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A RIEMANNIAN INVARIANT AND ITS APPLICATIONS TO
EINSTEIN MANIFOLDS

BANG-YEN CHEN

We introduce a Riemannian invariant and establish general optimal inequalities in-
volving the invariants and the squared mean curvature for Einstein manifolds iso-
metrically immersed in real space forms. We show that these inequalities do not
hold for arbitrary submanifolds in real space forms in general. We also provide some
immediate applications of the inequalities.

1. INTRODUCTION.

According to the celebrated embedding theorem of Nash [9], every Riemannian man-
ifold can be isometrically embedded in some Euclidean space with sufficiently high codi-
mension. An immediate question concerning Nash's embedding theorem is the following.

PROBLEM 1. What can we do with Nash's embedding theorem? In other words, what
can we do with arbitrary Euclidean submanifolds of arbitrary high codimension if "no
local or global assumption" were imposed on the submanifold?

The Nash theorem was established in the hope that if Riemannian manifolds could
always be regarded as Riemannian submanifolds, this would then yield the opportunity
to use extrinsic help. As observed by Gromov [7], this hope has not materialised however.
The main reason for this is due to the lack of control on the extrinsic properties of the

submanifolds by the known intrinsic data (see [10]).

In order to overcome such difficulty, one needs to introduce new types of Riemannian
invariants different from the known ones such as Ricci curvature and scalar curvature.
One also needs to establish general optimal relationships between the main extrinsic
invariants with the new type of intrinsic invariants on the submanifolds.

The author was able to provide general optimal solutions to Problem 1 in terms of
the (^-invariants S(ni,..., n^) he introduced in [2]. In the context of Nash's theorem, he
has established for all these invariants optimal general inequalities involving the main
extrinsic invariant; namely, the squared mean curvature. These general inequalities pro-
vide prima controls on the most important extrinsic curvature by the initial intrinsic data
of the Riemannian manifolds. As results, he was able to discover new intrinsic spectral
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properties of homogeneous spaces via Nash's theorem. Such results extend a well-known

theorem of Nagano [8].

Following the same line of thought, the author asked in [3] the following basic ques-

tion.

PROBLEM 2. Let 5 be a family of Riemannian manifolds associated with a given special
structure. What are the special relationships between the intrinsic invariants on manifolds
M in 5 and the main extrinsic invariants of M if M were immersed isometrically in an
arbitrary Euclidean space (or, more generally, in an arbitrary space form) and if no local
or global assumption were imposed on the submanifolds?

In [3, 4, 5, 6], the author was able to establish optimal solutions to Problem 2 for
the family of warped product manifolds with warped product structure and for the family
of conformally flat manifolds with conformally flat structure.

The purpose of this paper is to provide further optimal solutions to Problem 2
for another important family of Riemannian manifolds; namely, the family of Einstein
manifolds. In order to do so, we introduce some new Riemannian invariants and establish
sharp general relationships between the invariants and the squared mean curvature for
Einstein submanifolds. We show that these inequalities do not hold for non-Einstein
submanifolds in general. Several immediate applications are also provided.

2. PRELIMINARIES.

Let M be a Riemannian n-manifold. Denote by K(TT) the sectional curvature of M
associated with a plane section 7r c TPM, p e M. For each unit tangent vector X of M
at p, the Ricci curvature Ric(X, X) is defined by

n

(2.1) RicpsT, X) = Y, K(x A e>)>

where {e\,..., en} is an orthonormal basis of TPM with ei = X.

If M is an Einstein manifold, Ric(X, X) is independent of the choice of the unit

vector X. In this case, we denote the common value simply by Ric.

The scalar curvature r of M is given by

(2.2) T{p)

Now, suppose that M is isometrically immersed in a Riemannian m-manifold Rm(c)

of constant curvature c. Let h and A denote the second fundamental form and the shape
operator of the submanifold.

Let {hlj}, 1 < i,j < n; n + 1 ^ r ^ m, denote the coefficients of the second
fundamental form with respect to an orthonormal frame field e\,..., en, en +i , . . . , em so
that e i , . . . , en are tangent to M and thus en+1,.. . , em are normal to M.
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The mean curvature vector is given by

(2.3) H = i trace h

n

and squared mean curvature H2 is (H,H), where ( , ) is the inner product.

The equation of Gauss of M in Rm(c) is

R(X, Y; Z, W) = c{ {X, W) (Y, Z) - (X, Z) (Y, W)}

+ (h(X, W), h(Y, Z)) - (h(X, Z), h(Y, W)).

A submanifold M is called pseudo-umbilical if H is nonzero and the shape operator

Afj at H is proportional to the identity map.

Let n be a natural number greater than or equal to 2. If A; natural numbers n\,..., n*

satisfy ni-\ +nk = n, then ( r i j , . . . , nk) is called a partition of n.

We need the following general algebraic lemma from [5] for later use.

LEMMA 1 . Let a\,..., an ben real numbers and let k be an integer in [2, n - 1].

Then, for any partition (rii,..., n^) ofn, we have

ni—+n/

with the equality holding if and only if we have

a i H \-ani =••• = O n I + . . . + n t _ 1 + 1 H \-an.

3. RIEMANNIAN INVARIANTS.

Let p be a point in a Riemannian n-manifold M and q a natural number ^ n/2.

For a given point p € M, let iri,..., nq be q mutually orthogonal plane sections in TPM.

Define the invariant K™f (p) to be the infimum of the average of the sectional curvatures

#f(7r!),...,if(TT,), that is,

(3.1) Kf{p)= inf KM + --- + KM

where TTX, ... ,nq run over all mutually orthogonal q plane sections in TPM.

For each natural number q ̂  n/2, we define the Riemannian invariant <5̂ ic on M by

(3.2) Sfc(p)= sup Ric(X,X)-^f(p),
n

where n — dim M, X runs over all unit vectors in Tp
lM := [X € TPM : \X\ = l } .

REMARK 1. Although the invariants ^ c , q ^ n/2, are similar to the (^-invariant 5(2),

the invariants <5̂ IC and 6(2) are different in nature.

For example, for Einstein 4-manifolds, we have

(3.3) 6fic = Ric~K'?l(n), 6(2) = T - inf K(ir).

where 7r runs over all plane sections at each given point.
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4. T H E FIRST MAIN RESULT.

The following theorem provides an optimal general solution to Problem 2 for Einstein
manifolds.

THEOREM 1. For any integer k ^ 2 and any isometric immersion of an Einstein

2k-manifold M into a Biemannian m-manifold Rm(c) of constant curvature c with arbi-

trary codimension, we have

The equality sign of (4.1) holds identically if and only if one of the following two
cases occurs:

(1) M is a minimal Einstein submanifold such that, with respect to some suit-
able orthonormal frame { d , . . . , e2*, e 2 i + 1 , . . . , em}, the shape operator of M takes the
following form:

M o

\o
w h e r e A j , j = l , . . . , k , a r e s y m m e t r i c 2 x 2 s u b m a t r i c e s satisfying t r a c e ( A ^ ) — •••
= trace (AT

k) = 0.

(2) M is a pseudo-umbilical Einstein submanifold such that, with respect to some
suitable orthonormal frame {ei,..., e2t, e2*+i , . . . , em}, the shape operators takes the
following form:

(A\ 0

\0

w h e r e Arj, j = 1 , . . . , k , a r e s y m m e t r i c 2 x 2 s u b m a t r i c e s satisfying t r a c e (A^) = •••

= trace (Ar
k) = 0.

PROOF: Let <j>: M —• i?m(c) be an isometric immersion of an Einstein manifold M

into a real space form ilm(c). Suppose that TTI, . . . ,Kk are k mutually orthogonal plane
sections at p. We choose an orthonormal basis e\,..., e2* of TPM such that

•Ki = Span{ei ,e2}, . . .,nk = Span{e2jt_i,e2/t}.

We choose an orthonormal basis e2yt+i,..., em of the normal space TpM such that e2*+i

is parallel to H at p whenever H^Oatp. If H = 0 at p, we have no restriction on

From the equation of Gauss, we have

(4.2) 2r = 4k2H2 - \\h\\2 + 2k{2k - l)c
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where \\h\\2 denotes the squared norm of h.

If we put

(4.3) ip = 2r - 2k{2k - l )c - 4k{k - 1)H2,

then (4.2) is nothing but

(4.4) 4kH2 = <p + \\h\\2.

We may express (4.4) as

( 2* \ 2 2* m 2k

E * -*E(°*)a = **'+*E(*«+1)a + * E E W -
t=l / i = l ift r=2k+2ij=l

where a,j = h^+1, j = l,...,2k. Hence, we may applying Lemma 1 to (4.5) to obtain

that

. m 2k

(4.6) a1a2 + a3a4 + --- + a 2 f c _ 1 a 2 t ^ |+ E K+1? + o E
l^i<j^2k r=2k+2ij=l

with the equality sign holding if and only if we have

(4.7) oi + o2 = • • • = O2*_i + a2k-

On the other hand, the equation of Gauss yields

r=2A+l

Thus, by combining this equation with inequality (4.6), we discover that

K(nk)

m

(4.8) " E E
1 V ^ / r 2

~~ n ^ ^ \ ' u ~*~ 2 2 ' ~*~ ' ' ' + Cl2j-12j"-l +
r=n+2

^ r kc.

Therefore, by combining (4.3) and (4.8), we obtain

(4.9) r - K(nx) K{itk) ^ 2k{k - 1){H2 + c).
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Since M is an Einstein 2/t-manifold, we have T = fcRic. Hence, by applying (3.1)
and (4.9), we discover that

(4.10) Ric -K'f ^ 2(A - 1)(H2 + c).

Thus, we obtain (4.1) by combining (3.2) and (4.10).

If the equality sign of (4.1) holds identically, then all of the inequalities in (4.6) and
(4.8) are actually equalities. Prom those we conclude that there exist a suitable orthonor-
mal frame { e i , . . . , e2k} of the tangent bundle and an orthonormal frame {e2k+i, • • •, em}
of the normal bundle such that the shape operator with respect these frames takes the
form:

(4.11) Ar=\ •.. , r = 2k + l,...,m,

\0 Al)

w h e r e Aj, j = l,...,k, a r e s y m m e t r i c 2 x 2 s u b m a t r i c e s sa t i s fy ing

( 4 . 1 2 ) trace (A\) = • • • = trace (Aj.)

for r — 2k + 1 , . . . ,m.

If M is a minimal submanifold of Rm{c), we obtain from (4.12) that trace (zip = 0
for r = 2k + 1 , . . . , m and j = 1 , . . . , k. This gives Case (1) of the theorem.

If M is non-minimal, we choose e2/t+i parallel to H. So, we find from (4.12) that

(4.13) t r a c e (A\) = ••• = t r a c e (Ar
k) = 0

for T — 2k + 2 , . . . , m. Moreover, because A2k+\ takes the form of (4.11), we may further
choose e i , . . . , e2* diagonalising A2k+i- Hence, we have

where Oi , . . . , a2* satisfy

(4.15) a i + a 2 = ••• = a2*_i + a2t = 2a.

for some function a.

So, by applying (4.11)-(4.15), we find

Ric(e2j-i, fy-i) = K(VJ) + 2(fc - I)aa2i_, + 2(fc - l)
(4.16)

Ric(e2>, e2j) = Kfc) + 2{k - l)aa2j + 2(* - l)c.

Since M is Einsteinian, (4.16) implies that

(4.17) ai = a2 - • • • = a 2 i _ ! = a2k - o,

(4.18) ^
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From (4.17) we know that M is a pseudo-umbilical Einstein submanifold of Rm(c).

The converse is easy to verify. D

REMARK 2. Inequality (4.1) is sharp. For examples, each hypersphere S2k of E2*+1 and
the standard embedding of the Riemannian product of two unit spheres S2(l) x S2(l) in
E6 are umbilical and pseudo-umbilical Einstein submanifolds of Euclidean spaces which
satisfy the equality case of (4.1).

REMARK 3. The minimal Clifford torus:

(4.19) S2(l) x 52(1) C 55(1)

is a minimal submanifold of 55(1) which satisfy the equality case of (4.1) with c = 1.

This example and the examples given in Remark 2 show that both Case (1) and

Case (2) of Theorem 1 do occur.

REMARK 4. The following example shows that inequality (4.1) does not hold for arbi-
trary submanifolds in general.

EXAMPLE 1. Consider the spherical hypercylinder:

(4.20) M := S2(l) x E2fc"2 C E2*+1.

We have <5fic = 1 and H2 = l/k2 on M which imply that

6** = ! > fcl) = 2(A. _ l)H2

for k ^ 2.

5. T H E SECOND MAIN RESULT.

THEOREM 2 . Let <j> : M —• /2m(c) be an isometric immersion of an Einstein n-
manifold M into a Riemannian m-manifold iZm(c) of constant curvature c with arbitrary
codimension. Then, for every natural number q < n/2, we have

(5.1) £ * ^ n(n-g-l)H2 + , _ 1 _ 2_q
v n — q V nn — q

The equality sign of (5.1) holds identically if and only if M is a totally geodesic

submanifold.

PROOF: Let <j> be an isometric immersion of an Einstein n-manifold M into i?"(c).
Assume that q is a natural number < n/2 and p is a point in M. Consider q mutu-
ally orthogonal plane sections K\,..., nq of M at p. We choose an orthonormal basis
{ei , . . . , en} of TPM such that TT, is spanned by e2j_i and e^j for j — 1 , . . . , q.
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From the equation of Gauss we find

(5.2) IT = n2H2 -

If we put

(5.3) 7? = 2T - n(n - 1

then (5.2) becomes

(5.4) n2//2 = (n

Equation (5.4) can be rewritten as

2

n(n -

n-q

1 / n \ ^ n m n

^ £ * " 5>)2 = "+£(/>r )2 + £ £ W.
V \ t=l / t=l i?j r=n+2 i ,j=l

where â  = /i"/1, j = 1, . . . , n.
4 times n — 2g times

Since (2 , . . . , 2, 1 , . . . , 1 ) is a partition of n, we may applying Lemma 1 to (5.5) to
obtain that

(5.6)
r=2k+2ij=l

with the equality sign holding if and only if we have

a i + 0,2 = • • • = a 2 q - i + <Hq = a 2 q + i - ••• - a n .

Thus, by using inequality (5.6) and the equation of Gauss, we may find just like in
the proof of Theorem 1 that

<«> ^

Therefore, by combining (5.3) and (5.7), we obtain inequality (5.1).
If the equality sign of (5.1) holds identically, then by applying an argument similar

to that given in the proof of Theorem 1 we know that the shape operator of M, with
respect to some suitable orthonormal frame {ei,..., en, en + 1,. . . , em}, takes the form:

/AT
A

(5.8) 4- =

0 \

https://doi.org/10.1017/S0004972700035814 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035814


[9] A Riemannian invariant and its applications 63

for r = n + 1 , . . . , m, where / is the (n—2q) x (n—2q) identity matrix and Arj, j = 1 , . . . , k,

are symmetric 2 x 2 submatrices satisfying

(5.9) t r a c e (A[) = ••• = t r a c e (AT
k) = \xT.

CASE (i): M is minimal. In this case, we have /xn+1 = • • • = /im = 0. Hence, (5.8) implies
that Ric — Ric(en, en) = (n — l)c, since M is Einsteinian.

On the other hand, it is well-known that the only n-dimensional minimal Einstein
submanifolds in i?m(c) with Ric = (n — l)c are the totally geodesic ones (see [1]). Thus,
M is a totally geodesic submanifold.

CASE (ii): M is non-minimal. In this case, we may choose en+i parallel to H. From (5.8)
and (5.9) we find

(5.10) trace (A\) = ••• = trace (AT
k) = 0

for r = n + 2,..., m. Moreover, because An+\ takes the form of (5.8), we may also choose
e\,..., en which diagonalise An+i. So, we have

(5.11)

where a

(5.12)

i , . . . ,a2q satisfy

Aj -

di + a,:+a2 = ••• = a2q-i +a2q =

By computing Ric(e2 ;_ i ,e2 j - i ) and Ric(e2j,e2j) for j = l,...,q and by applying
(5.8), (5.10), (5.11) and (5.12), we find

Mn+l(5.13) ai = a2 — • •• = a2, = a, a =

(5.14) Ric(e2j,e2j) = K{iXj) + 2(n-q- l)o2 + (n - 2)c.

By applying (5.8) and (5.10)-(5.13), we have

(5.15) Ric(en, en) =4(n-q- l)a2 + (n - l)c.

By comparing (5.14) and (5.15), we obtain

(5.16) K{TTJ) = 2(n-q- \)a2 + c.

On the other hand, from (5.8) , (5.10), (5.11) and (5.13), we also have

1 m

(5.17) #(*,-) = a2+ c - - £ p ; | | 2 ,
r=n+2

where \\A^\\2 is the squared norm of Arj. Thus, by comparing (5.16) and (5.17), we
conclude that M is totally geodesic in R11^) which is a contradiction. Consequently, the
equality sign of (5.1) implies that M is a totally geodesic submanifold of Rm(c).

The converse is trivial. D
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REMARK 5. The next example shows that inequality (5.1) does not hold for arbitrary
submanifolds in general as well.

EXAMPLE 2. For the spherical hypercylinder: Sn~q(l) x E ' C En + 1 , we have

(5.18) 5fie = n-q-l, H2 = ( " ~ g )

* nz

for q < n/2 which imply that

(5.19) S?ie> "'"-"-"
- n-q

6. IMMEDIATE APPLICATIONS.

From Theorems 1 and 2 we obtain immediately the following.

COROLLARY 1 . If a Riemannian manifold M admits an isometric immersion into
a Euclidean space which satisfies

(6.1) 6fe>n{n91)H2, n = dimM,
n — q

for some natural number q ^ n/2 at some point, then M is not an Einstein manifold.

This corollary applies to a large family of Riemannian manifolds. The simplest cases
are the following: S2 xE2*~2 and Sn~"xEq,q< n/2, cannot be Einsteinian. This follows
immediately from Examples 1 and 2 and Corollary 1.

Theorems 1 and 2 also imply the following.

COROLLARY 2 . If an Einstein n-manifold satisfies

(6.2) *Hic

for some natural number q < n/2 at some point, then it admits no minimal isometric
immersion into Rm(c) regardless of codimension.

Applying Theorem 1 and 2 we also have the following.

COROLLARY 3 . Let M bea compact Einstein n-manifold with finite fundamental
group TTI or with null first betti number, that is, bt = 0. If there is a natural number
q ^ n/2 such that 8™c > 0, tien M admits no Lagrangian isometric immersion into any
complex n-torus or complex Euclidean n-space.

By applying Theorems 1 and 2, this corollary can be proved in a way similar to the
proof of [2, Theorem 4.2 ].
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