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ON THE CONFORMAL DEFORMATION OF
REEMANNIAN STRUCTURES

Y O O N - T A E JUNG

In this paper, we study a nonlinear partial differential equation on a compact
manifold;

Au + r u + Hu" -0, u > 0,

where a > 1 is a constant, r is a positive constant, and H is a prescribed smooth
function.

Kazdan and Warner showed that if \\{g) < 0 and H < 0, where H is the
mean of H, then there is a constant 0 < TQ(H) ̂  oo such that one can solve
this equation for 0 < r < ro(H), but not for r > ro(H). They also proved that
if ro(H) - oo, then H(x) < 0 (^0) for all x £ M. They conjectured that this
necessary condition might be sufficient.

I show that this conjecture is right; that is, if H(x) ^ 0 (^ 0) for all x £ M,
then ro(-ff) = oo.

1. INTRODUCTION

In this paper, we consider the problem of describing the set of scalar curvature
functions associated with Riemannian metrics on a given connected, but not necessarily
orientable, compact manifold of dimension greater than or equal to 3.

We shall call metrics g and g^ pointwise conformal if gi = p(x)g for some positive
function p £ C°°(M). Now if a given metric g on M , where d imM = n ^ 3 , has
scalar curvature fc £ C°°(M) and we seek K £ C°°(M) as the scalar curvature of the
metric gi = ui^n~2^g pointwise conformal to g, then u(> 0) must satisfy

(1.1) 4 ( W - 1 ) A M - ku + A-u("+2>/("-2) = 0,
n — 2

where A is the Laplacian in the g metric.

In carrying out analysis of (1.1), the sign of the lowest eigenvalue Ai(^) of the
linear part of (1.1), in other words,

(1.2)
n —
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plays a prominent part because the sign of Xi(g) is a conformal invariant. In this paper
our results are proved in the case of Xi(g) < 0. For basic existence theorems, we use
the method of upper and lower solutions ([2, p.370-371] or [5, Lemma 2.6]).

2. MAIN RESULTS

Let M be a compact connected n-dimensional manifold, which is not necessarily
orientable and possesses a given Riemannian structure g. We denote the volume element
of this metric by dV, the gradient by V, and the mean value of a function / on M is
written / , that is,

We let H,tP(M) denote the Sobolev space of functions on M whose derivatives through
order s are in LP(M). The norm on E,lP(M) will be denoted by || ||5 . The usual
L2(M) inner product will be written ( , ) .

LEMMA 1. Assume K < 0. TAen K is the scalar curvature of some metric

pointwise conformal to the given metric g if and only if Xi(g) < 0.

PROOF: See Theorem 4.1 in [5]. D

The above Lemma 1 shows that if Xi(g) < 0, then one can always pointwise
conformally deform g to a metric of constant negative scalar curvature k = — c, where
c > 0 is a constant. Thus (1.1) reads

(2.1) Klli)
n — 2

In order to understand (2.1), one must first free it from geometric considerations
and consider the equation

(2.2) -Lu = AU + TU- -Hua, u > 0,

where a > 1 and r > 0 are constants, and H 6 C°°{M). Throughout this paper,
we shall assume that all data (M, metric g, and curvature K, et cetera) are smooth
merely for convenience.

Kazdan and Warner showed that if \\{g) < 0 and H < 0, then there is a constant
0 < ro(H) < oo such that one can solve (2.2) for 0 < r0 < »•<>(-#), but not for r > ro(H)

(see Proposition 4.8 in [5]). They also showed that if ro(H) — oo then H{x) < 0 for
all x € M. In fact, they proved that if B(XQ) > 0 for some i j £ M , then ro(H) < oo
(see Proposition 4.10 in [5]). Since X^g) < 0, Theorem 2.11 in [5] implies that H ^ 0.
Kazdan and Warner [5] conjectured that this necessary condition might be sufficient,
such as in Theorem 10.5(a) of [4]. Now we shall prove that this necessary condition is
also a sufficient condition, that is, if H(x) < 0 ( ^ 0) for all x £ M, then ro (H) = oo.
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LEMMA 2 . (Existence of lower solutions.) Let H e LP(M) with p > d i m M .
If Ai < 0, then given any positive continuous {unction u on M, there is a function
u_ e H2,P(M) with 0 < u_ < v, satisfying X«_ < Hut, that is, A u . + m _ + f f u i > 0.

PROOF: See Lemma 2.8 in [5], substituting —r for h, where r is a positive con-
stant. D

We consider the differential operator

(2.3) Lv = -Av - aHv,

where a is a positive constant and H < 0 (^ 0). For each a > 0, if Ai(a) is the lowest
eigenvalue of (2.3), then

= min (\\v\\2
2 + (v, - aJTv)) , | |«||, = 1, v e H1>2(M).

Note that the eigenfunction is never zero (see Remark 2.4 in [5]). Let <f>a > 0 be the

corresponding eigenfunction of (2.3) with ||<Aa||2 = l j that is,

(2.4) A<£a + aH4>a = -A!(a)<k,.

By integrating (2.4) over M , we can see that Ai(a) > 0. Now in order to investigate
the behaviour of Ai(a) as a —• co, we shall prove the following key lemma.

LEMMA 3 . Let M be a connected compact manifold without boundary. Let L be

as in (2.3) and A!(a) be the corresponding eigenvalue o{ L for a > 0. If H

then Aj(a) - t o o as a —• oo.

PROOF: For each a > 0,

where <j>a > 0 is the corresponding eigenfunction with ||^a|l2 = 1. To prove our
conclusion we have several steps.

STEP 1. {Ai(a)}ae;v is a strictly increasing sequence. Let a i < a2. Since

/ A<f>ai<l>aidV + a j / tf &,,&,, d F = -Ai (a i ) / <f>ai<j>ajdV.
JM JM JM

But the fact that dM - </> implies that

<t>a2dV = f <t>ax
JM
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and also 4>aj satisfies

A<0aj +a2H<l>ai = -Ai(aj) (£a j ,

so we find that

(2.5) (ax - a , ) / H<t>ax<f>aidV = {Ax(a2) - A ^ ) } / <f>ai<f>atdV.
JM JM

Since <j>ai, <f>a3 > 0 and H < 0 ( ^ 0) on M and cti < a 2 , A i ^ ) < Ai(a2) . Hence
{Ai(a)}agjv is a strictly increasing sequence. From (2.5) we find that
|Ai(a2) — Ai(<*i)| ^ ll-^lloo l a i ~ a j | - This means that Ai(a) is continuous with re-
spect to a .

Suppose {Ai(a)}Q6/v is bounded. Then there exists Ao such that Ai(a) < Ao and
Aj(a) —> Ao as a —• oo.

S T E P 2. If Aa(a) -> Ao as a - • oo, then aJ(-H)(j>ldV - • 0 and af(-H)<j>adV -> 0

as a —» oo.

The variational characterisation of Aj (a) implies that

= || V<j>a+i\\
2
2 + (a + t)J {-H)4>2

a+tdV

>Xi{a)+tJ(-H)4l+liV.

Hence for all £ > 0,

Ax (a +1) - Ai(a) ^ IJ (-H)<f,2a+ldV.

Since Ai(a) —» Ao as a —* oo, for all e > 0 there exists a > 0 such that

Then
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for sufficiently large I > 0. Hence a /(-H)<f>2
adV -> 0 as a -> oo. By the Holder's

inequality,

af{-H)<j> dV

= vol (M)-\\H\\0OaJ (-H)<j>2
adV, (note H £ C°°(M))

so the second assertion in Step 2 follows easily.

STEP 3. Since / <f>2
adV = 1 and A<f>a + aH<f>a = - A ^ a ) ^ , ,

2 dV = af H<f>ldV + Aj(a).J
But |a JMH<f>2

tdV\ —» 0 as a —• oo and Aj(a) —» Ao, hence { /M l^&*l dF}agiv is
bounded. Therefore, {</>a}aeN is bounded in F i ) 2 ( M ) . By Kondrakov Theorem ([1],
Theorem 2.34), {4>a}a^N is compact in L 2 (M) . Thus there exists <f>0 £ L2(M) such
that ^ n a —> ^o strongly, where {<£„„ } is a subsequence of {^Q}a6N • We may assume
that <£a -> <̂ 0 in ^ ( - W ) . Since $M<f>2

adV — 1 and <f>a > 0 on M , /M<£o<fF = 1 and
^o > 0 (^ 0). (See [1], Proposition 3.43.) Note that JM<l>odV > 0. But for each a ,

(2.6) / A<t>adV + a f H<f>adV = -Aj(a) / <f>adV.
JM JM JM

Since Ai(a) —* Ao and

<j>adV/
M JM

- I
JM

/
M

constant x ||v£a - <̂ 0U2 ~* 0 a s a

the right side of (2.6) converges to -A o JM <f>odV ^ 0. But JM A4>adV = 0 and
\a JM H<j>adV\ - t 0 as a -» oo, so the left side of (2.6) converges to 0 as a —> 00.
Hence we have a contradiction. Thus {A1(a)}Qew is not bounded, that is, A!(a) -» 00
as a —> 0 0 . U

Using the previous key Lemma 3, we can prove the following main theorem, that
is, the necessary condition H[x) < 0 (^ 0) for ro (H) = 00 is also sufficient.

THEOREM . (Existence of upper solutions). If H(x) < 0 (^ 0) for all x £ M, then
(2.2) has a solution tor any positive constant r, so ro(H) — 00.

PROOF: If we show that Lu+ > 27u+ for some positive function u+ > 0 and any
positive constant r > 0, that is,

Aw+ + TU+ + Hu\ < 0,
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then Lemma 2 implies that there exists a solution of (2.2), so ro(H) = oo. Let r be

any positive constant. If we put u+ = e^, then Au+ = e^ (At/) + |V^| 2 ) . Hence

A u + +ru++ Hua
+ s$ 0

if and only if Aij) + |VV>|2 + r + F e c * < 0

for some function i/> and c = a — 1 > 0.

If Lv = —Av — aHv, then by Lemma 3 the first eigenvalue Aj(a) of L converges
to oo as a —> oo and Ai(a) is continuous with respect to a. Hence there is a constant
a > 0 such that Aj (a) = r. Let <f> be the corresponding eigenfunction, that is,

Put 4> = eJ". Then
„ 2

Define ^ = ij> + A for some positive constant A. Therefore,

2

+ r + He"****

= -aH + Hee*+eX

for sufficiently large A, since H < 0 ( ^ 0). This completes our theorem. D
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