

0.050.10 0.50 1.00 5.00 10.00

(b)(a)

M V
Figure 3. The extent −ηL0 as a function of the viscosity ratio M for V = 1 (a) and as a function of the

volume V for M = 2 (b) on logarithmically scaled axes.

horizontal and vertical). This means that the slope does not become positive (with respect
to the horizontal), so the depth-integrated flow, and hence the intrusion front, does not
travel upwards. Alternatively, this conclusion can be reached by considering the upstream
flux as given by (2.31), which is always positive.
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Viscous banding instabilities: non-porous viscous fingering

3. Perturbations

We examine the stability of the problem by perturbing about the travelling-wave solution
of § 2.4, and searching for normal modes of the form

Ψ (η, ζ, τ ) = Ψ 0(η) + εΨ 1(η) exp(στ + ikζ ), (3.1)

where

Ψ (η, ζ, τ ) = (h(η, ζ, τ ), H(η, ζ, τ ), ηL(ζ, τ ), xN(ζ, τ )) , (3.2)

Ψ 0(η) = (h0(η), H0(η), ηL0, xN0) , (3.3)

Ψ 1(η) = (h1(η), H1(η), ηL1, xN1) . (3.4)

Note that the τ and ζ dependence of the perturbations are factored into the exp(στ + ikζ )

term of (3.1). Here, ε is a small parameter denoting the order of magnitude of the perturbed
quantities. We wish to expand in ε to obtain the governing equations, and the boundary,
integral and kinematic conditions for the perturbations at first order in ε. These will form
a system of linear differential equations in η, which admit the normal mode solutions of
the form (3.1).

At first order in ε, the perturbations to the fluxes reduce to

q−
1 =

(
3h2

0h1 − h3
0h′

1 − 3h2
0h1h′

0

)
ex + ikh3

0
(
xN1h′

0 − h1
)

ey, (3.5)

for η < ηL0, and

q+
1 = M−1

[(
3H2

0H1 − H3
0H′

1 − 3H2
0H1H′

0

)
ex + ikH3

0
(
xN1H′

0 − H1
)

ey

]
, (3.6)

for ηL0 < η < 0. The governing equations become

σh1 − h′
1 − σxN1h′

0 =
(

h3
0h′

1 + 3h2
0h1h′

0 − 3h2
0h1

)′ − k2h3
0
(
h1 − xN1h′

0
)
, (3.7)

for η < ηL0, and

σH1 − H′
1 − σxN1H′

0

= M−1
[(

H3
0H′

1 + 3H2
0H1H′

0 − 3H2
0H1

)′ − k2H3
0
(
H1 − xN1H′

0
)]

, (3.8)

for ηL0 < η < 0. The boundary conditions for the perturbations reduce to

q−
1x → 0 as η → −∞, (3.9)

h1 + ηL1h′
0 = H1 + ηL1H′

0 at η = ηL0, (3.10)

q−
1x + ηL1

(
q−

0x

)′ = q+
1x + ηL1

(
q+

0x

)′ at η = ηL0, (3.11)

H1 = 0 at η = 0. (3.12)

Note that it is exponential growth in t, rather than in η, that determines stability. As
such, although the condition that the perturbation flux vanishes as η → −∞ results in
eigenmodes that vanish in the far field, there may well be growth near the intrusion front.
That is, the boundary condition that the flux vanishes as η → −∞ does not preclude
exponential growth in t near the intrusion front. See Kowal & Worster (2019a) for a similar
phenomenon.
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In contrast to viscous fingering in a porous medium, which is most conveniently
explained in terms of associated potentials, the fingering instability examined here is
described in terms of depth-averaged fluxes, which depend on the deflection of the upper
surface. These, in turn, need to be determined as part of the system of nonlinear differential
equations (3.5)–(3.12) describing a local mass balance. Owing to the M−1 prefactor
associated with the depth-integrated upstream flux (3.6), higher upstream hydrostatic
pressure gradients are necessary to drive the upstream flow if M > 1 to preserve
continuity of flux (3.11). As such, if a parcel of intruding fluid is perturbed ahead of the
initially planar intrusion front, it becomes subject to higher hydrostatic pressure gradients,
advancing further downstream.

The global mass balance for the perturbations becomes∫ 0

ηL0

H1 dη = ηL1H0

∣∣∣∣∣
η=ηL0

, (3.13)

the kinematic condition for perturbations to the frontal position reduces to

σxN1 = lim
η→0

(
q+

1x
H0

− q+
0xH1

H2
0

)
, (3.14)

and the asymptotic solution near the front becomes

H1 ∼ 1
3σxN1 (−3Mη)1/3 as η → 0−, (3.15)

which does not diverge as η → 0−.

3.1. Numerical solutions
The system of equations specified in the previous section forms a complete set of governing
equations, and boundary, integral and kinematic conditions to specify the perturbations
as the solution to a nonlinear eigenvalue problem, for which the growth rate σ acts as
the eigenvalue. We note that by the linearity of this system of differential equations, any
multiple of a solution (h1, H1, ηL1, xN1) is also a solution. We, therefore, set xN1 = 1,
without loss of generality. This condition forms a nonlinear equation

f (σ, k,M,V) = 0, (3.16)

which implicitly determines the growth rate σ as a function of the wavenumber k, viscosity
ratio M and volume V .

Numerically, these equations are solved on the interval (−L, ηL0), approximating the
semi-infinite interval (−∞, ηL0) and corresponding to the intruding fluid, and on the
interval (ηL0, δ), approximating the full interval (ηL0, 0) including the singular nose and
corresponding to the viscous fluid ahead of the intrusion front. This has been achieved
using Mathematica’s built-in numerical solver for differential equations. Here, L is taken
to be a large, finite and positive number, and δ is taken to be small positive number.

Introducing the non-zero parameter δ serves as a way to avoid numerical instabilities
near the singularity at the nose. The equations are discretised on the interval (ηL0, δ), with
boundary conditions applied at η = δ using the asymptotic solution (3.15).

Another source of numerical error originates from the far-field behaviour of the general
solution for the perturbations in the limit η → −∞. Specifically, although the desired
solution satisfying the far-field condition decays as η → −∞, we find that the general
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Viscous banding instabilities: non-porous viscous fingering

solution for the perturbations consists of a linear combination of terms, one of which
grows exponentially for growth rates of interest, specifically when σ > −k2, as

h1 ∼ c exp
((

1 −
√

1 + k2 + σ
)

η
)

as η → −∞ (3.17)

for some constant c. To ensure numerical stability we solve for the transformed variable
g1 instead of h1, where

g1(η) ≡ h1(η) exp
(
−
(

1 −
√

1 + k2 + σ
)

η
)

(3.18)

and apply the far-field boundary condition in terms of g1. In this way, g1 remains finite as
η → −∞.

4. Mechanism of instability

In contrast to widely known viscous fingering instabilities in porous media, which are
driven by a change in dynamic pressure gradient across the intrusion front, viscous
fingering instabilities may also occur in unconfined environments, such as in the
free-surface flow considered in this paper. These instabilities are instead driven by a change
in hydrostatic pressure gradient across the intrusion front, and are stabilised by buoyancy
forces at large wavenumbers. A necessary, though insufficient, condition for instability is
that the intruding fluid be less viscous than the fluid ahead of the intrusion front, that is,
M > 1.

This can be understood by considering the dimensionless longitudinal pressure gradient

G−
0 = ( p−

0 )′ = h′
0 for η < ηL, (4.1)

G+
0 = ( p+

0 )′ = H′
0 for ηL < η < ηN (4.2)

of the base flow, made dimensionless by scaling the pressure using the scale ρgh∞ cos θ .
As a consequence of the conditions of continuity of thickness (2.36) and flux (2.37), the
jump in hydrostatic pressure gradient,

[G0]+− = (M − 1)
(
G−

0 − 1
)
, (4.3)

changes sign when M = 1. Noting that G−
0 < 1 (as can be seen by solving (2.33) for h′

0),
it follows that when the intruding fluid, upstream of the intrusion front, is less viscous than
the viscous fluid ahead of the intrusion front (M > 1), there is a jump in the hydrostatic
pressure gradient across the intrusion front so that −[G0]+− > 0. That is, the negative
pressure gradient downstream of the intrusion front exceeds its upstream value. As a parcel
of less viscous fluid gets perturbed ahead of the intrusion front, it becomes subject to a
steeper hydrostatic pressure gradient, which advances it further away from the intrusion
front. The jump −[G0]+− versus M is shown in figure 4, showing that −[G0]+− > 0 for
M > 1.

If, on the other hand, the intruding fluid is more viscous than the viscous fluid ahead
of the intrusion front (M < 1) and the upstream pressure force exceeds buoyancy forces
(G−

0 > 1), then the pressure gradient downstream of the intrusion front is smaller than the
upstream pressure gradient. As a parcel of more viscous fluid gets perturbed ahead of the
intrusion front, it becomes subject to a lower hydrostatic pressure gradient and does not
advance further away from the intrusion front.

It is also illuminating to think of the instability mechanism from an energy perspective.
Out of the various contributions to the right-hand side of the equation of conservation
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(b)

(a)
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–
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+
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Figure 4. (a) The jump in pressure gradient −[G0]+− across the intrusion front versus the viscosity ratio for
various values of V . (b) The rate of work done in deforming the upper surface just to the left (dashed) and right
(solid) of the intrusion front as a function of M for V = 1.

of energy, the ones of interest for this flow include the rate of work done in deforming
the upper surface, and the local stress working, owing to viscous dissipation. These
two contributions are dominant also for other viscosity-induced interfacial instabilities
of thin-film flows, as outlined by Boomkamp & Miesen (1997). The former, which are
given by Φ− = h0h1(

1
2 h0h′

1 + h1(h′
0 − 1))(h′

0 − 1) for the intruding layer and Φ+ =
(1/M)H0H1(

1
2 H0H′

1 + H1(H′
0 − 1))(H′

0 − 1) ahead of the intrusion front, per unit area,
are largest near the intrusion front and its values at the intrusion front increase with the
viscosity ratio M, as seen in figure 4. Both of these are proportional to the upper-surface
slope minus the slope of the inclined substrate, over which the two fluids propagate.
Equivalently, these are proportional to the upstream and downstream pressure forces,
in excess of downslope gravitational forces. As already discussed, a greater imbalance
of these across the intrusion front leads to a greater instability. This is consistent with
numerical results, where greater values of M lead to greater instabilities.

The mechanism is similar to the instability found in the experiments of Kowal & Worster
(2015) of lubricated viscous gravity currents, explained in the stability analyses of Kowal
& Worster (2019a,b) in various limits. In the context of lubricated viscous gravity currents,
the instability is also driven by a jump in hydrostatic pressure gradient; however, no
additional longitudinal buoyancy forces act as a stabilising mechanism. As pointed out
earlier, the mechanism of instability is also similar to that of classical viscous fingering
instabilities in porous media, but is driven by a hydrostatic, rather than dynamic, pressure
gradient. This is what highlights the main difference between the instability considered
here and classical viscous fingering instabilities.
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Figure 5. Growth rate σ as a function of the wavenumber k for a range of values of V (a,b) and M (c).
(a) M = 5 and V = 0.1, 0.2, 0.3, 0.4, 0.5. (b) M = 5 and V = 1, 2, 3, 4, 5. (c) M = 3, 4, . . . , 10 and
V = 1 .

5. Discussion of results

As discussed in the previous section, instability occurs as a result of a jump in hydrostatic
pressure gradient at the intrusion front and a necessary condition for instability is M > 1.
However, M > 1 is not a sufficient condition owing to additional buoyancy forces
acting as a stabilising mechanism. This section presents a discussion of numerical results
illustrating the instability in parameter space.

As illustrated in figure 5, the instability occurs within a band of unstable wavenumbers
bounded by k = 0 and the cut-off wavenumber k = k0, defined as the wavenumber at
which σ = 0. The growth rates increase and the band of unstable wavenumbers expands
with increasing viscosity ratios M and decreasing frontal volume V up to a threshold. The
instability diminishes for both V � 1 and V � 1.

Such behaviour is also reflected in plots of the cut-off wavenumber as a function of
M and V in figures 6 and 7. The critical wavenumber, defined as the wavenumber for
which the growth rate is maximal, is also shown in these figures. In contrast to the
cut-off wavenumber, the critical wavenumber initially increases, reaches a peak and then
decreases with M as shown in figure 7.

As seen in figures 6 and 7, a distinguishing feature between variations in M and
variations in V is that the instability occurs in bounded intervals of V and semi-infinite
intervals of M. This is because the instability persists for arbitrarily large values of M, as
the jump in hydrostatic pressure gradient across the intrusion front increases as M → ∞.
The bigger the viscosity ratio, the bigger the window of instability. However, large or small
values of V are stabilising as seen in figure 6.

Physically, large and small values of V correspond to the single-fluid limit of a thin film
of a single fluid spreading under gravity, which, in the absence of surface tension, leads
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Figure 6. Critical wavenumber kc (a) and cut-off wavenumber k0 (b) versus V for a range of values of M.
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Figure 7. Critical wavenumber kc (a) and cut-off wavenumber k0 (b) versus M for a range of values of

V > 1.

to stability. For example, the small V limit corresponds to the two-dimensional flows of
Huppert (1982b), which are known to be stable (Mathunjwa & Hogg 2006). Buoyancy
forces stabilise the system in these limits. Similar behaviour is found here: as either the
large-V or the small-V limits are approached, the instability diminishes.

The approach towards these two limits is seen in figures 7 and 8. The critical
wavenumber and the cut-off wavenumber are shown as functions of M for a range of
values of V , where V is large in figure 7 and small in figure 8. It can be seen in figure 7 that
the minimal viscosity ratio required for the onset of instability increases with V when V is
large; this is consistent with the expectation that the instability diminishes in the large-V
limit. The opposite behaviour occurs near the small-V limit. It can be seen in figure 8 that
the minimal viscosity ratio required for the onset of instability increases with decreasing
V when V is small; this is consistent with the expectation that the instability diminishes in
the small-V limit. The instability is most prevalent for intermediate values of V .

A similar conclusion, in terms of the magnitude of the growth rate, can be reached by
reflecting upon the results of figure 9. Figure 9 shows the critical, or maximal, growth
rate σc as a function of M for a range of values of V near both the large-V limit and the
small-V limit. The growth rate of the instability is seen to decrease towards the large-V and
small-V limits. In contrast, the growth rates increase indefinitely for increasing viscosity
ratios, and the instability is suppressed completely for viscosity ratios lower than about
M ≈ 2 (more precisely, M ≈ 1.97), as seen in figure 10. As observed similarly before,
a distinguishing feature between variations in V and variations in M is that any given
growth rate is seen only in a bounded interval of V .

Several neutral curves, depicting the value of M = Mn for which σ = 0, are shown
in figure 11 for a range of values of V . As expected, the neutral curves shift upwards as
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Figure 8. Critical wavenumber kc (a) and cut-off wavenumber k0 (b) versus M for a range of values of

V � 1.
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Figure 9. Critical growth rate σc versus M for a range of values of V > 1 (a) and V � 1 (b).
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Figure 10. Critical growth rate σc versus V for a range of values of M.

V increases. Increasingly large viscosity ratios are required for any instability to occur as V
increases. The minimal viscosity ratio required for the onset of instability occurs at k = 0,
reflecting that small wavenumbers are seen first as the viscosity ratio increases towards its
neutral value. Higher wavenumbers, with a non-zero critical wavenumber k = kc at which
the growth rate is maximal, are seen above the neutral threshold for M.

All of the aforementioned information on regions of instability can be collated into
a single stability diagram in figure 12, displaying regions of stability and instability in
(M,V) space. As discussed at the beginning of this section, M > 1 is a necessary but
not sufficient condition for instability. Higher viscosity ratios are in fact necessary and
sufficient for an instability to occur. The minimal viscosity ratio required is approximately
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Figure 11. Neutral curves for the viscosity ratio versus the wavenumber for a range of values of V .
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Figure 12. Stability diagram in (V,M) space. The axes are scaled logarithmically. Instabilities occur when
the viscostiy ratio M is sufficiently large. Power laws for the V � 1 and V � 1 limits are shown as dashed
lines. Small or large volumes V require a larger viscosity contrast to trigger an instability.

M ≈ 1.97, which gives rise to instability as long as V ≈ 0.92. The band of values of V
for which an instability occurs widens as M increases away from M ≈ 1.97. However,
this band of values is always bounded, for any given value of M above the threshold; this
is consistent with the stabilisation in the small-V and large-V limits.

A linear fit to logarithmically scaled data shows that the neutral curve follows the
approximate form M ∼ 1.59V0.51 as V → ∞, and M ∼ 0.29V−0.98 as V → 0. The
large V result can be deduced by noting that h0 and H0 scale as

√M at η = ηL0 for
V � 1, from the far-field limit of (2.42), and ηL0 scales as −V/

√M, to satisfy the
global mass constraint (2.39). As such, the downstream pressure gradient scales as M/V .
Balancing this against the upstream pressure gradient, on the order of h2

0 ∼ 1/M, in
excess of downslope gravitational forces, yields that M scales as V1/2 (cf. the numerically
obtained result M ∼ 1.59V0.51 for V � 1). The small V result can be deduced by noting
that the asymptotic solution (2.40) applies throughout the region ahead of the intrusion
front. Consistently with the global mass condition (2.39), the extent beyond the intrusion
front scales as V3/4M−1/4 and the thickness at the intrusion front scales as (MV)1/4,
whereas the far-field upstream thickness reaches h0 ∼ 1. A sufficiently high upstream
pressure gradient is maintained when these are balanced (H0 ∼ 1) so that (MV)1/4 is
of order unity. This occurs when M scales with V−1 (cf. the numerically obtained result
M ∼ 0.29V−0.98 for V � 1).
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6. Conclusions

We have demonstrated that viscous fingering instabilities, originally discovered within
porous media in the seminal work of Saffman & Taylor (1958), are also present in other,
non-porous environments. An example is the free-surface flow considered in this paper.
Although the mechanism of instability is fundamentally different, there are important
similarities between non-porous viscous fingering instabilities of the free-surface flow of a
thin film of viscous fluid intruding into a more viscous fluid, and Saffman–Taylor viscous
fingering instabilities in porous media.

Physically, both viscous fingering instabilities originate from a jump in pressure gradient
across the intrusion front. The difference is that the pressure field is hydrostatic in
the context of non-porous viscous fingering instabilities, and dynamic in the context of
Saffman–Taylor instabilities in porous media.

In a porous medium, the interface between two viscous fluids of differing viscosities is
unstable under small perturbations if the intruding fluid is less viscous than the ambient
fluid. Symbolically, this occurs when the viscosity ratio M between the two viscous fluids
is greater than 1. In the free-surface flow considered in this paper, the condition M > 1 is
a necessary but not sufficient condition for instability as there is the additional stabilising
influence of longitudinal gravitational forces. In fact, a viscosity ratio of at least M � 2 is
required for instability. Instabilities occur in the vicinity of this stability threshold as long
as the dimensionless volume of viscous fluid ahead of the intrusion front is approximately
V ≈ 0.9.

Beyond this stability threshold, the band of values of V for which instability occurs
widens with increasing viscosity ratios, but remains bounded from above and from
below. Physically, the upper and lower bounds result from the dominance of stabilising
longitudinal buoyancy forces for large and small volumes V . The limits of V → ∞ and
V → 0 correspond to a thin film of a single viscous fluid flowing down a slope, of either
the smaller or the larger viscosity.

The critical wavenumber k = kc selected by the system as the most unstable
wavenumber depends upon the balance between the destabilising jump in hydrostatic
pressure gradient and the stabilising influence of buoyancy forces. This balance depends
upon the viscosity ratio M and volume V . The largest critical wavenumbers occur for the
combination of large values of M and small values of V . Small critical wavenumbers are
most prevalent for small viscosity ratios M and moderate volumes V . Large values of V
lead to smaller critical wavenumbers and require a larger viscosity ratio in order for any
instability to occur. Similar behaviour is found for small V .
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