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Abstract
This paper applies machine learning to recreate to a high degree of accuracy the OECD’s Services Trade
Restrictiveness Index (STRI) to provide quantitative evidence on the restrictiveness of services policies in
2016 for a sample of developing countries, using regulatory data collected by the World Bank and WTO.
Resulting estimates are used to extend the OECD STRI approach to 23 additional countries, producing
what we term a Services Policy Index (SPI). Converting the SPI to ad valorem equivalent terms shows
that services policies are typically much more restrictive than tariffs on imports of goods, in particular
in professional services and telecommunications. The SPI has strong explanatory power for bilateral
trade in services at the sectoral level, as well as for aggregate goods and services trade.
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1. Introduction
Services play an important role in economic development. Because services account for a signifi-
cant share of total output in even very poor countries, the operation of services sectors matters for
overall economic performance. The importance of services for development is augmented
because of their role as inputs into production for a broad cross-section of industries, including
agriculture as well as manufacturing. The cost, quality, and variety of services available in an
economy helps determine the productivity of ‘downstream’ sectors. Services also matter for the
achievement of the sustainable development goals (SDGs); improving access to health, education,
and finance or enhancing connectivity through investment in information and communications
technologies and transport and logistics networks all involve services activities.1

Restrictive trade and investment policies may impact negatively on firms using services as
inputs, reduce the competitiveness of services exporters, and increase prices and/or lower the
quality of services available to households.2 Trade in services is like trade in goods in allowing
specialization according to comparative advantage, inducing competitive pressures and knowl-
edge spillovers, but differs in that often it is more dependent on cross-border movement of pro-
viders, whether legal entities (firms) or natural persons (services suppliers). A consequence is that
trade in services involves a much broader range of policy instruments than trade in goods
(Francois and Hoekman, 2010).3
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1See https://sustainabledevelopment.un.org/topics/sustainabledevelopmentgoals for more detail on SDG targets.
2See, e.g., Borchert et al. (2011), Fiorini and Hoekman (2018), and Helble and Shepherd (2019).
3Factor movement and cross-border movement of buyers/consumers is also salient for trade in goods but is generally

much less likely to be a necessary condition for trade to be feasible.
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Well-known data weaknesses hamper analysis of how policies towards imports and exports of
services, foreign direct investment, and, more generally, regulation affects the operation of services
sectors. Although data on services activities in developing economies has been improving, in part
as the result of periodic firm-level surveys that have resulted in large panel datasets (e.g., the World
Bank enterprise surveys), comparable information on external service-sector policies of developing
countries is very limited, information on policies is often patchy at best, and time series data on
relevant policy variables generally are not available on a cross-country, comparable basis.

This situation began to change in the late 2000s with a World Bank project to collect infor-
mation on services trade and investment policies and to create services trade restrictiveness indi-
cators (STRIs) that constitute a numerical summary of applied services policies believed to affect
trade flows (Borchert et al., 2014). These STRIs in turn have been used to estimate sectoral ad
valorem tariff equivalents for 103 countries (Jafari and Tarr, 2017). The OECD has gone further
than the World Bank by compiling STRIs for its member countries as well as major emerging
economies that span a broader range of policies and services sectors, including both discrimin-
atory and regulatory measures. The OECD STRI is available on an annual basis starting in 2014
and covers 45 countries. The general characteristics of the two STRI projects are set out in
Table 1.

A problem for applied policy research on developing country services trade policies is that
the OECD STRI database covers only a small number of emerging countries, while the World
Bank STRI data are only available periodically, with the latest STRI covering 2016 policies
released in early 2020. As a result, extant empirical research on developing country services
trade policies has largely been constrained to cross-section analysis, using increasingly outdated
information.

The 2020 edition of the World Bank STRI is supported by a collaborative data collection effort
with the WTO secretariat. A first result of this joint venture was the publication in November
2019 on the jointly managed Integrated Trade Intelligence Portal (I-TIP) website of a database
of applied services trade policies for the year 2016. These data span many emerging and devel-
oping economies as well as OECD member countries. In January 2020, the World Bank released
its own STRI based on these data.

In this paper, we utilize the World Bank–WTO information on 2016 services policies to gen-
erate new indicators of services policy restrictiveness in eight services sectors for 23 countries not
included in the OECD STRI.4 The new data provide an opportunity to analyze services trade pol-
icies using information that post-dates the 2008 global financial crisis. In addition to developing a
methodology to effectively extend coverage of the OECD index using the new data, we show that
it is a strong predictor of bilateral services trade at the sectoral level.5 Finally, we take advantage of
the recent release of the World Bank’s STRI to compare performance of the various indicators in
an empirical setting.

A challenge in generating indicators of services trade policy from information on applied mea-
sures is the need to appropriately weigh and aggregate policies on a sector-by-sector basis. A con-
tribution of this paper is to apply a machine-learning algorithm to the policy data to construct
indicators that are broadly consistent with the STRI methodology used by the OECD in that
they correlate well with the OECD STRIs. Because the full detail of the methodology used to pro-
duce the OECD indices is proprietary and not published, it is not possible to simply apply the
OECD methodology to generate STRIs that are strictly comparable to those reported in the
OECD database. A similar problem arises in relation to the World Bank STRI released in

4The OECD produces STRIs for OECD member countries and nine (mostly large) emerging economies: Brazil, China,
Colombia, Costa Rica, India, Indonesia, Malaysia, the Russian Federation, and South Africa. See https://qdd.oecd.org/subject.
aspx?Subject=063bee63-475f-427c-8b50-c19bffa7392d. The additional country that is the focus of this paper is Rwanda for
which data were produced by Shepherd et al. (2019b) with assistance from the OECD Secretariat. This brings the total to 24.
See Appendix 1.

5As made clear below, the index itself is not based in any way on trade data.
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2020. Although staff of both organizations have published papers outlining their methodologies,
it is challenging for independent researchers to collect data for new countries and calculate com-
patible indices. Our approach provides a straightforward approach that researchers anywhere can
reproduce to calculate their own STRIs based on newly collected policy data. An added benefit of
our approach is that it highlights the individual policy measures that have the greatest explanatory
power in terms of the sectoral STRIs and offers the perspective of streamlining data collection
efforts in the future.

The plan of the paper is as follows. In Section 2, we discuss briefly the new data on 2016 ser-
vices policies published by the WTO. Section 3 describes the methodology used to generate ser-
vices policy indicators (SPIs) from this information. Section 4 validates the SPIs by assessing their
ability to act as statistically significant predictors of trade flows using a standard structural gravity
model of total trade and specific services sectors. Section 5 concludes.

2. New Data on Services Policies
In November 2019, the World Bank and WTO released an update to their jointly managed
I-TIP platform containing extensive data on national services policies. In its raw state, the
dataset includes 68 countries, 25 sectors, and three modes of supply: cross-border trade in ser-
vices (Mode 1 in WTO speak), Mode 3 (establishment of a commercial presence in a foreign
country – essentially foreign direct investment in a services sector), and Mode 4 (temporary
cross-border movement of services suppliers). The data exclude Mode 2, where trade occurs
through movement of consumers to a foreign country (e.g., tourism) as this is generally
unrestricted.

The dataset pertains to policies observed in 2016 that potentially affect services trade. It has
nearly a quarter of a million observations (244,949), distinguishing up to 445 different measures,
both sector specific and horizontal. If attention is restricted to countries and sectors for which
information is reported fully at the level of these individual measures, the coverage falls to 68
countries and 24 sectors.6 I-TIP data are freely downloadable from the WTO website. Borchert
et al. (2019) discuss database creation, including sourcing and access. The source for 45 of the
68 countries is the OECD STRI database, so that I-TIP adds information on 23 countries not

Table 1. Comparison of key characteristics of OECD and World Bank STRIs

OECD World Bank

Years covered 2014, 2015, 2016, 2017, 2018, 2019. 2008, 2016.

Publication lag < 1 year 4 years

Countries covered 46 68

Sectors covered 22 23

Data source Collected directly from national
laws and regulations

Sourced from OECD (43 countries) and law
firm surveys (25 countries)

Regulatory data publicly
availably

Yes Yes

Policy simulator Yes No

Algorithm code publicly
available

No No

6Some of the measures are coded for only a handful of countries, precluding use in empirical analysis in a cross-country
setting. As it is important for empirical analysis to have data availability across all relevant data points, we limit consideration
to the countries and sectors we have identified as satisfying that criterion.
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covered by the OECD (Appendix Table 1 lists the countries). As with the 2008 iteration of the
World Bank STRI, questionnaires administered to law firms in the countries of interest generated
the raw data, treated by the World Bank and WTO team to ensure consistency and correctness.
Table 2, taken directly from Borchert et al. (2019), lists the general categories of measures
included in the database.

3. Constructing an Index of Services Policies from I-TIP Data
There are two key analytical decisions in designing an STRI given the choice to collect data on
particular measures: weighting the measures and aggregating them into an index. The first prob-
lem can be solved through application of purely statistical methods, such as factor analysis, or by
using external expert judgment, as in the OECD STRI, which is based on a weighting and aggre-
gation system driven by expert input (Grosso et al., 2015). Aggregation is then by weighted sum.
The World Bank STRI, by contrast, appears to use the judgment of World Bank analysts to
motivate the mapping of measures to quantitative scores. Then aggregation uses a constant
elasticity of substitution function with parameters chosen again by the judgment of World
Bank analysts.

As noted above, the selection of I-TIP data we use span 455 individual policy measures in 68
countries and 24 sectors. The challenge is to produce an overall index of services policy by sector
using those data. We use the OECD index as our basis for this problem because it appears to us to

Table 2. Classification of World Bank/WTO services policy data

A Conditions on market entry

1 Forms of entry (including foreign equity limits)

2 Quantitative and administrative conditions

3 Conditions on licensing/qualifications relating to market entry

4 Other conditions on market entry

B Conditions on operations

1 Conditions on supply of services

2 Conditions on service supplier

3 Conditions on government procurement

4 Other conditions on operations

C Measures affecting competition

1 Conditions on conduct by firms

2 Governmental rights/prerogatives (including public ownership)

3 Other measures affecting competition

D Regulatory environment and administrative procedures

1 Regulatory transparency (including licensing)

2 Nature of regulatory authority (measures related to nature of regulator)

3 International standards

4 Conditions related to administrative procedures

5 Other regulatory environment and administrative procedures

E Miscellaneous measures

Source: Borchert et al. (2019).

118 Bernard Hoekman and Ben Shepherd

https://doi.org/10.1017/S1474745620000439 Published online by Cambridge University Press

https://doi.org/10.1017/S1474745620000439


represent the best currently available STRI.7 It is quite possible that a superior index will be
designed in the future, but, at the present time, we do not believe there is a better benchmark
than the OECD STRI. There is an active research program based on it, showing that the index
is robustly linked with trade in services (e.g., Nordås and Rouzet, 2017) and investigating ques-
tions such as the extent and effects of regulatory heterogeneity (Nordås, 2016, 2018) and the ser-
vices content of regional integration in the EU (Benz and Gonzalez, 2019).8 Moreover, we are
interested in showing the potential for commonplace statistical techniques to extend coverage
of an index to new countries as additional data become available.

The first problem we address in this paper is how to extend the OECD STRI to the countries
included in I-TIP but not in the OECD database. The purpose of undertaking this exercise is to
show that commonplace quantitative methodologies can reproduce the STRI very well, even with-
out the detailed information contained in the aggregation algorithm, which has not been made
public. Our analysis illustrates it is possible to obtain a comparable index across all 68 countries
quickly and at very low cost, without the need to develop a new methodology.

Equivalently, our problem can be seen as one of dimensionality reduction. We start with up to
445 individual policy measures per country in I-TIP and attempt to reduce those measures to one
score per country–sector pair. Our objective in reducing dimensionality is to reproduce the
OECD STRI as closely as possible.

This class of problem is well suited to a basic machine learning application. We construct a
dataset containing OECD STRIs by sector and all horizontal and sector specific policy measures
from I-TIP for all 68 countries for which full data are available. For the analysis to be feasible,
we limit consideration to those sectors that correspond well between the two databases, taking
simple averages of measures where necessary. This approach is made necessary by the different
levels of aggregation in the data: subsectors in I-TIP, and more aggregate sectors in the publicly
available OECD data. The result is to reduce the number of sectors we can work with easily to
eight: accounting, legal, commercial banking, insurance, air transport, road freight transport,
distribution, and telecom. We believe these sectors represent a large share of services activity
in most countries. Although we lose some of the nuance in the I-TIP data – which distinguishes
sectors at a micro level, such as insurance versus reinsurance, or air passenger transport versus
air cargo transport – we believe this approach is justifiable given our overall objectives as set out
above.

We split the sample into three groups. We randomly assign 75% of observations for which
there is an OECD STRI to a training subsample, with the remaining 25% assigned to a predic-
tion subsample. Finally, those countries and sectors where no OECD STRI is available are
assigned to an out of sample prediction subsample. The basic empirical strategy is to apply
machine learning models to the training subsample only, with the aim of using the disaggre-
gated policy data to predict an index score by sector, which can then be compared with the
OECD STRI. By having the model produce indices for the prediction subsample, we can assess
how it performs on data that were not used for training. Once an appropriate model has been
selected, it can be used to make out of sample predictions for countries not in the OECD data.

7Although the OECD STRI is the best available index, not least because the organization undertook an extensive attempt to
obtain weights by expert judgement, these experts defined the various weights used to define the index on the basis of what
they presumed is the best relative importance of each policy measure. As noted by a reviewer, to determine this relative
importance objectively, ideally one should have weights ex ante, based on trade data. The current state of services trade
data availability does not permit this to be done.

8The body of evidence using the World Bank STRI is smaller, likely reflecting the intermittent nature of the exercise which
has historically limited researchers to cross-sectional analysis See e.g., Borchert et al. (2014), Hoekman and Shepherd (2017),
Beverelli et al. (2017), and Su et al. (2019) for analyses using the World Bank STRI.
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3.1 Developing Services Policy Indices with Simple Machine Learning

Machine learning refers to a family of techniques commonly used in computer science and data
science, whereby statistical algorithms are used to find patterns in data, and to make predictions
based on those patterns. These types of approaches power many familiar consumer interfaces,
such as movie suggestions on Netflix, or predictive text in Google searches or Gmail emails.
To date, machine learning has been applied infrequently in economics, but Athey and Imbens
(2019) identify features of machine learning techniques that can potentially be of use to applied
economists. An important example of such an approach is Athey et al. (2017), who use machine
learning to assist in developing a causal inference framework. The remainder of this section sets
out our general approach. Readers who do not require the technical background can skip to the
next section.

We apply a type of machine learning model called an elastic net as a prediction tool. The
model itself can be understood as similar to the standard regression framework familiar to econ-
omists, with independent variables (inputs) and a dependent variable (output), with the relation-
ship between the two summarized in a set of coefficients that are estimated by solving an
optimization problem. In this case, the input is the set of policy measures from I-TIP, and the
output is the OECD STRI. Model selection and performance assessment proceed by comparing
the model’s predictions of the STRI with what is observed. A good model is one that uses the
inputs to reproduce the OECD’s STRI to a high degree of accuracy, and which exhibits similar
accuracy for the subsample of data used to train the model, and the remainder of the sample
that was not used in training. A subsidiary consideration is model parsimony, namely the ability
to achieve strong predictive performance while using a relatively small number of variables. The
machine learning techniques we use automatically drop policy measures (inputs) with little
explanatory power for the OECD STRI (the output) and identify a set of policy measures that
have the greatest explanatory power, typically much smaller than the starting data set. We discuss
the policy implications of this feature of the algorithms below.

In technical terms, the elastic net solves the following problem, where b̂ is the vector of para-
meters of interest:

b̂ = argminb
1
2n

∑n
i=1

(yi − xib
′)2 + l a

∑p
j=1

|bj| +
1− a

2

∑p
j=1

b2
j

[ ]{ }

The first term is the standard ordinary least squares (OLS) loss function. λ is a penalty term
that shrinks parameter estimates towards zero in two ways, with a higher parameter resulting in
greater shrinkage. The first term in square brackets penalizes coefficients that are large in absolute
value, while the second performs shrinkage based on the square of the parameter value. With
λ = 0, the elastic net collapses to standard OLS. With nonzero λ and α = 1, it is the least absolute
shrinkage and selection operator (LASSO), while with α = 0, it is ridge regression. The essence of
the procedure is that λ is iterated for given values of α, with zero coefficients dropped from the
model progressively due to the shrinkage effect. Iteration continues until a model is selected
based on its cross-validation performance, i.e. the ability of a model estimated on the training
subsample only to produce close estimates of the values in the prediction subsample. By proceed-
ing in this way, we can identify a subset of variables that have the best explanatory power in terms
of the observed OECD STRI, and then use the estimated values from the elastic net regression to
predict values out of sample, where no OECD STRI exists.

The elastic net is well suited to prediction problems with large numbers of potential predictors,
even exceeding the number of observations, and deals well with situations where they are closely
correlated. These characteristics are unlike OLS, where the number of potential predictors cannot
be greater than the number of observations. More fundamentally, the objective of OLS is typically
inference, whereas the objective of the elastic net is prediction. As a result, we do not report
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standard errors or statistical significance, which are typically important outputs of an OLS model.
Instead, we report cross-validation performance, namely the ability of the model to make predic-
tions that closely track observed values in the subsample not used to train the model in the first
place.

To power the tool, we construct a set of explanatory variables that is all sectoral policy mea-
sures from I-TIP, all horizontal policy measures from I-TIP, and a set of sector dummies. We
then also create interactions to allow for nonlinear effects and dependencies. Specifically, we
interact all policy measures with all other policy measures, and we create a triple interaction
between all horizontal policy measures, all sector specific policy measures, and the sectoral dum-
mies. The I-TIP dataset contains missing entries for many response variables, presumably
because they are believed to only be relevant to certain sectors. To facilitate the empirical analysis,
we therefore code these missing values as zero, which means that they do not have any restrictive
impact on trade in sectors where World Bank and WTO analysts have made an a priori deter-
mination of no effect.

Proceeding in this way gives a dataset of 544 observations, which is eight sectors for 68 coun-
tries. By interacting all the potential explanatory variables, as set out above, we have 16,974 vari-
ables. Many of those variables are constant within subsamples, often zero, and so are
automatically dropped from the model. In practice, the elastic net works with a starting set of
1,606 variables. A standard regression technique like OLS cannot handle this problem given
the number of observations, but the elastic net can, because the optimization problem has
kinks due to the absolute value and square terms. Since OLS is unavailable we use two other
dimension reduction techniques on the sectoral and horizontal measures to give a point of com-
parison but ignoring interaction terms: principal factor analysis and a simple mean. In both cases,
we apply the relevant measures to the disaggregated policy data at the level of sectors, to produce
a single index that summarizes, according to the assumptions of each, the variation in the disag-
gregated policies. As a robustness check on our machine learning models, we also set α = 1, which
yields LASSO estimates, and α = 0, which yields ridge estimates.

Given that the problem in this case is prediction, not inference, we do not report coefficient
estimates. For the training sample (272 observations), the elastic net retains 59 variables, a mix of
measures in levels and interactions, and selects α = 0.25. The LASSO retains 55 variables, while
the ridge estimator retains the full set of informative variables, namely 1,606. Table 3 summarizes
the performance of the three machine learning methods, looking separately at the training and
prediction subsamples.

The three methods perform quite similarly on the training subsample: model fit is tight consid-
ering the relatively small amount of information used. The mean value of the OECD STRI is 0.279,
so a mean squared error of only 0.005 using the elastic net indicates that model fit is good.
Comparing the two parts of Table 3 shows that of the three machine learning methods, the elastic
net has the best performance: R2 is highest both on the training and prediction subsamples. We
therefore prefer the elastic net’s predictions, but we note that it is relatively close in performance
to the other two models.

Table 4 reports the correlations at the sectoral level among the various measures computed as
described above. The elastic net again is the strongest performer on this overall criterion, although
the other two machine learning methods also perform well. The comparator indices, constructed
using principal factor analysis and a simple mean, have a negative correlation with the OECD
index, and thus represent a radically different way of summarizing the data. The evidence in
Table 4 suggests that the OECD approach to weighting and aggregating measures results in an
output that is substantially different from what can be obtained by naïve methods that focus
only on the characteristics of the data, without using external knowledge on the effects of particu-
lar policies. It is an important finding that the OECD index, and by extension, ours, does not
correlate strongly or even positively with naïve measures. But our three simple machine learning
applications, using limited data, do a remarkable job of reproducing the OECD index. Moreover,
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our preferred method, the elastic net, produces predicted values that lie exclusively between zero
and unity, as does the original OECD index. The alternative approaches do not have this prop-
erty, nor would a simple OLS regression model. Given that the indices only have an ordinal inter-
pretation, it is useful to investigate the rank correlation as well. We find that the OECD STRI and
our SPI have a rank correlation coefficient of 0.788, which is again evidence of a strong corres-
pondence between the two measures.

Figure 1 shows the correlation in a common sample of elastic net predictions for all countries
in the I-TIP sample, i.e. those already covered by the OECD and those that are new, which we
name the Services Policies Index (SPI), and the OECD STRI at the sector level. The association
with the OECD index is not perfect, as would be expected with any statistical approach to repro-
duction of an existing index, but the figure shows that our SPI fits the original data well, which
gives us confidence that out of sample estimates for the countries not in the OECD database
should perform well, in particular given the similarity of the R2 measures for the training and
prediction sub-samples, as noted above. Summary statistics show that the new countries added
to the sample are more restrictive than those in the original OECD sample, with an average
STRI across sectors of 0.333 compared with 0.281; however, ranges in both cases are wide: the
new countries have scores ranging from 0.096 to 0.872, compared with 0.157 to 0.960 for
those in the OECD sample.

To avoid terminological confusion in what follows we refer consistently to the OECD STRI as
the STRI. Our constructed indices based on I-TIP data are referred to as Services Policy Indices
(SPIs). The difference in terminology highlights that we are simply mimicking the OECD’s

Table 3. Output from Elastic Net, LASSO, and ridge applications to OECD STRIs using I-TIP data in levels and interactions

Mean Squared Error R-Squared Observations

Training

Elastic Net 0.005 0.784 272

LASSO 0.008 0.683 272

Ridge 0.009 0.594 272

Prediction

Elastic Net 0.007 0.739 91

LASSO 0.009 0.674 91

Ridge 0.012 0.527 91

Table 4. Correlation between OECD STRI and alternative services policy index (SPI) estimates (common sample)

OECD
STRI

Elastic Net
SPI

LASSO
SPI

Ridge
SPI

Principal Factors
SPI

Simple Mean
SPI

World Bank
STRI

OECD STRI 1.000

Elastic Net SPI 0.888 1.000

LASSO SPI 0.851 0.983 1.000

Ridge SPI 0.816 0.909 0.869 1.000

Principal Factors
SPI

−0.266 −0.327 −0.350 −0.430 1.000

Simple Mean SPI −0.357 −0.415 −0.416 −0.536 0.780 1.000

World Bank STRI 0.822 0.800 0.786 0.768 −0.208 −0.361 1.000
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original approach using a broader dataset. Ownership of the full methodology used to produce
the OECD’s indices lies with that organization, and we use a commonplace data-driven technique
to extend database coverage.

4. Validating the SPI with Trade Data
We have already shown that our SPI closely mirrors the OECD’s STRI, in our view currently
the best available benchmark for measuring applied services policies. An important add-
itional step in validating the SPIs is demonstrating their ability to act as statistically signifi-
cant predictors of trade flows. Thus far, we have not used any information on trade flows to
produce the SPI, but only the weights implied by the OECD’s expert judgment system, which
we have mimicked using machine learning. This second step is therefore quite independent
of the first, and is designed to show that our index has explanatory power for bilateral trade,
which we believe is an important criterion for any index that seeks to measure services trade
policies.

We estimate a standard structural gravity model of services trade at the sectoral level in line
with current best practice, as embodied by Anderson et al. (2018). Estimation is by Poisson
Pseudo Maximum Likelihood (PPML), which means that estimates are robust to heteroskedasti-
city, take account of zero flows, and produce fixed effects (by exporter and by importer) that cor-
respond exactly to the quantities prescribed by theory in Anderson and Van Wincoop
(2004)-type models (Fally, 2015).

The gravity model takes the following form, considering a single year and single sector cross-
section only:

Xij = FiFjt
−u
ij eij (1)

where: Xij is exports from country i to country j; the F terms are exporter and importer fixed
effects; tij is bilateral trade costs; θ is a parameter capturing the sensitivity of demand to cost;

Figure 1. Correlation between the STRI and SPI, sector level (common sample)
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and eij is an error term satisfying standard assumptions.9 Trade costs t are specified in the usual
iceberg form. These costs are unobserved but can be specified in terms of observable proxies. For
present purposes, we include standard gravity model controls based on geography and history,
and an indicator of service sector restrictiveness (STRI for presentational purposes), as well as
an interaction between the STRI and a dummy for countries that are members of an
Economic Integration Agreement (EIA) under Article V of the GATS, the services equivalent
of a PTA for goods. Formally:

−ulogtij = b1STRIj∗intlij + b2EIAij + b3STRIj∗intlij∗EIAij + b4 log (distanceij)+ b5contiguousij+
b6colonyij + b7common languageij + b8common colonizerij + b9same countryij + intlij

(2)

Table 5 provides variable definitions and sources, along with those for equation (1). Apart
from trade flows, the data sources are largely standard. Equation (1) should in principle cover
all directions of trade, i.e. including trade from country i to country i, or intra-national trade.
Inclusion of intra-national trade data is crucial for PPML to produce theory-consistent fixed
effects estimates (Fally, 2015). International trade data do not include this term, so we use the
Eora multi-region input–output table to do the job.10 Eora covers 183 countries and 26 sectors
through a single harmonized input–output table. We use data for 2015 only, the latest available
year, corresponding most closely to the year of our SPI data (2016).

In sector by sector regressions, the STRI is a country-specific variable and so is collinear with the
importer fixed effects. To achieve identification, we follow Heid et al. (2017) in interacting it with
intl, a dummy equal to unity for trade between different countries, and zero for internal trade. The
reason for this approach is that the STRI has a differential impact on domestic and foreign service
providers, which is a key aspect of the rationale for the index in the first place. We divide the World
Bank STRI by 100, so that it is on the same scale as the other policy indicators.

As noted above, our SPI data start from 24 sectors defined in the World Bank/WTO dataset,
which we concord to eight sectors in the OECD STRI classification. We then further concord
those data to four Eora sectors by taking simple averages of the relevant indices: distribution,
finance and business services, telecom, and transport. It is not possible to estimate gravity models
at a more detailed level as the Eora database in harmonized form is necessarily highly aggregated.

A second point that requires explanation is the interaction term between services policies and
EIA membership. The services policies in I-TIP apply on a most favored nation (non-
preferential) basis, which is why we map them to MFN policies from the OECD data. The
OECD has collected preferential data for services trade within the EU, but there is no systematic
dataset covering preferential services policies around the world. However, many countries are
members of trade agreements that hope to boost exports between their members, relative to
the MFN benchmark. By interacting MFN policies with a dummy for joint EIA membership,
we seek to capture that effect. An EIA in this context is effectively a trade agreement for services,
under Article V of the GATS. Our expectation is that the coefficient on MFN policies will be
negative (trade reducing), while the coefficient on the interaction term will be positive (showing
that trade reduction is attenuated by regional integration). Benz and Gonzalez (2019) show con-
clusively in the case of the EU that intra-bloc services policies are far more liberal than those per-
taining to non-EU countries.

9Numerous theoretical frameworks are consistent with this model, including as the Armington-type model of Anderson
and Van Wincoop (2003), the Ricardian model of Eaton and Kortum (2002), and the heterogeneous firms model of Chaney
(2008). Arkolakis et al. (2012) and Costinot and Rodriguez-Clare (2014) show that a wide class of quantitative trade models,
including the canonical ones just cited, have the same macro-level implications for the relationship between trade flows and
trade costs even though their micro-level predictions are quite different.

10See https://worldmrio.com/.
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Table 6 reports gravity model regression results for the distribution sector. Column 1
includes the OECD STRI, and as expected, the policy variable has a negative coefficient,
while the interaction term with EIA membership has a positive one, with both estimates stat-
istically significant at the 10% level. The same is true for the World Bank STRI, which is
included in column 7. The baseline data therefore support the view above that the measures
captured by the STRI tend to restrict trade, in line with Nordås and Rouzet (2017), with
that effect attenuated by joint membership of a trade agreement covering services. The same
patterns of signs and magnitudes applies for four SPIs, elastic net, LASSO, ridge, and principal
factors. The simple mean has no statistically significant coefficients. We therefore conclude that
the most naïve of our testbed of SPI measures does not have significant predictive value for
trade, but that other measures that attempt to summarize the available data more systematically
do have such power.

Table 7 repeats the exercise for financial and business services. Results are similar to those for
distribution. The elastic net, LASSO, and ridge SPIs perform somewhat better than the OECD
STRI and on par with the World Bank STRI, in that the levels term and the interaction term
both have coefficients with the expected signs and magnitudes, and are statistically significant
at the 5% level or better. This is largely due to increased sample size for the SPIs; additional
results, available on request, show that results for the SPI are less precisely estimated on the smal-
ler sample for which the OECD STRI and the SPI are both available. Column 1 contains data on
183 exporters and 45 importers, while the following five columns all use 183 exporters and 68
importers. The principal factors SPI does not have any statistically significant coefficients,
while the simple mean SPI has a negative and 1% statistically significant coefficient in levels,

Table 5. Variables, definitions, and sources

Variable Definition Source

Colony Dummy variable equal to one if one country in a pair was in a colonial
relationship with the other.

CEPII.

Common
colonizer

Dummy variable equal to one if the two countries were colonized by the
same power.

CEPII

Common
language

Dummy variable equal to one if both countries in a pair have a language in
common, spoken by at least 9% of the population.

CEPII.

Contiguous Dummy variable equal to one if the two countries share a common land
border.

CEPII.

EIA Dummy variable equal to one of the two countries are members of the
same Economic Integration Agreement under Article V of the GATS.

Egger and Larch
(2008).

Exports Gross exports from country i to country j in sector s (2015). Eora.

Intl Dummy variable equal to one if country i and country j are different. Authors.

SPI Services Policies Index (Elastic Net, Lasso, Principal Factors, and Simple
Mean).

Authors.

Log(Distance) Logarithm of distance between country i and country j. CEPII.

Log(Tariff) Logarithm of 1 + applied tariff rate. TRAINS

PTA Dummy variable equal to one if country i and country j are part of the same
preferential trade agreement in 2015.

Egger and Larch
(2008).

Same Country Dummy variable equal to one if the two countries were ever part of the
same country.

CEPII.

STRI OECD Services Trade Restrictiveness Index. OECD

STRI WB World Bank Services Trade Restrictiveness Index World Bank
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but a statistically insignificant coefficient for the interaction term. The most naïve measures of
services policies again have at best limited explanatory power, in contrast to more sophisticated
measures like the STRI and the SPIs.

Table 8 reports results for telecom services. The pattern of findings is again quite similar:
the STRIs, as well as the elastic net, LASSO, and ridge SPIs, all have explanatory power for
bilateral trade flows in this sector, although none of the interaction terms except for the
LASSO model has a statistically significant coefficient, which suggests that regional integration
may not be a strong force for global trade in this sector. By contrast, the principal factors and
simple mean SPIs have positive and 1% statistically significant coefficients, which is contrary to
expectations.

Finally, Table 9 presents results for the transport sector. Both STRIs, elastic net SPI, and
ridge SPI all have 5% statistically significant coefficients or better in levels and on the inter-
action term. By contrast, the principal factors SPI and the simple mean SPI do not have any

Table 6. Gravity models for distribution services using different measures of services policies

(1) (2) (3) (4) (5) (6) (7)

STRI Elastic Net Lasso Ridge PF Mean WB

STRI*Intl −5.617 * −5.960 *** −5.694 ** −7.678 *** −1.755 ** 0.532 −9.418***

(3.076) (2.263) (2.388) (2.393) (0.730) (0.482) (2.263)

STRI*Intl*EIA 3.735 * 5.218 ** 5.294 ** 8.141 *** 2.633 *** −0.428 0.055 ***

(2.154) (2.285) (2.676) (2.317) (0.724) (0.408) (0.021)

EIA −0.424 −0.607 −0.680 −1.389 *** 0.109 1.469 −1.420 *

(0.389) (0.479) (0.602) (0.530) (0.150) (0.939) (0.743)

Log(Distance) −0.328 *** −0.333 *** −0.335 *** −0.320 *** −0.308 *** −0.343 *** −0.345 ***

(0.085) (0.086) (0.085) (0.087) (0.087) (0.084) (0.081)

Contiguous 0.675 *** 0.356 0.377 0.369 0.362 0.382 0.409

(0.215) (0.250) (0.252) (0.255) (0.255) (0.255) (0.262)

Colony 0.316 0.329 0.370 * 0.299 0.455 ** 0.357 * 0.342 *

(0.245) (0.207) (0.199) (0.210) (0.192) (0.213) (0.188)

Common Language 0.112 0.393 ** 0.388 ** 0.389 ** 0.396 ** 0.386 ** 0.351 **

(0.176) (0.177) (0.179) (0.172) (0.176) (0.186) (0.168)

Common Colonizer 0.374 −0.102 −0.209 −0.095 −0.301 −0.235 −0.171

(0.610) (0.367) (0.364) (0.379) (0.377) (0.368) (0.397)

Same Country 0.388 0.967 *** 1.013 *** 1.120 *** 1.054 *** 0.956 *** 1.451 ***

(0.379) (0.296) (0.290) (0.304) (0.305) (0.294) (0.320)

Intl −5.734 *** −5.662 *** −5.664 *** −5.206 *** −6.763 *** −8.164 *** −3.678 ***

(0.688) (0.574) (0.628) (0.612) (0.277) (1.063) (0.845)

Constant 8.230 *** 8.074 *** 8.083 *** 7.990 *** 7.923 *** 8.135 *** 8.161 ***

(0.528) (0.523) (0.518) (0.530) (0.529) (0.508) (0.490)

Observations 8418 12444 12444 12444 12444 12444 12261

R2 0.986 0.983 0.983 0.983 0.983 0.982 0.983

Importer fixed effects Yes Yes Yes Yes Yes Yes Yes

Exporter fixed effects Yes Yes Yes Yes Yes Yes Yes

Note: All models are estimated by PPML Robust standard errors adjusted for clustering by country pair in parentheses below parameter
estimates. Statistical significance is indicated as follows: * (10%), ** (5%), and *** (1%).
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statistically significant coefficients. Results for this sector therefore accord well with those from
the other sectors.

As is typical for gravity models that include intranational trade data, there is evidence of home
bias in all regressions: the intl dummy is consistently negative and statistically significative. Also
of interest is the finding that, in some specifications, the effect of an EIA effectively neutralizes the
negative trade impact of the SPI or STRI. While deserving of further research, this result suggests
that some regional agreements do a good job of facilitating services trade beyond the level that
would be expected based on MFN policy settings.

Taken together, these results indicate that the OECD STRI has much greater explanatory
power for bilateral trade flows in services than naïve measures like a principal factor or sim-
ple mean. The same is true of the World Bank STRI, which is unsurprising given how
closely correlated it is with the OECD index (rho = 0.8). Moreover, our three SPIs generally
exhibit very similar performance to the OECD STRI, albeit with a substantially larger sample

Table 7. Gravity models for finance and business services, STRI and SPIs

(1) (2) (3) (4) (5) (6) (7)

STRI Elastic Net Lasso Ridge PF Mean WB

STRI*Intl −1.620 ** −3.359 *** −3.819 *** −5.154 *** 0.516 −3.459 *** −2.116 **

(0.639) (1.002) (1.174) (1.630) (1.058) (0.771) (0.931)

STRI*Intl*EIA 1.078 2.776 *** 3.020 ** 4.807 ** 1.166 0.040 0.029 ***

(0.689) (1.034) (1.195) (1.871) (0.984) (0.670) (0.009)

EIA 0.095 −0.126 −0.184 −0.726 0.694 *** 0.724 −0.680

(0.216) (0.307) (0.354) (0.540) (0.112) (0.565) (0.442)

Log(Distance) −0.470 *** −0.365 *** −0.364 *** −0.372 *** −0.357 *** −0.396 *** −0.386 ***

(0.061) (0.070) (0.069) (0.068) (0.068) (0.066) (0.069)

Contiguous 0.421 *** 0.552 *** 0.553 *** 0.553 *** 0.597 *** 0.525 *** 0.542 ***

(0.154) (0.168) (0.168) (0.166) (0.165) (0.171) (0.166)

Colony 0.163 0.211 0.220 0.196 0.289 ** 0.350 ** 0.206

(0.167) (0.155) (0.154) (0.155) (0.145) (0.146) (0.157)

Common Language 0.432 *** 0.527 *** 0.532 *** 0.523 *** 0.526 *** 0.520 *** 0.546 ***

(0.103) (0.106) (0.107) (0.106) (0.107) (0.105) (0.105)

Common Colonizer 0.309 0.609 0.596 0.540 0.441 0.062 0.521

(0.345) (0.660) (0.663) (0.654) (0.672) (0.601) (0.667)

Same Country 0.248 0.321 0.320 0.357 0.226 0.183 0.267

(0.275) (0.228) (0.231) (0.229) (0.218) (0.215) (0.207)

Intl −5.253 *** −5.267 *** −5.155 *** −4.719 *** −6.336 *** −3.493 *** −5.206 ***

(0.260) (0.307) (0.336) (0.483) (0.215) (0.639) (0.423)

Constant 10.268 *** 9.448 *** 9.442 *** 9.487 *** 9.401 *** 9.641 *** 9.587 ***

(0.379) (0.429) (0.428) (0.419) (0.418) (0.404) (0.424)

Observations 8418 12444 12444 12444 12444 12444 12261

R2 0.991 0.989 0.989 0.989 0.989 0.989 0.989

Importer fixed effects Yes Yes Yes Yes Yes Yes Yes

Exporter fixed effects Yes Yes Yes Yes Yes Yes Yes

Note: All models are estimated by PPML. Robust standard errors adjusted for clustering by country pair are in parentheses below parameter
estimates. Statistical significance: * (10%), ** (5%), and *** (1%).
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due to greater importer coverage. The difference in number of observations is just over 50%,
so there are clear advantages to these extended measures based on data collected by the
World Bank/WTO but aggregated into indices based on our machine learning-based
reproduction of the OECD’s approach. Given the strong and consistent explanatory power
of the STRI and its derivative SPIs, the bar for producing a ‘better’ indicator of services
trade restrictions is very high. In the absence of substantial additional benefits, it is far
from obvious that further work in this area – in the sense of changing weights or adopting
different aggregation schemes – passes a cost–benefit test, given the substantial time and
resources that need to be devoted to dealing with the problems of weighting and aggregation
discussed above.

Table 8. Gravity models for telecom services using different measures of services policies

(1) (2) (3) (4) (5) (6) (7)

STRI Elastic Net Lasso Ridge PF Mean WB

STRI*Intl −4.389 *** −10.117 *** −11.247 *** −12.934 *** 4.059 *** 0.817 *** −5.953 ***

(0.709) (1.494) (1.981) (2.160) (0.645) (0.156) (1.107)

STRI*Intl*EIA −0.307 2.957 4.577 * 0.647 −0.030 −0.136 0.000

(0.738) (1.969) (2.703) (2.099) (0.593) (0.171) (0.010)

EIA 0.183 −0.357 −0.684 0.095 0.465 0.790 * 0.389

(0.201) (0.463) (0.635) (0.477) (0.582) (0.445) (0.400)

Log(distance) −0.604 *** −0.479 *** −0.495 *** −0.486 *** −0.511 *** −0.514 *** −0.554 ***

(0.058) (0.071) (0.073) (0.067) (0.065) (0.069) (0.067)

Contiguous 0.529 *** 0.668 *** 0.668 *** 0.670 *** 0.754 *** 0.734 *** 0.652 ***

(0.151) (0.164) (0.174) (0.153) (0.174) (0.171) (0.172)

Colony 0.018 0.071 0.148 −0.038 0.245 0.218 0.165

(0.188) (0.162) (0.171) (0.164) (0.185) (0.151) (0.184)

Common language 0.304 *** 0.447 *** 0.368 *** 0.533 *** 0.335 *** 0.298 *** 0.304 ***

(0.103) (0.107) (0.107) (0.116) (0.114) (0.106) (0.103)

Common colonizer 0.166 0.556 0.442 0.466 0.219 0.294 0.237

(0.234) (0.526) (0.527) (0.500) (0.509) (0.548) (0.514)

Same country 0.226 0.185 0.190 0.125 0.182 0.129 0.179

(0.368) (0.227) (0.239) (0.221) (0.270) (0.270) (0.249)

Intl −4.142 *** −3.236 *** −2.955 *** −2.630 *** −9.568 *** −7.530 *** −3.218 ***

(0.259) (0.423) (0.527) (0.473) (0.697) (0.411) (0.445)

Constant 9.106 *** 8.113 *** 8.211 *** 8.151 *** 8.309 *** 8.328 *** 8.591 ***

(0.366) (0.438) (0.452) (0.417) (0.404) (0.427) (0.417)

Observations 8235 12444 12444 12444 12444 12444 12261.000

R2 0.975 0.972 0.972 0.972 0.972 0.971 0.972

Importer fixed effects Yes Yes Yes Yes Yes Yes Yes

Exporter fixed effects Yes Yes Yes Yes Yes Yes Yes

Note: All models are estimated by PPML. Robust standard errors adjusted for clustering by country pair in parentheses below parameter
estimates. Statistical significance: * (10%), ** (5%), and *** (1%).
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To convert these results into more usable form, we reformulate the trade costs function to
express the elastic net SPI in ad valorem equivalent (AVE) terms, following Benz (2017):

AVEj ; tij − 1 = exp
−bSPIj

u

( )
− 1

Full results are presented in Appendix 2 (see on-line supplementary material). The advantage
of presenting results in AVE terms is that it provides a simple number that can be compared
across countries. It also shows that on a comparable standard, levels of restriction in services
trade are typically higher than in goods. However, the AVE concept makes some significant

Table 9. Gravity models for transport services using different measures of services policies

(1) (2) (3) (4) (5) (6) (7)

STRI Elastic Net Lasso Ridge PF Mean WB

STRI*Intl −8.360 *** −4.375 * −1.168 −8.532 * −1.581 0.217 −5.419 ***

(1.643) (2.389) (2.602) (4.968) (0.967) (0.366) (1.296)

STRI*Intl*EIA 4.693 *** 4.624 ** 4.913 ** 8.544 ** 1.229 −0.195 0.031 ***

(1.377) (2.159) (2.439) (3.680) (0.876) (0.292) (0.010)

EIA −1.139 ** −0.741 −0.785 −1.951 * 1.439 ** 0.898 *** −0.652

(0.483) (0.692) (0.746) (1.165) (0.594) (0.272) (0.486)

Log(distance) −0.446 *** −0.320 *** −0.328 *** −0.320 *** −0.329 *** −0.323 *** −0.352 ***

(0.066) (0.057) (0.058) (0.058) (0.057) (0.056) (0.056)

Contiguous 0.400 *** 0.430 *** 0.420 *** 0.442 *** 0.405 *** 0.415 *** 0.403 ***

(0.143) (0.151) (0.155) (0.152) (0.146) (0.153) (0.140)

Colony 0.323 * 0.402 * 0.434 ** 0.395 * 0.397 * 0.428 * 0.352

(0.188) (0.214) (0.214) (0.211) (0.217) (0.219) (0.216)

Common language 0.437 *** 0.546 *** 0.552 *** 0.538 *** 0.572 *** 0.555 *** 0.560 ***

(0.130) (0.112) (0.113) (0.115) (0.119) (0.112) (0.115)

Common colonizer 0.044 0.174 0.115 0.128 0.238 0.179 0.412

(0.191) (0.303) (0.293) (0.311) (0.309) (0.312) (0.309)

Same country 0.206 0.154 0.132 0.170 0.166 0.141 0.216

(0.285) (0.229) (0.233) (0.222) (0.223) (0.235) (0.232)

Intl −1.912 *** −3.824 *** −4.833 *** −2.540 −6.136 *** −5.397 *** −2.824 ***

(0.706) (0.789) (0.792) (1.560) (0.701) (0.313) (0.685)

Constant 8.256 *** 7.311 *** 7.355 *** 7.308 *** 7.362 *** 7.329 *** 7.516 ***

(0.409) (0.349) (0.353) (0.351) (0.346) (0.343) (0.340)

Observations 8418 12444 12444 12444 12444 12444 12261

R2 0.958 0.952 0.952 0.952 0.952 0.952 0.953

Importer fixed effects Yes Yes Yes Yes Yes Yes Yes

Exporter fixed effects Yes Yes Yes Yes Yes Yes Yes

Note: All models are estimated by PPML with importer and exporter fixed effects. Robust standard errors adjusted for clustering by country
pair. Statistical significance: * (10%), ** (5%), and *** (1%).
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simplifications, including by assuming that the bundle of regulatory measures captured by the
SPI has economic effects like those of a tariff. While that may be true for some measures, it
may not be for others, especially those that affect competitive conditions in the marketplace
or influence the fixed costs of market entry. We therefore present AVEs subject to these
caveats.

While any indicator of services trade restrictiveness should be a strong predictor of bilateral
services trade, recent work has shown that because of the input–output relationships that exist
between services and other sectors, it is also likely that services policies affect total trade (i.e.,

Table 10. Gravity models for total trade (goods and services), STRI and SPIs

(1) (2) (3) (4) (5) (6) (7)

STRI Elastic Net Lasso Ridge PF Mean WB

STRI*Intl −2.939 *** −2.475 *** −1.898 −4.445 *** 2.385 ** −0.526 * −2.128 ***

(0.649) (0.925) (1.182) (1.535) (1.155) (0.297) (0.798)

STRI*Intl*EIA 1.188 *** 2.127 *** 2.196 *** 2.214 *** −1.085 0.508 *** 0.015 ***

(0.347) (0.400) (0.420) (0.440) (1.229) (0.100) (0.003)

Log(Tariff) −0.283 −7.242 *** −7.942 *** −6.170 *** −12.551 *** −8.984 *** −6.897 ***

(1.519) (1.833) (1.832) (1.870) (2.293) (1.954) (1.795)

PTA 0.074 −0.277 ** −0.305 ** −0.272 ** 0.120 −0.320 *** −0.270 **

(0.122) (0.119) (0.122) (0.122) (0.117) (0.124) (0.120)

Log(distance) −0.548 *** −0.443 *** −0.443 *** −0.442 *** −0.450 *** −0.439 *** −0.447 ***

(0.059) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059)

Contiguous 0.443 *** 0.502 *** 0.499 *** 0.506 *** 0.473 *** 0.484 *** 0.503 ***

(0.126) (0.138) (0.139) (0.135) (0.162) (0.145) (0.135)

Colony 0.176 0.191 0.204 0.174 0.212 0.234 * 0.171

(0.148) (0.138) (0.137) (0.136) (0.134) (0.137) (0.135)

Common language 0.159 0.322 *** 0.327 *** 0.315 *** 0.316 *** 0.336 *** 0.318 ***

(0.105) (0.098) (0.097) (0.098) (0.105) (0.100) (0.098)

Common colonizer 0.172 0.137 0.106 0.121 −0.092 0.050 0.111

(0.138) (0.329) (0.332) (0.331) (0.400) (0.342) (0.338)

Same country 0.609 *** 0.744 *** 0.737 *** 0.762 *** 0.783 *** 0.734 *** 0.781 ***

(0.234) (0.233) (0.235) (0.234) (0.286) (0.250) (0.228)

Intl −3.358 *** −3.565 *** −3.709 *** −3.052 *** −4.079 *** −3.591 *** −3.418 ***

(0.248) (0.261) (0.312) (0.374) (0.199) (0.366) (0.361)

Constant 12.188 *** 11.341 *** 11.344 *** 11.339 *** 11.387 *** 11.320 *** 11.378 ***

(0.369) (0.366) (0.364) (0.364) (0.362) (0.366) (0.364)

Observations 8366 12392 12392 12392 12392 12392 12209.000

R2 0.988 0.985 0.985 0.985 0.985 0.985 0.985

Importer fixed effects Yes Yes Yes Yes Yes Yes Yes

Exporter fixed effects Yes Yes Yes Yes Yes Yes Yes

Note: Robust s.e. adjusted for clustering by country pair. Statistical significance: * (10%), ** (5%), *** (1%).
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goods and services).11 We test this hypothesis and the predictive power of our SPIs compared
with the STRI using aggregate Eora data summed across all 26 goods and services sectors in
the database. The specification is the same as in the preceding tables, except that we use a
dummy for PTA rather than EIA membership, to capture goods agreements as well as services
agreements, and we include the log of the applied tariff rate as an additional explanatory variable.
We aggregate the OECD STRI and our SPIs by taking simple averages across sectors, while the
World Bank STRI is provided with a separate aggregate indicator.

Table 10 reports the results. We again use the full sample, but as tariff data are not available for
all country pairs, sample size falls. Both STRIs, elastic net and ridge SPIs have the expected nega-
tive coefficients, and all four variables also have positive coefficients on the interaction term with
the EIA variable, with all estimates statistically significant at the 1% level. The simple mean SPI
also displays this pattern of coefficients, but the principal factor SPI has unexpected signs.

The World Bank STRI performs similarly to the OECD index or our SPIs. The only result that
is contrary to expectations is the negative sign on PTA, but this is likely due to the fact that there
is also an interaction term with EIA – an element of the PTA variable – that creates a correlation
between the two. A similar issue arises in relation to tariffs, which are negatively correlated with
PTA membership. Other variables perform largely in accordance with expectations.

The conclusion we draw in this section is that the OECD STRI, and the extended version with
23 additional countries that we have termed the SPI, is a robust predictor of bilateral trade at the
sectoral level for services, and also at the aggregate level for goods and services. We interpret this
as showing that the indices capture important features of services trade policy.

5. Conclusion
This paper provides new evidence on the state of services policies in 23 non-OECD countries in
2016, based on regulatory data released by the World Bank and WTO. Starting from the premise
that the OECD STRI represents a proven approach to summarizing the restrictiveness of services
policies, we use simple machine learning techniques to estimate SPIs for the new data that cor-
relate very closely with OECD measures within sample, and therefore essentially constitute an
extension of the OECD methodology to an additional set of mostly developing countries. Our
SPIs provide the first quantitative snapshot of applied services policies in a significant number
of developing countries since the World Bank’s 2008–11 STRI.12 They have significant explana-
tory power for bilateral trade flows at the sectoral and aggregate levels.

A contribution of this paper to the literature is to provide a proof of concept for the use of
statistical tools, such as machine learning, to capture the complexities, nonlinearities, and
dependencies of different services policy measures. This is relevant for at least two reasons.
One is that the use of such techniques allows analysts to extend datasets in instances where a
given source of information is limited to a subset of countries and the detailed methodology
used to calculate published indicators is confidential. This is the case for the OECD STRI, argu-
ably the current ‘best in class’ at the time of writing given extensive industry consultation and
expert input into the weighting of measures across sectors. Insofar as other organizations – in
this case the World Bank and WTO – collect similar types of policy data, SPIs that correlate
well with the OECD STRIs offer a way to extend the country coverage of services restrictiveness
indicators. Although our focus is on services trade restrictions, the methodology may be useful in

11Hoekman and Shepherd (2017) and Shepherd (2019).
12Following the first version of the present paper, World Bank STRIs based on 2016 were reported in Borchert et al. (2020).

These STRIs correlate closely with both the OECD index and our extension of it. Borchert et al. (2020) note that a compari-
son with 2008-11 STRIs reveals that many countries appear to have reduced the restrictiveness of applied policies somewhat.
To facilitate more detailed analysis of the dynamics of policy change around the world, it would be desirable for the original
policy data used to generate the World Bank 2008-11 STRIs to made available in comparable format through the I-TIP
platform.
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other contexts where similar conditions prevail as regards the scope and periodicity of efforts to
collect information on policies for a given area.

More generally, the use of statistical tools may help to identify potential ways to reduce data
collection costs. The OECD STRI involves the collection of a large amount of data, entailing sig-
nificant direct and time costs for agencies. Further work with machine learning algorithms like
those deployed here may identify a subset of measures that in fact do most of the explanatory
work. In our view, this is the primary value of generating these kinds of indices, rather than sim-
ply summarizing a vast amount of data in a single number. Data collection is distinct from
research to fine-tune STRI methodologies and improve the associated weighting and aggregation
measures. The latter is very important but should be independent of the policy collection process.
Analysts should have the ability to define their own indicators, and it is therefore very welcome
that I-TIP has released the 2016 services policy information independently of associated STRIs.

Although the release of services trade-related policy data in I-TIP is laudatory, as of 2020 the
most up-to-date compilation of such measures will be for 2016, and then only for some 30 devel-
oping countries –without any coverage of most low-income countries. It is unknown whether
and when a new wave of data will be collected and thus whether over time a panel dataset will
emerge. Greater effort to generate services policy data on a regular basis for a broad range of
countries would allow governments to track their policies, compare them to those of other coun-
tries, and inform autonomous policy reforms and regional integration processes. The resource
costs of a systematic effort to collect services policy data are not large. Focusing on just five
major sectors per country and seeking to cover 50 non-OECD countries would, based on our
prior experience (e.g., Shepherd et al., 2019a,b), involve costs in the range of $400,000 to
$750,000, with additional resources required for reporting and publishing, though they would
be an order of magnitude less than those required for data compilation. Doubling coverage to
10 sectors would involve an investment of less than $2 million. Average costs could be reduced
by making the data collection a bi-annual process. Similarly, application of machine learning to
reduce the burden of data collection could perhaps reduce these numbers by half.

Given how limited services policy data are relative to information on merchandise trade pol-
icies, allocating this level of resources to filling the gap would have a very high cost–benefit ratio,
especially if one considers the opportunity costs of not having up-to-date information on services
policies. These opportunity costs may be high, not least because absence of data means policy-
makers may be less inclined to devote adequate attention to this important area of policy.13

Similarly, important research questions, such as the possibility for heterogeneous policy effects
across different countries, cannot be investigated in the absence of additional data, collected
and disseminated at regular intervals.

One priority in this regard is to incorporate the preferential dimension into measures of ser-
vices policy restrictiveness. Another is to expand country coverage. In particular, very few African
countries are included in I-TIP. Given the salience of regional integration in Africa, it is import-
ant to fill in the policy blanks to allow assessments of the utility of dealing with services in the
context of pursuing continental free trade. Benz and Gonzalez (2019) have shown that the EU
single market for services is much more liberal than any member country’s MFN policies. The
extent to which other trade agreements effectively liberalize services markets is unclear but is a
vital policy question in an environment where bilateral, plurilateral, and mega-regional agree-
ments are becoming more common. Shepherd et al. (2019a) find little evidence of substantial lib-
eralization in the Canada–EU Trade Agreement (CETA). The same appears to be true for the
Comprehensive and Progressive Trans-Pacific Partnership (CPTPP) (Gootiiz and Mattoo, 2017).

A related important question concerns the value of making binding policy commitments in
trade agreements, even if these do not entail liberalization. The ‘water’ in the services policy

13Other compilations of policy indicators such as the World Bank Doing Business project attract extensive attention by the
press and have become focal points for governments because they are undertaken on an annual basis.
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commitments in trade agreements often is considerable (see, e.g., Borchert, Gootiiz, and Mattoo,
2011; Miroudot and Shepherd, 2014; Miroudot and Pertel, 2015; Ciuriak et al., 2017). Research
on the value of reducing the difference between bound and applied services policies has shown
that this may be an important source of welfare gain, driven by a reduction in policy uncertainty
(Lamprecht and Miroudot, 2018; Ciuriak et al., 2019; Egger et al., 2019).

Again, such analysis requires good quality, comparable information on applied policies col-
lected regularly. The OECD does this for its members – and is the source for the majority of
the 68 countries for which I-TIP reports comprehensive information. Looking forward, we
hope this gap will be filled for developing countries by agencies with appropriate mandates.

Supplementary Materials. To view supplementary material for this article, please visit https://doi.org/10.1017/
S1474745620000439.
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Appendix 1: I-TIP Additional Country Coverage

East Asia &
Pacific

Europe & Central
Asia

Latin America &
Caribbean

Middle East &
North Africa South Asia

Sub-Saharan
Africa

Hong Kong SAR,
China

Kazakhstan Argentina Egypt Bangladesh Kenya*

Myanmar Ukraine Dominican
Republic

Oman Pakistan Nigeria

Philippines Ecuador Tunisia Sri Lanka Rwanda*

Singapore Panama

Taiwan, China Peru

Thailand Uruguay

Vietnam

Note: The table includes only those countries covered by the SPIs that are not included in the OECD STRI (OECD, 2019).
*Rwanda is not in I-TIP but comparable policy data for Rwanda were collected by Shepherd et al. (2019b), permitting its inclusion in the
analysis. Kenya is included in I-TIP but data have been augmented by additional information reported in Shepherd et al. (2019b).
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