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Abstract

This paper investigates the question of how subjective probability should relate to binary
belief. We propose new distance minimization methods, and develop epistemic decision-
theoretic accounts. Both approaches can be shown to get “close” to the truth: the first one by
getting “close” to a given probability, and the second by getting expectedly “close” to the
truth. More specifically, we study distance minimization with a refined notion of Bregman
divergence and expected utility maximization with strict proper scores. Our main results
reveal that the two ways to get “close” to the truth can coincide.

1. Introduction
Belief can be modeled using probability functions or binary beliefs, and belief
binarization investigates how they ought to relate to each other. This paper proposes
new methods for rational agents with subjective probabilities to determine which
propositions to believe. Most of the belief binarization literature has focused on
threshold-based methods, which associate beliefs with high probabilities. The most
typical one is the Lockean thesis, which stipulates that we ought to believe propositions
with probabilities above a given threshold. However, it is well known that this
approach leads to the lottery paradox, which underscores the tension between the
proposition-wise independence norm—whether to believe a proposition should
depend only on the probability of the proposition—and the rationality norm for
binary belief, encompassing consistency and deductive closure. To elude the paradox,
we may choose thresholds depending on the input probability functions so that only
rational binary beliefs are generated, as in the stability theory of belief (Leitgeb 2017).
Alternatively, thresholds could be applied not to propositions’ probabilities but rather
to worlds’ probabilities, as in the tracking theory of belief (Lin and Kelly 2012a) and
the normality theory of belief (Goodman and Salow 2023). However, the focus still
remains on the high probability associated with each proposition or each world.
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Our argument in favor of new belief binarization rules commences with a critique
of the existing proposition-wise and world-wise threshold-based rules. We contend
that the intuitive appeal of proposition-wise thresholds diminishes as the logical
interconnection of propositions increases, as the lottery paradox already shows. The
stability theory of belief also demonstrates that the logical interconnection leads to
putting serious restrictions on the possible values of event-wise thresholds. The
perspective of world-wise threshold rules might permit binary beliefs to deviate
excessively from credence, allowing for believing propositions with a probability
lower than half. Thus, we will neither collect propositions with high probability to
determine a belief set (the set of believed propositions), nor collect worlds with high
probability to determine a belief core whose supersets constitute the belief set. In this
paper, we will develop a holistic way to determine consistent and deductively closed
binary beliefs. To this end, let us focus on two related yet different aspects of the
relationship between binary belief and credence.

First, binary belief might be a simplification or approximation of credence (Leitgeb
2014). This perspective becomes evident when we take probabilistic beliefs to be more
refined and informative doxastic states than binary beliefs. To explicate this
interpretation, we need to find a reasonable similarity measure to assess the disparity
between binary beliefs and credences. By employing this measure, we can select the
most similar binary beliefs to a probability function. Second, binary beliefs could be
evaluated for their accuracy in light of credence. This approach is well justified, given
that truth tracking stands as one of the fundamental epistemic goals. To explicate the
second aspect, we need to identify a reasonable epistemic score or utility function to
evaluate the epistemic performance of binary beliefs. Additionally, we should opt for
a well-justified decision-theoretic principle for selecting binary beliefs in accordance
with credence. The most conventional one in the decision-theoretic context is
expected utility maximization (Levi 1967; Greaves and Wallace 2006; Oddie 1997).
We refer to the first belief binarization methods as “distance minimization rules”
(DM rules), and the second as “expected (epistemic) utility maximization rules”
(EUM rules).

In this study, we first provide general forms of the DM and EUM rules, and then
investigate desirable properties. The most interesting question would be the
following: Is it possible to have belief binarization methods that serve as both DM and
EUM rules simultaneously? This question holds philosophical significance because
one might argue that to find binary beliefs similar to a credence and to track
accurately the truth in light of credence are two distinctly challenging objectives to
achieve simultaneously. Our main results demonstrate that the two objectives can
coincide. Indeed, we will devise a specific approach for the DM rules utilizing Bregman
divergences and the EUM rules employing strictly proper scoring functions, and we
will show that both rules can be represented by each other.

Our approaches are situated within the belief binarization literature in the
following manner. First of all, distance-based approaches have been rarely discussed
in the belief binarization literature; Chandler (2013) considers only the distance from
probability functions to worlds, rather than addressing binary beliefs. Regarding
expected utility maximization, our EUM rules differ from the accuracy-first approach
to the belief binarization problem in Dorst (2019), which does not support the
deductive closure of binary beliefs. Since we believe that the most natural solution to
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the lottery paradox should adhere to the logical closure of belief, our paper
presupposes that all binary beliefs ought to be deductively closed, and thus, we do not
take the veritisitic norm as the only norm from which other rationality norms should
be generated. In this regard, our theory is in line with Hempel (1960), Levi (1967), and
(Leitgeb 2017, ch. 5). Lastly, to the best of our knowledge, there have been no existing
studies on the relation between distance-based belief binarization methods and
expected epistemic utility maximization approaches, although the relation between
Bregman divergences and proper scoring rules has been extensively studied for
decades (Gneiting and Raftery 2007) and employed in epistemic decision theory
(Predd et al. 2009).

The rest of this paper is organized as follows: Section 2 provides an informal
presentation of our main ideas. Section 3 introduces our formal setting for this paper.
Section 4 explicates the DM rules and characterizes them. Moreover, it suggests the
refined definition of Bregman divergence and employs it to prove that the DM rules
with Bregman divergences (DM(Bregman)) can be interpreted as expected distance
minimization. Section 5 formulates the EUM rules with strictly proper scores and
proves that these can be represented by DM(Bregman). Section 6 concludes the paper
with some discussion points.

2. Distance- and utility-based belief binarization
This section is devoted to an informal presentation of our central ideas, which will be
spelled out with mathematical details in the other sections. We start by motivating
the DM rules and EUM rules.

DM and EUM rules
The DM rules can be naturally motivated by the necessity of achieving a seamless
integration between our quantitative and qualitative belief states. When binary
beliefs significantly deviate from the credal state, it would be difficult for an agent to
organize their beliefs coherently and to guide their actions consistently. Thus, it is
beneficial to facilitate a coherent linkage between credence and belief by seeking the
most similar binary belief corresponding to credence. However, harmonious
integration of different types of beliefs is not the sole goal of our epistemic life.
So, let us motivate DM rules with respect to the truth-tracking norm.

Binary beliefs aim at the truth. Thus, our objective is to provide belief binarization
rules that track the truth well—the closer to the truth, the better the rule. However,
perfectly rational agents in our framework might lack the knowledge of the actual
truth; they possess only subjective probability functions, which are rationally
permissible credal states for truth tracking (Joyce 1998) and aim at the truth as well.
Given that probabilistic beliefs are more fine-grained and more informative than
binary beliefs, rational belief binarization methods should strive to identify binary
beliefs as close to the probabilistic beliefs in question as possible. In this sense, this
method tracks the truth by tracking probabilistic beliefs and thus belongs to a sort of
implicit method adhering to the aiming-at-truth norm.

We can also conceive of belief binarization methods that explicitly consider the
truth-tracking norm for beliefs. As our agents lack access to the truth but only to
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subjective probabilities that encapsulate all internally accumulated evidence about
the truth, the agent, at best, can expect her binary beliefs to be accurate based upon
her credal state. Arguably, this method can be viewed as a sort of explicit method to
track the truth. In epistemic decision theory, minimizing the expected inaccuracy of
credence has been employed to justify epistemic norms (Greaves and Wallace 2006;
Oddie 1997). We apply the minimization of the expected inaccuracy of belief, as
decision rules, directly to the belief binarization problem (Levi 1967). In conclusion, to
get “close” to the truth, the best approaches for an agent with a probability function
to determine what to believe would involve either (i) the ways to get “close” to the
probability function, or (ii) those to expectedly get “close” to the truth. The former is the
DM rules, and the latter is the EUM rules.

Distance between binary beliefs and credences
The DM rules determine binary beliefs that minimize the distance from a given
probability function P. To measure the distance from a probability function to a belief
set, we will utilize divergences between probability functions. However, a belief set is
not a probability function. Our key concept involves linking a belief set Bel with a
probability function: the uniform distribution U B� � over the belief core B of Bel (the
conjunction of all believed propositions), which is guaranteed to be believed by the
assumption of deductive closure. Building on this, we can assess the discrepancy
between a probability function and a belief set Bel by measuring the divergence
between the probability function and U B� �. Accordingly, the distance from U B� � to Bel
becomes zero, and the DM rules map U B� � to Bel. This does not mean that U B� � is the
probabilistic representation of a rational belief set Bel. Following the process of belief
binarization, we might generate possibly infinitely many probability functions
corresponding to specific binary beliefs Bel. The probability function U B� � can be
interpreted just as the most representative credal state corresponding to Bel.

To justify our methodology, we need to explain why U B� � is the most natural
probability function generating the set Bel of all the supersets of B as the belief set. We
suggest an epistemic principle, termed the suspension principle, which posits that
belief binarization rules ought to map U B� � to Bel. Let’s delve into the plausibility of
this principle. In cases where B is the singleton set wf g of a world w, U B� � represents
the probabilistically certain belief that w is the actual world. Thus, the resulting belief
set Bel should indeed be the set of all supersets of wf g. When B is not a singleton, U B� �
represents the probabilistically certain belief that any world lying outside of B is not
the actual world. Therefore, we can exclude those worlds. Moreover, since U B� � is
uniform over B, it represents that the agent lacks an opinion regarding which world in
B is the actual one. Thus, the agent should suspend judgment about whether the
actual world resides in any strict subset of B, and thereby B should be the belief core.
And since B has a probability of 1, all supersets of B should be believed. By contrast,
since probability functions other than U B� � break the symmetry—regardless of how
slight a perturbation may be—we cannot use this symmetry consideration for them.

Based on this framework, our characterization theorem of DM rules establishes
that upholding the suspension principle amounts to employing our DM rules. It is
worth noting that the suspension principle is not demanding and serves as a minimal
requirement when permitting the suspension of judgments. This condition is lenient
enough to embrace almost all threshold-based rules in the relevant literature.
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Nevertheless, our DM rules do not encompass every conceivable distance-based belief
binarization approach, and there might be other ways to measure distance for belief
binarization. But our characterization theorem of DM rules implies that if alternative
distance-based rules satisfy the suspension principle, they are subsumed under
our one. And the violation of the suspension principle demonstrates a significant
drawback inherent in them. In fact, it can be easily checked that the Hamming rule
presented by Dietrich and List (2021) violates the suspension principle.

DM(Bregman) and EUM(SP) rules
Now the problem is reduced to how one can measure the distance from a probability
function to the uniform distribution on a belief core, i.e., a non-empty set of possible
worlds. Many kinds of distance measures exist. Could there be some rationality norm
to guide one in selecting distance measures? Our first main theorem will answer that
question: if we employ a Bregman divergence for the DM rules, which will be called
DM(Bregman), these rules can be represented by the expected utility maximization
procedure, where the disutility is the Bregman divergence from the truth. If we agree
that maximizing expected utility is a standard strategy to choose binary beliefs given
a credal state, this theorem reveals a good reason why we should seriously consider
distance minimization methods.1

Let us elaborate further on this. Within our framework, the disparity between a
world w and a rational belief set Bel can be assessed by measuring the divergence
between the omniscient probability at w and U B� �. Furthermore, this divergence can
be regarded as an epistemic inaccuracy of a belief set Bel at a world w. Since the most
relevant feature of Bregman divergences concerning our study is that minimizing a
Bregman divergence from P is tantamount to minimizing the expected Bregman
divergence from the true world in light of P, any DM(Bregman) rule can also be viewed
as an EUM rule. Additionally, the epistemic inaccuracy of a belief set at a world, as
determined by a Bregman divergence, is a strictly proper score. So we now shift our
focus to the EUM rules with strictly proper scores, called EUM(SP).

Strictly proper scores are prominently featured inaccuracy measures in epistemic
decision theory and widely adopted as utilities in various other domains, such as
probabilistic forecasting and belief elicitation. Strict propriety requires that the
expected utility of a probability function according to P is uniquely maximized at P.
Therefore, to attain maximal expected utility, we must opt for P when it is provided,
leading to the suspension principle in our framework. This observation implies that
EUM(SP) rules can be regarded as DM rules. Moreover, building upon the fact that
expected strictly proper scores generate Bregman divergences, our second main
theorem demonstrates that EUM(SP) rules are DM(Bregman) rules.

Figure 1 depicts the relationships between the aforementioned rules. Our findings
underscore that EUM(SP) rules, or equivalently DM(Bregman) rules, are the ways to
get close to the probability and to expectedly get close to the truth at the same time.
Both DM and EUM rules possess their own merits: the former can build a harmonious
relationship between credence and belief by seeking the most similar binary beliefs to

1 In Wang (n.d.), we showed that some other existing belief binarization methods, such as Leitgeb’s
stability theory of belief and Lin-Kelly’s tracking theory of belief, cannot be represented by any
maximizing expected utility procedure.
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credence; the latter, on the other hand, guide in finding binary beliefs that
approximate the truth. So, it would be beneficial to identify a class of rational belief
binarization rules satisfying two principles simultaneously. Indeed, our representa-
tion theorems substantiate the existence of an extensive range of rational belief
binarization rules that uphold these dual principles.

Generalization
We aim to develop our distance- and utility-based approaches within a comprehen-
sive framework that can accommodate a wide range of scenarios. In the literature
concerning belief binarization, probability functions are typically represented by
points within a probability simplex. In our work, we not only utilize the probability
simplex for representing probability functions, but we also incorporate De Finetti’s
coherent polytope. In the former approach, each world’s probability (we will assume
worlds to be finite) will be relevant, while the probabilities of some focused events,
called an agenda, will be relevant in the latter approach. The latter approach exhibits
greater generality than the former. If all the singleton sets of worlds constitute the
agenda, then the latter approach turns into the former. This broadened perspective
aligns our framework with the literature on epistemic decision theory or belief
aggregation (Pettigrew 2015; Dietrich and List 2017a) and provides a new viewpoint
for the belief binarization problem. In this framework, we can consider an agenda for
the belief binarization problem. The agenda does not need to form an algebra. Thus,
when we apply our DM rules in this framework, we do not need to have all the
probabilities of propositions to determine what to believe. Even when we have the
probabilities of only the propositions in the agenda, we can employ the DM rules,
while other belief binarization theories in the literature cannot be applied in this case.
Even if a probability function is given on an algebra, we may exclusively focus on
certain basic propositions or premises. Then, our framework allows us to model a
form of premise-based belief binarization, similar to the case of generalized
probabilistic opinion pooling (Dietrich and List 2017b). Moreover, our methods can
deal with disutility functions that depend solely on the probabilities of the focused
events, although acquiring the probabilities associated with possible worlds is
essential for calculating expected utility for the EUM rules.

Further challenges in this study are twofold. Firstly, we aim to refine conventional
definitions of Bregman divergence. Specifically, we intend to adapt Bregman
divergence to address belief binarization problems, allowing for infinite divergence
within certain boundary regions of a probability simplex or De Finetti’s coherent
polytope. Secondly, we do not impose the constraint of proposition-wise additivity on

DM EUM

EUM(SP)
DM(Bregman)

Figure 1. DM and EUM rules.
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scoring rules. The aforementioned rules and claims will be elaborated and proved
based on these technical settings. The rest of this paper elucidates these ideas with
detailed mathematical explications.

3. Formal setting
We let W be a finite non-empty set of possible worlds and denote by P W� � the
powerset algebra of W. A probability function on P W� � is a function P : P W� � ! 0; 1� �
satisfying the probability axioms, and we write P W� � for the set of all probability
functions on P W� �. A binary belief function is a function Bel : P W� � ! 0; 1f g, and by
abusing the notation, we also use Bel to denote the set of all believed events, called the
belief set. A belief binarization rule (BR) G is defined to be a function that takes as input
any probability function P in P W� � and outputs the set of some binary beliefs. Note
that G can be seen as a correspondence in the sense that Gmight output multiple binary
beliefs. One could combine this with some tie-breaking rule to choose only one binary
belief, if it is needed.

We assume that binarization rules G are rational in the sense that every resulting
binary belief Bel is consistent (the belief set does not entail a contradiction) and
deductively closed (the belief set contains all its logical consequences). Formally, they
are defined as follows: (i) Bel is consistent if the intersection of all believed events is not
empty, i.e., \Bel≠;; (ii) Bel is deductively closed if Bel contains W and is closed under
intersection and superset. It is well known that Bel is rational if and only if (iff) Bel has
a non-empty belief core B � \Bel� � whose supersets are exactly the believed events.
From now on, we regard a rational binary belief in G P� � as a non-empty belief core,
i.e., a non-empty subset B of W .

4. Distance minimizing binarization rules

4.1. DM rules and the suspension principle
In this section, we define the distance minimizing binarization rules and characterize
them. For this purpose, we need to measure the distance between the input of a BR
G—a probability function P onP W� �—and a non-empty subset B ofW . Our first main
idea is to employ a divergence on a convex subset of Rm for some m 2 N.2 To this end,
we need to represent probability functions P and subsets B in Rm. For probability
functions, we could deploy some typical methods to represent probability functions in
Rm. However, how can we represent a subset B in Rm? Our main idea is to associate it
with the uniform distribution U B� � on B—the probability distribution that assigns 1= Bj j
to each world in B and 0 to other worlds. It is plausible because when the input of a BR
G is U B� �, B must be the most natural belief binarization result, and thus we want to
set the distance between U B� � and B equal to 0.

Representations of probabilities
The remaining aspect of measuring distance involves addressing how to represent
probability functions in Rm. Two approaches have been adopted in this regard. In
certain contexts, such as belief binarization theories or statistics, probabilities of

2 We call a function d : X × X ! 0; ∞� � a divergence on a convex set X � Rm when d x; y
� �

0 for all
x; y 2 X, where the equality holds iff x � y.
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worlds are employed. In other contexts, like belief aggregation or epistemic decision
theory, a set of propositions is initially given, with only their respective probabilities
being pertinent. We incorporate both of these approaches in our discussion. Let
W � w1; . . . ;wnf g. Our first approach is to represent a probability function P by a
point p in R Wj j such that

p � pw1
; . . . ; pwn

� � � P w1� �; . . . ; P wn� �� � 2 Δ
W ;

where ΔW denotes the set of all points representing probability distributions. We say
that p is the representation point of P in Δ

W . According to this representation method,
we can represent an omniscient credence function Vw at w 2 W—assigning 1 to w—by a
point vw on f0; 1g Wj j where the w0th coordinate is given by �vw�w0 � Vw w0� � � 1 if
w0 � w and �vw�w0 � Vw w0� � � 0 otherwise. Thus, ΔW is the convex hull of the
representation points of all omniscient credence functions because p � P

w2W P w� �vw.
Note that ΔW is nothing but the usual Wj j � 1� �-dimensional probability simplex.

We now move to the second approach. We introduce a non-empty subset
F � A1; . . . ; Amf g � P W� �, and call it the set of focused events or an agenda. Even
though probabilistic and binary beliefs are functions from P W� �, there can be some
situations where we are only interested in the focused events in F. In this case, we
can represent probability functions in R Fj j and measure distances between them in
this space. Note that probabilistic and binary beliefs are assumed to be functions not
fromF but fromP W� � even in this approach as well, which can be relaxed later.3 We
represent a probability function P by a point p in R Fj j such that

p � pA1 ; . . . ; pAm
� � � P A1� �; . . . ; P Am� �� � 2 Δ

F;

where we denote by Δ
F the set of all points representing probability distributions.

We say that p is the representation point of P in Δ
F. In this approach, an omniscient

credence function Vw at w 2 W is represented by a point vw on f0; 1g Fj j where the Ath
coordinate �vw�A � Vw A� � is 1 if w 2 A and 0 otherwise. Accordingly,ΔF is the convex
hull of fvw 2 f0; 1g Fj jjw 2 Wg. Notice that ΔF is a 0/1-polytope in R Fj j (a polytope
whose vertexes are on f0; 1g Fj j).

It is interesting to compare the two approaches. In the case where
F � f wf g 2 P W� �jw 2 Wg, both ways are the same. If Fj j < Wj j, one point in Δ

F

represents several distinct probability distributions, i.e., a probability distribution is
not uniquely determined by a point: a point in Δ

F represents a convex set of
probability functions. This is because if P; P0 have the same representation p, then for
all A 2 F we have P A� � � P0 A� � � αP A� � 	 1 � α� �P0 A� � for all α 2 0; 1� �, which
means that any linear combination of them has the same representation. Therefore,
we can regard a point in F as a convex set of probability functions. Note that many
definitions, theorems, and statements in this paper will be formulated using not only
the representations in Δ

W but also the ones in Δ
F. To express this, we will use ΔM .

Hence M will be considered to be W or F throughout this paper.

3 We need this condition to well define expected epistemic utility in EUM rules where we need to
calculate a probability of a singleton world, unless we have IER (invariant expectation under the same
representation in Definition 8).
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Representations of belief cores
Now let us turn to the representations of the uniform distribution U B� � on a non-empty
belief core B 2 P W� �n ;f g. We will use the small letter b to refer to the representation
point of U B� � in Δ

M and call it the corresponding point of B in Δ
M . Moreover, we

denote by UM the set of all corresponding points of non-empty belief cores,
i.e., UM � fb 2 Δ

Mj;≠ B � Wg. With this in place, we will, hereafter, let a BR G be a
correspondence from P W� � to UM . In other words, G P� � refers to a set of points b in UM .
Since we address binarization rules based on distance minimization or expected utility
maximization, a BR G will take the form of argminb g P; b� �, which is the set of all points
b in UM that minimize g P; b� �, where g is an extended real-valued function. Note that
the uniform distribution on a belief core might not be uniquely determined by a point
in Δ

F as explained above, which can lead to the under-determination of a belief core.
However, even if a point that corresponds to several belief cores is selected, one could
combine it with a tie-breaking rule. Moreover, the following lemma shows that even
though different belief cores give us different belief sets, if their corresponding points
in Δ

F are the same, then they yield the same result concerning any event in F.

Lemma 1 (Invariance under the same ouput representation). Let B and B0

be non-empty subsets of W. If the corresponding points in Δ
F are the same, i.e., b � b0,

then for all A 2 F, (i) B � A iff bA � 1 and B � Ac iff bA � 0, and thus
(ii) B � A iff B0 � A and B � Ac iff B0 � Ac, where Ac is the complement of A.

The statement (i) gives us a geometrical intuition. If bA � 1, then A is believed; if
bA � 0, then Ac is believed; if bA ≠ 0; 1, then neither A nor Ac is believed. This explains
why binary beliefs on the focused events in F are invariant under the same output
representation (IOR).

Let us now illustrate some examples of belief binarization problems. Consider the
following two binarization problems: (1)W � w1;w2;w3f g, and (2)F � a1 ;� �a1 ^ a2� �f g
and W � w1 j� a1; a2� �;w2 j� a1;:a2� �;w3 j� :a1; a2� �;w4 j� :a1;:a2� �f g, where a1 and
a2 are atomic formulas in the standard propositional logic, and for any formula φ, φ� � is
the set of all valuations under which φ holds. We write wj� φ1;φ2 when φ1 and φ2 hold
under the valuation w. Figure 2 depicts (1) and (2) in Δ

W and Δ
F, respectively. Each

point represents the uniform distribution on a belief core. In the right panel, some of
them represent several uniform distributions. The solid circles express that there are

Figure 2. Belief binarization problems.
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extra uniform distributions. Note that the points that are surrounded by a dotted circle
give us the same beliefs/disbeliefs of the focused events in F by Lemma.

DM rules and the suspension principle
Now we deploy a divergence d inΔ

M and the representation methods discussed above
in order to formulate distance minimizing binarization rules (DM rules) as follows.

Definition 1 (Distance minimization rule (DM rule)). A BR G is a distance minimization
rule (DM rule) in Δ

M iff there is a divergence d in Δ
M such that, for all P 2 P W� �,

G P� � � argminb d p; b
� �

, where p is the representation of P in Δ
M .

So a DM rule with a divergence d inΔ
M is a correspondence that takes as input any

probability function P and outputs the points b in UM that minimize the distance from
p. The following theorem states that the DM rules are characterized by an epistemic
principle, what we call the suspension principle. Here is the formal definition of the
suspension principle.

Definition 2 (Suspension principle). A BR G satisfies the suspension principle inΔM iff, for
all B 2 P W� �n ;f g, G U B� �� � � bf g, where b is the representation point of U B� � in Δ

M .

This means that if P is a uniform distribution on certain worlds, then binarization
rules should result in the belief core that consists of those worlds. For the
characterization theorem, we will need the following condition, which provides some
control over the cases where points in Δ

M can represent several probability
distributions.

Definition 3 (Invariance under the same input representation). A BR G satisfies
invariance under the same input representation (IIR) in Δ

M iff, for all P; P0 2 P W� � with the
same representation in Δ

M, i.e., p � p0 2 Δ
M� �, G P� � � G P0� �, where p and p0 are the

representation points of P and P0 in Δ
M, respectively.

If G satisfies IIR in Δ
F, then the binarization results depend only on the

probabilities of the focused events in F. Thus, the representation point p plays the
role of the input of G. This amounts to dealing with a generalized agenda, which does
not need to be an algebra, and probabilistically coherent beliefs—a function extendable
to a probability function on the algebra generated by the generalized agenda. Let us
compare this with the invariance under the output representation in Lemma 1. IIR
means that two probability functions with the same representation input point give
us the same output point, which is associated with several belief cores. On the other
hand, IOR in Lemma 1 shows that binary belief functions corresponding to an output
point give us the same beliefs or disbeliefs about the focused events in F.
The following theorem says that the suspension principle characterizes the DM rules
if G satisfies IIR.
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Theorem 1 (Characterization of DM rule). A BR G is a DM rule inΔM iff (i) G satisfies IIR
in Δ

M, and (ii) G satisfies the suspension principle.

We remark that DM rules in Δ
W always satisfy IIR. Thus, a BR G is a DM rule in Δ

W

iff G satisfies the suspension principle. From this theorem, it can be easily checked
that the threshold-based rules in Leitgeb (2017), Lin and Kelly (2012b), and Goodman
and Salow (2023) can also be seen as a DM rule in Δ

W .
The most natural DM rule can be given by using the squared Euclidean distance DSE

in Δ
W .4 We call this the DM(SE) rule in Δ

W . Figure 3 illustrates DM(SE) for the case
where Wj j � 3. The seven dots represent the uniform distributions b of the seven
belief cores. The dotted lines divide the simplex into seven regions. Each region is the
preimage region G�1 b� � �� fp 2 Δ

W jb 2 G P� �g� of the point b under G. For example,
consider a probability distribution P such that P w1� � � 0:8 and P w2� � � 0:2, which can
be represented by a point p � 0:8; 0:2; 0� �. According to DM(SE), P should be assigned
to the belief core w1f g because the squared Euclidean distance between p and 1; 0; 0� �
is much less than the distances of p to the other six corresponding points of belief
cores. Additionally, it is also easily checked that if we use the inverse Kullback–Leibler
divergence (IKL)5 in Δ

W , the resulting belief binarization, called DM(IKL), is the same
as the probability 1 proposal (we ought to believe a proposition A iff P A� � � 1). In the
following section, we will generalize the cases of DM(SE) and DM(IKL) to the DM rules
with a Bregman divergence.

4.2. DM rules with Bregman divergences

Refined Bregman divergence
First of all, we refine the definition of Bregman divergence to make it applicable to the
belief binarization problems. In the typical definition of Bregman divergence in most of
the literature, the domain of the second argument is an open set—e.g., the (relative)
interior of a probability simplex Δ

W or Rm
—or the value of Bregman divergence

cannot be infinity. For our purposes, however, we need to define it in a closed set ΔM ,
because many uniform distributions on belief cores are located on the boundary of the
set. Furthermore, we should allow infinity as a possible value of divergence, because we
want to embrace some asymptotically divergent distance measures like the inverse
Kullback–Leibler divergence. For this reason, we need to extend the definition of
Bregman divergence with infinity to the (relative) boundary of ΔM .

Figure 3. DM(SE) when W � w1;w2;w3f g.

4 Note that DSE p; q
� �

:� Σw2W�P w� � � Q w� ��2.
5 The definition of IKL is as follows: DIKL p; q

� � � P
w2W P w� �log P w� �=Q w� �� �

if, for all w, P w� �≠ 0
implies Q w� �≠ 0, otherwise ∞ .
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Considering that our definition includes infinity on the boundary, a comparison
can be drawn with the works of Adamcik (2014) and Predd et al. (2009). In Adamcik
(2014), Bregman divergence is defined in Δ

W and its value can be infinity.6 Our
definition is more general because it embraces not only Bregman divergences in Δ

W

but also those inΔ
F. Turning to Predd et al. (2009), Bregman divergence is defined in

Δ
F and its value can be infinity. However, the additivity of Bregman divergence is

presupposed. Our intention is to develop definitions and theorems in a more
comprehensive manner without the assumption of additivity. Thus, our definitions
and theorems work not only in a simplexΔW but also in a general 0/1-polytopeΔF dealing
with not only additive but also non-additive divergence.

Let’s elaborate on the main desired features of our proposed definition. We aim to
extend the definition of finite Bregman divergence in the interior ofΔM to encompass
the boundary, even considering infinite values. However, our intent is not to have
infinite distance along the entire boundary, but rather to carefully determine where
finiteness and infiniteness should be applied. For instance, take two points on the
boundary that reside within the relative interior of the same lower-dimensional face. In
this scenario, we want the divergence between them to remain finite, just like the
divergence between two points in the interior of the 0/1-polytope. Moreover, we want
the divergence to be continuous in the region where it should be finite, just as the
Bregman divergence is continuous in the interior of the 0/1-polytope. On top of that,
we aim to retain key properties—e.g., the relation between distance minimization and
expected score maximization—and well-known instances of Bregman divergence—e.g.,
the squared Euclidean distance and inverse Kullback–Leibler divergence. This enables
one to use the existing results about Bregman divergences. In a nutshell, our definition
is designed to ensure that the behavior of divergence on the boundary mirrors that in
the interior. This is reasonable in the context of the belief binarization problem because
we should maintain the same belief–credence connection principles even when
narrowing our attention to a specific region on the boundary by assigning zero
probability to some worlds or propositions.

To this end, we provide a way to denote faces not only in the simplex ΔW but also in
the 0/1-polytopeΔF. WithinΔ

W , we can employ Supp Q� �, defined as fw 2 WjQ w� �≠ 0g,
to signify the set of the worlds corresponding to all vertexes of the lowest-dimensional
face on which q 2 Δ

W� � lies. We need to extend this notion to indicate the faces of ΔF,
where a point in Δ

F can represent multiple probability functions.

Definition 4 (Maximal support, Δq and Fp). Let p; q 2 Δ
M � Rm� �.

(i) The maximal support of q is defined by

MSupp q
� �

:� [
Q
Supp Q� �;

where the Q are the probability distributions represented by q.

6 InΔ
W , our definition looks simpler, but we can easily prove that Adamcik’s definition coincides with

ours except that we have a continuity condition.
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(ii) The lowest-dimensional face on which q lies is defined by the convex hull of
MSupp q

� �
, i.e.,

Δq :� Conv MSupp q
� �� � � fx 2 Δ

MjMSupp x� � � MSupp q
� �g:

(iii) The (disjoint) union of all the relative interiors of the faces that p lies on is

Fp :� fx 2 Δ
MjMSupp p

� � � MSupp x� �g � fx 2 Δ
Mjp 2 Δxg:

So, w 2 MSupp q
� �

means that there exists a probability function Q represented by
q such that Q w� �≠ 0—i.e., a probability represented by q assigns to w a non-zero
probability (see figure 4). Using the notion of maximal support, we can designate the
lowest-dimensional face Δq on which q lies, which is the convex hull of the maximal
support of q. We can easily check that Δq is a (sub-)0/1-polytope that is the set of the
points whose maximal support is a subset of q’s maximal support. In contrast, Fp is
the set of the points whose maximal support is a superset of p’s maximal support
(see figure 5).

Now we are ready to formulate our definition of Bregman divergence D. We modify
its typical definition to the extent that D p; q

� �
is finite and continuous so far as q 2 Fp,

i.e., MSupp p
� � � MSupp q

� �
, which means that all worlds that are probabilistically

possible according to some probability function represented by p are also
probabilistically possible according to some probability function represented by
q. Loosely speaking, we aim for Bregman divergences to remain finite as far as q does
not exclude any world that p does not exclude.

q p(a) (b)

Figure 5. When Δ
M � �0; 1�3, Δq is the thick gray

line including the end points and Fp is the union of
the relative interior (�0; 1�3) ofΔM and the gray area
excluding the dotted boundary.

vw3

vw1

vw4

vw2

q

vw3

vw1

vw4

vw2

vw5

p
qq(a) (b)

Figure 4. In (a), q is the representation of Q1, Q2, and Q3 where Supp Q1� � � w1;w2;w3f g,
Supp Q2� � � w1;w2;w4f g, and Supp Q3� � � w1;w2;w3;w4f g. Thus, MSupp q

� � � w1;w2;w3;w4f g.
In (b), MSupp p

� � � w1;w3f g � MSupp q
� � � w1;w2;w3;w4f g.
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Definition 5 (Refined Bregman divergence). D : ΔM × Δ
M ! 0; ∞� � is a Bregman

divergence in Δ
M iff there is a continuous, bounded, and strictly convex function

Φ : ΔM ! R satisfying the following for all p; q 2 Δ
M :

(i) if q 2 Fp, then the directional derivativerp�qΦ�q� in the direction of p � q at q exists,
being finite and continuous in q, and

D p; q
� � � Φ p

� � �Φ q
� � � rp�qΦ q

� �
;

(ii) otherwise, D p; q
� � � limx!q : x2Fp

D p; x
� �

, which exists, infinity being allowed as limits.

This definition is compared with the conventional ones of Bregman divergence
in the relative interior of ΔM , denoted by ri ΔM� �, as follows. As usual, Bregman
divergence is defined in terms of a convex function Φ called a Bregman divergence
generator. What distinguishes our definition from the conventional ones is parts (i)
and (ii). In the conventional definitions, part (i) is applied in ri ΔM� �, which is the
whole domain in the conventional ones, and (ii) is not needed. By contrast, we apply
part (i) to the region where q 2 Fp, and extend this continuously, infinity being
allowed as limits, to the rest of the domain.

Note that we use the directional derivative instead of the gradient in the
conventional definition. This is because we need to define divergence not only in
the interior but also on the boundary, where gradients are not well defined.
In ri ΔM� �, rp�qΦ q

� � � rΦ q
� � 
 p � q

� �
because Φ is differentiable from part (i) by

the convexity of Φ.7 In the interior of any lower-dimensional face Δq, we could also
say thatΦjri Δq

� �
(the restriction ofΦ to ri Δq

� �
) is differentiable in the sense that it is

differentiable in the lower-dimensional space (note that the affine hull of Δq � q
(:� fx � qjx 2 Δqg) is a subspace of Rm). In this sense, we could conclude that our
definition of D p; q

� �
coincides with the conventional one not only for p; q 2 ri ΔM� � but

also for p; q in the relative interior ri Δq

� �
of any lower-dimensional face.

Now let us consider another way to extend the conventional definitions of
Bregman divergence to the boundary to compare this with our definition. Instead of
parts (i) and (ii), we could have defined Bregman divergence as follows:

(*) For all p; q 2 Δ
M , if q 2 ri ΔM� �, then rp�qΦ q

� �
exists, being finite,8 and

D p; q
� � � Φ p

� � �Φ q
� � � rp�qΦ q

� �
, otherwise D p; q

� � � limx!q : x2ri Δ
M� �D p; x

� �

which exists, infinity being allowed as limits.

According to this definition, the divergence is finite and continuous in ri ΔM� �, and it
does not guarantee finite and continuous divergence between two points in the
relative interior of a face on the boundary. Figure 6 shows the problem cases that
could arise if we defined Bregman divergence according to (*). In these cases, the
divergence D p; q

� �
can be infinite although q does not exclude any world that p does

not exclude. We will see later that if we do not prevent these cases, then we cannot
prove the relation between Bregman divergences and proper scores in Theorem 2.

7 See Lemma 2 in the Appendix, and Rockafellar (1970, Theorem 25.2).
8 In this case, since Φ is convex, rp�qΦ q

� �
is continuous in q (see Lemma 2 in the Appendix and

Rockafellar (1970, Theorem 25.2 and Corollary 25.5.1)).
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For this reason, it is hoped that the region where Bregman divergence should be finite
and continuous is extended from ri ΔM� � to Fp.

4.3. Representation of DM(Bregman) by expected distance minimization
Now we employ our refined Bregman divergence for DM rules. A DM(Bregman)
rule is the DM rule with a Bregman divergence D in Δ

M , which has the following
form: for all P 2 P W� �, G P� � � argminb D p; b

� �
, where p 2 Δ

M� � is the representa-
tion point of P.

Now, our aim is to prove that the DM(Bregman) rule can be represented by a
decision rule that minimizes expected distance from the point vw (2 Δ

M)
corresponding to a world w 2 W, which is the representation point of the omniscient
credence function Vw at w 2 W . (Recall that ifΔM isΔW , �vw�w0 � Vw w0� � � 1w�w0 , and
if Δ

M is Δ
F, �vw�A � Vw A� � � 1w2A.) That is, the DM(Bregman) rule can be

represented by a decision rule minimizing expected divergence from the true world,
which we will call EUM(SP). In the next section, we will explain the reason for calling
it that. Although our proof runs along similar lines to the proofs of Banerjee et al.
(2005, Theorem 1) and Adamcik (2014, Theorem 2), subtle adjustments are necessary
for our belief binarization problem. First, our refined Bregman divergence is defined
not only in Δ

W but also in Δ
F. Second, the refined Bregman divergence is defined

neither in Rm nor in an open convex subset, but in a closed convex subset ΔM . Third,
we allow infinity as a value of divergence.

Throughout, we denote the expectation of g with respect to a probability
distribution P 2 P W� � by Ew�P g w� �� �

, where g : W ! R[ ∞f g or
g : W ! R [ �∞f g. Note that Ew�P g w� �� � � P

w2W P w� �g w� �.

Theorem 2 (Representation of DM(Bregman) by EUM(SP)). Let D be a Bregman
divergence inΔM. Then, for all p; q 2 Δ

M and any probability function P 2 P W� � represented
by p,

D p; q
� � � E�P D vw;� �� � � Ew�P D vw; p

� �� �
;

and thus argminb D p; b
� � � argminb Ew�P D vw; b� �� �.

This theorem states that minimizing distance from P is the same as minimizing
expected distance from the true world according to P if the distance is given by a
Bregman divergence. It is worth noting that we could not prove this theorem if the
definition of Bregman divergence guaranteed finiteness only in ri ΔM� �. Suppose that
we use a definition of Bregman divergence that might yield the cases in figure 6,
e.g., the definition with (*) (p. 14) instead of (i) and (ii) in Definition 5. The left-hand

p

p

p
p

Figure 6. These cases can occur according to the definition of (*). The dashed lines in each polytope
represent where D p; 
� �

is infinite.
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side D p; q
� �

is finite for q 2 ri ΔM� �. However, D vw; p
� �

might not be finite even though
w 2 Supp P� �, and thus Ew�P D vw; p

� �� �
might not be finite.9

The distance between vw and b can be thought of as a utility in epistemic decision
theory—an epistemic disvalue. Thus, a DM(Bregman) rule can be seen as a decision
rule maximizing expected utility. This inspires us to define a new rule that applies
epistemic decision theory directly to binarization problems.

5. Expected utility maximizing binarization rules

5.1. EUM rules with strictly proper scores
Now let us give a formal definition of an expected utility maximization rule (EUM rule).

Definition 6 (Expected utility maximization rule). A BR G is an expected utility
maximization rule inΔM iff there is a utility function u : W × UM ! R [ �∞f g satisfying
G P� � � argmaxb Ew�P u w; b� �� � for all P 2 P W� �.

In this paper, we restrict our focus to already well-developed epistemic utility
functions, namely proper scores (in Wang (n.d.), we have considered EUM rules with
more general utility functions and their properties). This will be useful for investigating
the relation between EUM rules and DM(Bregman) rules introduced in the previous
section. Put differently, we shall consider the case where u w; b� � :� �I w; b� � for some
continuous strictly proper score I : W × Δ

M ! 0; ∞� �, to be defined below.

Continuous strictly proper score
Now we define a continuous strictly proper score in our setting where probability
distributions are represented in Δ

M . We include infinity as a value of scores on some
boundary region, and when we talk about continuity of a score including infinity, we
will also regulate the region where it should be finite and continuous.

Definition 7 (Continuous strictly proper score). Let I be a function
I : W × Δ

M ! 0; ∞� �.

(i) I is continuous iff, for all w 2 W and q 2 Δ
M ,

(a) if q 2 Fvw then I w; q
� �

is finite and continuous in q;
(b) otherwise, I is extended to a continuous function that might take infinity as a value,

meaning that w; q
� � � limx!q : x2Fvw

I w; x� �, which exists, infinity being allowed
as limits.

(ii) I is called a strictly proper (SP) score iff, for all P 2 P W� �,
argmin
q2ΔM

Ew�P I w; q
� �� � � p

� �
;

where p is the representation point of P in Δ
M .

According to our definition above, continuous scores I w; 
� � are finite and
continuous not only in ri ΔM� � but also in Fvw (see Figure 7). Notice that q 2 Fvw ,

9 We can easily check: (i) if we use (*) and assume a regularity condition that D vw; p
� �

is finite for all
w 2 MSupp p

� �
and all p 2 Δ

M , then we have Theorem 2, and (ii) from the theorem and the regularity
condition it follows that D p; q

� �
satisfying (*) is finite for all p; q 2 Δ

M such that p 2 Fq.
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i.e., w 2 MSupp q
� �

, says that a probability function represented by q assigns to w a
positive value. This means that w is probabilistically possible from the point of view of
a probability function represented by q. In this case, we demand that I w; q

� �
should

not receive infinite score and be continuous in q. Note that if I is strictly proper, then
we can derive that I w; 
� � is finite in Fvw , as shown in the following lemma.

Lemma 2. Let I : W × Δ
M ! 0; ∞� � be a strictly proper score. Then I w; 
� � is finite in Fvw .

It is also worth noting that in Δ
W the condition of I w; 
� � being finite in Fvw is the

same as the notion of regular score in Gneiting and Raftery (2007).

Invariant expectation under the same input representation
Notice that an expectation value in EUM rules depends not only on the point p in Δ

M

but also on the probability distribution P, in contrast to a divergence in DM rules.
Thus, to see the connection between EUM rules and DM rules, we need the following
requirement, which is relevant in Δ

F, where a point p might represent several
probability distributions.

Definition 8 (Invariant expectation under the same input-representation).
A function I : W × Δ

M ! 0; ∞� � has an invariant expectation under the same input
representation (IER) iff, for all P; P0 2 P W� � with the same representation in Δ

M,
i.e., p � p0 2 Δ

M� �, we have Ew�P I w; q
� �� � � Ew�P0 I w; q

� �� �
for all q 2 Δ

M .

IER has a close relationship with IIR in Definition 3. If a BR G is an EUM rule with
I that satisfies IER, then G is invariant under the same representation (IIR). Although
IER may seem a strong condition, it is actually a mild restriction because a large class
of scores obey IER. Every scoring function defined in Δ

W satisfies IER. We can
generalize this to the case in Δ

F as follows.

Lemma 3. A function I : W × Δ
F ! 0; ∞� � satisfies IER if I is a partition-wise score,

i.e., there is a partition of W, say W � A1 [ 
 
 
 [ Ak, such that (i) A1; . . . ; Ak 2 F and (ii) for
all i ≤ k we have, for all w;w0 2 Ai and q 2 Δ

F, I w; q
� � � I w0; q

� �
.

Note that ifF includes every singleton set wf g of a world, for example,P W� �, then
every I is a partition-wise score, and thus it satisfies IER. There are also another ways
to satisfy IER. Any additive scores defined in Δ

F also enjoy IER, as the following
lemma shows. In addition, it shows that strict propriety of an additive score follows
from event-wise strict propriety.

vw vw

Figure 7. The dashed lines including the end points in each
polytope represented where a continuous score I w; 
� � might be
infinite. Their complement is Fvw where I w; 
� � is finite and
continuous.
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Lemma 4. Let I : W × Δ
F ! 0; ∞� � be additive, i.e., for all w 2 W and p 2 Δ

F,

I w; p
� � �

X

A2F
IA� vw�A; pA

� �

where IA : 0; 1f g × 0; 1!� �0; ∞� � for all A 2 F.

(i) I satisfies IER.
(ii) If I is event-wise strictly proper (E-SP), i.e.,

argmin
qA2�0;1�

pAIA 1; qA
� �	 1 � pA

� �
IA 0; qA
� �� � � pA

� �

for all A 2 F and pA 2 0; 1� �, then I is strictly proper.

5.2. Representation of EUM(SP) by DM(Bregman)
An EUM(SP) is defined as an EUM rule with a continuous strict proper score satisfying
IER. Now, let us show how EUM(SP) is related to DM(Bregman). The following theorem
shows that an EUM rule with a score I can be represented by a DM(Bregman) rule
when I is a continuous strictly proper score with IER.

Theorem 3 (Representation of EUM(SP) by DM(Bregman)). Let I : W × Δ
M ! 0; ∞� �

be a continuous strictly proper score with IER. Then there is a Bregman divergence D in Δ
M

such that, for all p; q 2 Δ
M and any probability function P 2 P W� � represented by p,

D p; q
� � � Ew�P I w; q

� �� � � Ew�P I w; p
� �� �

;

and thus argminb Ew�P I w; b� �� � � argminb D p; b
� �

.

This states that an expected SP score with IER is associated with a Bregman
divergence, and minimizing them yields the same result. The next corollary follows
from the above theorem.

Corollary 1.
(i) Let I be a continuous SP score inΔW. Then D p; q

� �
:� Ew�P I w; q

� �� � � Ew�P I w; p
� �� �

is a Bregman divergence in Δ
W .

(ii) Let I be a continuous additive E-SP score in Δ
F. Then D p; q

� �
:� Ew�P I w; q

� �� � �
Ew�P I w; p

� �� �
is an additive Bregman divergence in Δ

F.

We now draw a comparison between our findings and analogous theorems
presented in other works. Gneiting and Raftery (2007) and Banerjee et al. (2009)
showed similar results to Corollary 1(i). Gneiting and Raftery (2007) established, in
Δ

W , the relationship between regular proper scores and Bregman divergences.
However, scores and divergences are not necessarily assumed to be continuous. Our
proof, however, achieves more by deducing the continuity of our refined Bregman
divergence through the continuity of scores. The theorem in Banerjee et al. (2009) is
similar to the Corollary 1(i), albeit their Bregman divergences are defined on Rm

rather than Δ
W , and they exclude infinity. In contrast, our proof addresses how to
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handle infinity. The relation between additive continuous SP scores and additive
Bregman divergences in Predd et al. (2009) is similar to Corollary 1(ii). Since they are
dealing with non-probabilistic credences as well, their result is stronger than ours in
the sense that Bregman divergences are defined on �0; 1�F instead of ΔF. However,
their findings hinge on the additivity assumption, and in this sense our result is
stronger. Compared to the above literature, Theorem 5.2 is more comprehensive in
the sense that it provides proofs for the cases in Δ

W and in Δ
F at the same time. On

top of that, Theorem 3 gives us the way to deal with continuous scores inΔW and non-
additive scores in Δ

F, at the cost of the assumption of IER.
It is worth asking how our more complicated definition of Bregman divergence

plays out in the proof of the theorem. Recall that we could not have had Theorem 2 if
we had used the alternative definition (*) (being finite and continuous in ri ΔM� �)
instead of parts (i) and (ii) in Definition 5. In contrast, we could have had the same
form of Theorem 3 with the alternative notion of Bregman divergence rather than
ours. But Theorem 3 tells more with our definition because we demanded more for a
divergence to be our Bregman divergence and thus we proved more.

From Theorems 3 and 2, we have the following claims, which might be viewed as
involving a converse of both theorems in certain conditions.

Corollary 2.
(i) Let I : W × Δ

M ! 0; ∞� � satisfying IER. I is continuous SP iff

DI p; q
� �

:� Ew�P I w; q
� �� � � Ew�P I w; p

� �� �

is a Bregman divergence.
(ii) Let D : ΔM × Δ

M ! 0; ∞� � be a divergence, and suppose that ID w; q
� �

:� D vw; q
� �

satisfies IER. D is a Bregman divergence iff

D p; q
� � � Ew�P D vw; q

� �� � � Ew�P D vw; p
� �� �

and ID w; q
� �

is continuous in q.

To summarize this section and the previous one, we proved, with our refined
definitions, that the DM(Bregman) rules and the EUM(SP) rules have the
same extension under certain conditions (IER): (i) a strictly proper score I of an
EUM rule satisfying IER can be extended to a Bregman divergence DI such that
DI p; q
� � � Ew�P I w; q

� �� � � Ew�P I w; p
� �� �

, and the DM rule with DI generates
the same results with the EUM rule; (ii) a Bregman divergence D of a DM rule can
be restricted to a strictly proper score ID such that ID w; q

� � � D vw; q
� �

, and the EUM
rule with ID generates the same results with the DM rule.

6. Conclusion
Numerous questions still remain unanswered. Although our belief binarization
methods can be applied to both prior and posterior, we do not presuppose or advocate
for any dynamic norms for credence, such as plan conditionalization as in Greaves and
Wallace (2006) or Laplacian imaging as in Leitgeb and Pettigrew (2010), and dynamic
norms for the belief–credence connection, such as the commutativity norm shown as
in Lin and Kelly (2012a) or the compatibility norm concerning AGM belief revision as
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in Leitgeb (2017). Based on our study, an intriguing question arises: Can we identify or
characterize EUM rules that track Bayesian (plan) conditionalization by employing
certain suitable rational belief revision methods? This question has to be left for a
different paper.

The DM(Bregman) rules include an infinite number of distance measures. By
incorporating additional rationality norms, we can identify a more appealing subset
of DM(Bregman). One such property would be that the probability of every believed
proposition generated by some belief binarization rule ought to be bigger than half. In
Wang and Kim (n.d.), we showcase the fulfillment of this criterion by DM(SE).
Exploring broader discoveries in this vein would indeed be intriguing.

Supplementary material. For supplementary material accompanying this paper visit https://doi.org/
10.1017/psa.2024.9
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