ON THE CONFORMAL DEFORMATION OF RIEMANNIAN STRUCTURES

YOON-TAE JUNG

In this paper, we study a nonlinear partial differential equation on a compact manifold;

$$\Delta u + ru + Hu^a = 0, \quad u > 0,$$

where a > 1 is a constant, r is a positive constant, and H is a prescribed smooth function.

Kazdan and Warner showed that if $\lambda_1(g) < 0$ and $\overline{H} < 0$, where \overline{H} is the mean of H, then there is a constant $0 < r_0(H) \leq \infty$ such that one can solve this equation for $0 < r < r_0(H)$, but not for $r > r_0(H)$. They also proved that if $r_0(H) = \infty$, then $H(x) \leq 0 (\neq 0)$ for all $x \in M$. They conjectured that this necessary condition might be sufficient.

I show that this conjecture is right; that is, if $H(x) \leq 0 \ (\not\equiv 0)$ for all $x \in M$, then $\tau_0(H) = \infty$.

1. INTRODUCTION

In this paper, we consider the problem of describing the set of scalar curvature functions associated with Riemannian metrics on a given connected, but not necessarily orientable, compact manifold of dimension greater than or equal to 3.

We shall call metrics g and g_1 pointwise conformal if $g_1 = p(x)g$ for some positive function $p \in C^{\infty}(M)$. Now if a given metric g on M, where dim $M = n \ge 3$, has scalar curvature $k \in C^{\infty}(M)$ and we seek $K \in C^{\infty}(M)$ as the scalar curvature of the metric $g_1 = u^{4/(n-2)}g$ pointwise conformal to g, then u(>0) must satisfy

(1.1)
$$\frac{4(n-1)}{n-2}\Delta u - ku + Ku^{(n+2)/(n-2)} = 0,$$

where \triangle is the Laplacian in the g metric.

In carrying out analysis of (1.1), the sign of the lowest eigenvalue $\lambda_1(g)$ of the linear part of (1.1), in other words,

(1.2)
$$L\phi = -\frac{4(n-1)}{n-2}\Delta\phi + k\phi = \lambda_1(g)\phi,$$

Received 6 November 1989

I would like to thank J.L. Kazdan for reading my paper and discussing the proofs of Lemma 3 and the Theorem in this paper. Partially supported by BSI.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/90 \$A2.00+0.00.

plays a prominent part because the sign of $\lambda_1(g)$ is a conformal invariant. In this paper our results are proved in the case of $\lambda_1(g) < 0$. For basic existence theorems, we use the method of upper and lower solutions ([2, p.370-371] or [5, Lemma 2.6]).

2. MAIN RESULTS

Let M be a compact connected *n*-dimensional manifold, which is not necessarily orientable and possesses a given Riemannian structure g. We denote the volume element of this metric by dV, the gradient by ∇ , and the mean value of a function f on M is written \overline{f} , that is,

$$\overline{f} = \frac{1}{\operatorname{vol}(M)} \int_M f dV.$$

We let $H_{s,p}(M)$ denote the Sobolev space of functions on M whose derivatives through order s are in $L_p(M)$. The norm on $H_{s,p}(M)$ will be denoted by $|| ||_{s,p}$. The usual $L_2(M)$ inner product will be written \langle , \rangle .

LEMMA 1. Assume K < 0. Then K is the scalar curvature of some metric pointwise conformal to the given metric g if and only if $\lambda_1(g) < 0$.

PROOF: See Theorem 4.1 in [5].

The above Lemma 1 shows that if $\lambda_1(g) < 0$, then one can always pointwise conformally deform g to a metric of constant negative scalar curvature k = -c, where c > 0 is a constant. Thus (1.1) reads

(2.1)
$$\frac{4(n-1)}{n-2}\Delta u + cu = -Ku^{(n+2)/(n-2)}, \quad u > 0.$$

In order to understand (2.1), one must first free it from geometric considerations and consider the equation

$$(2.2) -Lu = \Delta u + ru = -Hu^a, \quad u > 0,$$

where a > 1 and r > 0 are constants, and $H \in C^{\infty}(M)$. Throughout this paper, we shall assume that all data (M, metric g, and curvature K, et cetera) are smooth merely for convenience.

Kazdan and Warner showed that if $\lambda_1(g) < 0$ and $\overline{H} < 0$, then there is a constant $0 < r_0(H) \leq \infty$ such that one can solve (2.2) for $0 < r_0 < r_0(H)$, but not for $r > r_0(H)$ (see Proposition 4.8 in [5]). They also showed that if $r_0(H) = \infty$ then $H(x) \leq 0$ for all $x \in M$. In fact, they proved that if $H(x_0) > 0$ for some $x_0 \in M$, then $r_0(H) < \infty$ (see Proposition 4.10 in [5]). Since $\lambda_1(g) < 0$, Theorem 2.11 in [5] implies that $H \neq 0$. Kazdan and Warner [5] conjectured that this necessary condition might be sufficient, such as in Theorem 10.5(a) of [4]. Now we shall prove that this necessary condition is also a sufficient condition, that is, if $H(x) \leq 0 (\neq 0)$ for all $x \in M$, then $r_0(H) = \infty$.

Π

LEMMA 2. (Existence of lower solutions.) Let $H \in L_p(M)$ with $p > \dim M$. If $\lambda_1 < 0$, then given any positive continuous function u on M, there is a function $u_- \in H_{2,p}(M)$ with $0 < u_- < u$ satisfying $Lu_- \leq Hu_-^a$, that is, $\Delta u_- + ru_- + Hu_-^a \ge 0$.

PROOF: See Lemma 2.8 in [5], substituting -r for h, where r is a positive constant.

We consider the differential operator

$$Lv = -\Delta v - \alpha Hv,$$

where α is a positive constant and $H \leq 0 \ (\not\equiv 0)$. For each $\alpha > 0$, if $\lambda_1(\alpha)$ is the lowest eigenvalue of (2.3), then

$$egin{aligned} \lambda_1(lpha) &= \min_{v
eq 0} rac{\|v\|_2^2 + \langle v, -lpha Hv
angle}{\|v\|_2^2}, \quad v \in H_{1,2}(M) \ &= \min\left(\|v\|_2^2 + \langle v, -lpha Hv
angle
ight), \quad \|v\|_2 = 1, \, v \in H_{1,2}(M). \end{aligned}$$

Note that the eigenfunction is never zero (see Remark 2.4 in [5]). Let $\phi_{\alpha} > 0$ be the corresponding eigenfunction of (2.3) with $\|\phi_{\alpha}\|_{2} = 1$, that is,

(2.4)
$$\Delta \phi_{\alpha} + \alpha H \phi_{\alpha} = -\lambda_1(\alpha) \phi_{\alpha}$$

By integrating (2.4) over M, we can see that $\lambda_1(\alpha) > 0$. Now in order to investigate the behaviour of $\lambda_1(\alpha)$ as $\alpha \to \infty$, we shall prove the following key lemma.

LEMMA 3. Let M be a connected compact manifold without boundary. Let L be as in (2.3) and $\lambda_1(\alpha)$ be the corresponding eigenvalue of L for $\alpha > 0$. If $H \leq 0 \ (\neq 0)$, then $\lambda_1(\alpha) \to \infty$ as $\alpha \to \infty$.

PROOF: For each $\alpha > 0$,

$$\Delta \phi_{oldsymbol{lpha}} + lpha H \phi_{oldsymbol{lpha}} = -\lambda_1(lpha) \phi_{oldsymbol{lpha}},$$

where $\phi_{\alpha} > 0$ is the corresponding eigenfunction with $\|\phi_{\alpha}\|_{2} = 1$. To prove our conclusion we have several steps.

STEP 1. $\{\lambda_1(\alpha)\}_{\alpha \in N}$ is a strictly increasing sequence. Let $\alpha_1 < \alpha_2$. Since $\Delta \phi_{\alpha_1} + \alpha_1 H \phi_{\alpha_1} = -\lambda_1(\alpha_1) \phi_{\alpha_1}$,

$$\int_{M} \Delta \phi_{\alpha_{1}} \phi_{\alpha_{2}} dV + \alpha_{1} \int_{M} H \phi_{\alpha_{1}} \phi_{\alpha_{2}} dV = -\lambda_{1}(\alpha_{1}) \int_{M} \phi_{\alpha_{1}} \phi_{\alpha_{2}} dV.$$

But the fact that $\partial M = \phi$ implies that

$$\int_{M} \Delta \phi_{\alpha_{1}} \phi_{\alpha_{2}} dV = \int_{M} \phi_{\alpha_{1}} \Delta \phi_{\alpha_{2}} dV$$

and also ϕ_{α_2} satisfies

$$\Delta \phi_{\alpha_2} + \alpha_2 H \phi_{\alpha_2} = -\lambda_1(\alpha_2) \phi_{\alpha_2},$$

so we find that

(2.5)
$$(\alpha_1 - \alpha_2) \int_M H \phi_{\alpha_1} \phi_{\alpha_2} dV = \{\lambda_1(\alpha_2) - \lambda_1(\alpha_1)\} \int_M \phi_{\alpha_1} \phi_{\alpha_2} dV$$

Since $\phi_{\alpha_1}, \phi_{\alpha_2} > 0$ and $H \leq 0 \ (\neq 0)$ on M and $\alpha_1 < \alpha_2, \lambda_1(\alpha_1) < \lambda_1(\alpha_2)$. Hence $\{\lambda_1(\alpha)\}_{\alpha \in N}$ is a strictly increasing sequence. From (2.5) we find that $|\lambda_1(\alpha_2) - \lambda_1(\alpha_1)| \leq ||H||_{\infty} |\alpha_1 - \alpha_2|$. This means that $\lambda_1(\alpha)$ is continuous with respect to α .

Suppose $\{\lambda_1(\alpha)\}_{\alpha \in N}$ is bounded. Then there exists λ_0 such that $\lambda_1(\alpha) < \lambda_0$ and $\lambda_1(\alpha) \to \lambda_0$ as $\alpha \to \infty$.

STEP 2. If $\lambda_1(\alpha) \to \lambda_0$ as $\alpha \to \infty$, then $\alpha \int (-H)\phi_{\alpha}^2 dV \to 0$ and $\alpha \int (-H)\phi_{\alpha} dV \to 0$ as $\alpha \to \infty$.

The variational characterisation of $\lambda_1(\alpha)$ implies that

$$\begin{split} \lambda_1(\alpha+\ell) &= \|\nabla\phi_{\alpha+\ell}\|_2^2 + (\alpha+\ell)\int (-H)\phi_{\alpha+\ell}^2 dV \\ &= \|\nabla\phi_{\alpha+\ell}\|_2^2 + \alpha\int (-H)\phi_{\alpha+\ell}^2 dV + \ell\int (-H)\phi_{\alpha+\ell}^2 dV \\ &\geqslant \lambda_1(\alpha) + \ell\int (-H)\phi_{\alpha+\ell}^2 dV. \end{split}$$

Hence for all $\ell > 0$,

$$\lambda_1(\alpha+\ell)-\lambda_1(\alpha) \ge \ell \int (-H)\phi_{\alpha+\ell}^2 dV.$$

Since $\lambda_1(\alpha) \to \lambda_0$ as $\alpha \to \infty$, for all $\varepsilon > 0$ there exists $\alpha > 0$ such that

$$|\lambda_1(\alpha)-\lambda_0|<rac{arepsilon}{2}.$$

Then

$$(\alpha + \ell) \int (-H) \phi_{\alpha+\ell}^2 dV = \frac{\alpha + \ell}{\ell} \ell \int (-H) \phi_{\alpha+\ell}^2 dV$$
$$\leq \frac{\alpha + \ell}{\ell} \{\lambda_1(\alpha + \ell) - \lambda_1(\alpha)\}$$
$$\leq \frac{\alpha + \ell}{\ell} |\lambda_0 - \lambda_1(\alpha)| < \varepsilon$$

for sufficiently large $\ell > 0$. Hence $\alpha \int (-H)\phi_{\alpha}^2 dV \to 0$ as $\alpha \to \infty$. By the Hölder's inequality,

$$\begin{aligned} \left| \alpha \int (-H) \phi_{\alpha} dV \right| &\leq \alpha \int |H| \phi_{\alpha} dV \\ &\leq \alpha \left(\int H^2 \phi_{\alpha}^2 dV \right) \left(\int l^2 dV \right) \\ &= \operatorname{vol}(M) \cdot \|H\|_{\infty} \alpha \int (-H) \phi_{\alpha}^2 dV, \quad (\text{note } H \in C^{\infty}(M)) \end{aligned}$$

so the second assertion in Step 2 follows easily.

STEP 3. Since $\int \phi_{\alpha}^2 dV = 1$ and $\Delta \phi_{\alpha} + \alpha H \phi_{\alpha} = -\lambda_1(\alpha) \phi_{\alpha}$, $\int |\nabla \phi_{\alpha}|^2 dV = \alpha \int H \phi_{\alpha}^2 dV + \lambda_1(\alpha)$.

But $|\alpha \int_M H \phi_{\alpha}^2 dV| \to 0$ as $\alpha \to \infty$ and $\lambda_1(\alpha) \to \lambda_0$, hence $\{\int_M |\nabla \phi_{\alpha}|^2 dV\}_{\alpha \in N}$ is bounded. Therefore, $\{\phi_{\alpha}\}_{\alpha \in N}$ is bounded in $H_{1,2}(M)$. By Kondrakov Theorem ([1], Theorem 2.34), $\{\phi_{\alpha}\}_{\alpha \in N}$ is compact in $L_2(M)$. Thus there exists $\phi_0 \in L_2(M)$ such that $\phi_{n_{\alpha}} \to \phi_0$ strongly, where $\{\phi_{n_{\alpha}}\}$ is a subsequence of $\{\phi_{\alpha}\}_{\alpha \in N}$. We may assume that $\phi_{\alpha} \to \phi_0$ in $L_2(M)$. Since $\int_M \phi_{\alpha}^2 dV = 1$ and $\phi_{\alpha} > 0$ on M, $\int_M \phi_0^2 dV = 1$ and $\phi_0 \ge 0 \ (\not\equiv 0)$. (See [1], Proposition 3.43.) Note that $\int_M \phi_0 dV > 0$. But for each α ,

(2.6)
$$\int_{M} \Delta \phi_{\alpha} dV + \alpha \int_{M} H \phi_{\alpha} dV = -\lambda_{1}(\alpha) \int_{M} \phi_{\alpha} dV$$

Since $\lambda_1(\alpha) \to \lambda_0$ and

$$\left| \int_{M} \phi_{\alpha} dV - \int_{M} \phi_{0} dV \right| \leq \int_{M} |\phi_{\alpha} - \phi_{0}| dV$$

$$\leq \text{ constant } \times ||\phi_{\alpha} - \phi_{0}||_{2}^{2} \to 0 \text{ as } \alpha \to \infty,$$

the right side of (2.6) converges to $-\lambda_0 \int_M \phi_0 dV \neq 0$. But $\int_M \Delta \phi_\alpha dV = 0$ and $|\alpha \int_M H \phi_\alpha dV| \to 0$ as $\alpha \to \infty$, so the left side of (2.6) converges to 0 as $\alpha \to \infty$. Hence we have a contradiction. Thus $\{\lambda_1(\alpha)\}_{\alpha \in N}$ is not bounded, that is, $\lambda_1(\alpha) \to \infty$ as $\alpha \to \infty$.

Using the previous key Lemma 3, we can prove the following main theorem, that is, the necessary condition $H(x) \leq 0 \ (\neq 0)$ for $r_0(H) = \infty$ is also sufficient.

THEOREM. (Existence of upper solutions). If $H(x) \leq 0 \ (\neq 0)$ for all $x \in M$, then (2.2) has a solution for any positive constant r, so $r_0(H) = \infty$.

PROOF: If we show that $Lu_+ \ge Hu_+^a$ for some positive function $u_+ > 0$ and any positive constant r > 0, that is,

$$\Delta u_+ + ru_+ + Hu_+^a \leqslant 0,$$

then Lemma 2 implies that there exists a solution of (2.2), so $r_0(H) = \infty$. Let r be any positive constant. If we put $u_+ = e^{\psi}$, then $\Delta u_+ = e^{\psi} \left(\Delta \psi + |\nabla \psi|^2 \right)$. Hence

if and only if
$$\Delta u_+ + ru_+ + Hu_+^a \leq 0$$

 $\Delta \psi + |\nabla \psi|^2 + r + He^{c\psi} \leq 0$

for some function ψ and c = a - 1 > 0.

If $Lv = -\Delta v - \alpha Hv$, then by Lemma 3 the first eigenvalue $\lambda_1(\alpha)$ of L converges to ∞ as $\alpha \to \infty$ and $\lambda_1(\alpha)$ is continuous with respect to α . Hence there is a constant $\alpha > 0$ such that $\lambda_1(\alpha) = r$. Let ϕ be the corresponding eigenfunction, that is,

$$\Delta \phi + \alpha H \phi = -\lambda_1(\alpha) \phi = -r\phi, \quad \phi > 0.$$

Put $\phi = e^{\widetilde{\psi}}$. Then

$$riangle \widetilde{\psi} + \left|
abla \widetilde{\psi}
ight|^2 + r + lpha H = 0.$$

Define $\psi = \widetilde{\psi} + \lambda$ for some positive constant λ . Therefore,

$$\begin{split} \Delta \psi + |\nabla \psi|^2 + r + He^{c\psi} \\ &= \Delta \widetilde{\psi} + \left| \nabla \widetilde{\psi} \right|^2 + r + He^{c\widetilde{\psi} + c\lambda} \\ &= -\alpha H + He^{c\widetilde{\psi} + c\lambda} \\ &= H\left(e^{c\widetilde{\psi} + c\lambda} - \alpha \right) \leq 0 \end{split}$$

for sufficiently large λ , since $H \leq 0 \ (\neq 0)$. This completes our theorem.

References

- T. Aubin, Nonlinear analysis on manifolds, Monge-Ampére equations: Grundlehren series 252 (Springer-Verlag, Berlin, Heidelberg and New York, 1982).
- R. Courant and D. Hilbert, Methods of mathematical physics: Interscience Vol. II (Wiley, New York, 1962).
- [3] J.L. Kazdan and F.W. Warner, 'Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature', Ann. of Math. 101 (1975), 317-331.
- [4] J.L. Kazdan and F.W. Warner, 'Curvature function of compact 2-manifolds', Ann. of Math. 99 (1974), 14-74.
- [5] J.L. Kazdan and F.W. Warner, 'Scalar curvature and conformal deformation of Riemannian structure', J. Differential Geom. 10 (1975), 113-134.

0

Conformal deformation of Riemannian structures

Department of Mathematics Chosun University Dong-Gu Kwangju 501-759 Korea

[7]

313

.