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Abstract. A cusp type germ of vector fields is a C°° germ at OeR2, whose 2-jet is
C°° conjugate to

3 , d
v—+ {ax2+Bxy)— w i t h a ^ O .
dx dy

We define a submanifold of codimension 5 in the space of germs X c ± , consisting
of germs of cusp type whose 4-jet is C° equivalent to

y — +(x2±x3y) —.
* dx v y'dy

Our main result can be stated as follows: any local 3-parameter family in (0, 0) e
R2xR3, cutting £c± transversally in (0,0) is fibre-C° equivalent to

3))

1. Introduction and acknowledgments
Generically, C°° vector fields on 2-dimensional manifolds only have hyperbolic
singularities (zeros) and these hyperbolic singularities are stable for topological
equivalence.

Bifurcations occur if one considers 1-parameter families of such vector fields.
Generically, the only local bifurcations are the (codimension 1) saddle-node bifurca-
tion and the (codimension 1) Hopf bifurcation (see e.g. [S]). The saddle-node
bifurcation is an unfolding of a singularity whose linear part has exactly one zero
eigenvalue, and whose restriction to a centre manifold starts with non-zero quadratic
terms. The Hopf bifurcation is an unfolding of a singularity whose linear part has
a pair of imaginary eigenvalues and whose radial component of the normal form
in polar coordinates starts with non-zero cubic terms.

In. generic 2-parameter families of 2-dimensional vector fields one encounters
some extra bifurcations like, for example, a (generalized) saddle-node bifurcation
of codimension 2, which is an unfolding of a singularity whose linear part has
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codimension 2' is
d 3

y~ +(x +n + vy±xy)—.
ox ay

A more detailed introduction to these unfoldings of singularities of codimension
<2 can be found in [D] and [D, R]. See also [Al].

In generic 3-parameter families one locally encounters generalized saddle-node
bifurcations and generalized Hopf bifurcations of codimension at most three, one
encounters the unfolding of the cusp-singularity of codimension 2, but one also
finds unfoldings of singularities with nilpotent 1-jet which are however more degener-
ate than the cusp of codimension 2.

Our aim in this paper is to study the generic 3-parameter unfoldings of a singularity
whose 2-jet is C°° equivalent to yd/dx + {ax2 + fixy) 8/by with a^Oand /3=0. We
call it the cusp singularity of codimension 3. The set of germs of such vector field
constitute a semi-algebraic subset of codimension 5, which we denote by 2 C (I3

C

is a semi-algebraic subset of codimension 1 in S2
C> manifold defined by the condition

a * 0; one has 2% = 2c+ u £ 2 c - u 2 3
C).

We will define a generic condition in 2c , by showing first that each X o e 2 c has
a 4-jet C°° equivalent to

dx dy
and by imposing y ^ 0.

One defines 2 C by the condition y = 0; 2 C is a semi-algebraic subset of
codimension 1 in 2c and 2c = 2 c + u 2 c - u 2 4

c , where 2C* is the submanifold of
codimension 5 consisting of germs of vector fields whose 4-jet is C°°-equivalent to
yd/dx + (x2±x3y)d/dy.

We study the generic 3-parameter families Xx with Xoe2c*. The genericity
condition consists in the transversality of the mapping (x, \)^j4Xk(x) with respect
to 2c*- An example of such a family is given by:

+(2 + + ( + ± 3 ) ) j - , (3)

with A = (/A, v0, Vi)\ Xo belongs to 2C+ (resp. 2C-) depending on the sign ±.
Our main result can be stated as follows:

THEOREM. A local 3-parameter family in (0,0)eR2xR3, cutting 2 C
+ (resp. 2c-)

transversally in (0,0) is fibre-C° equivalent to X^ (resp. X~^).

For a definition of fibre-C°-equivalence see the beginning of § 2 (the equivalence
between the vector fields does not necessarily depend in a C° way on the parameter).
To prove this result, we show that each generic family XA with X 0 e 2 c

+ (resp. 2C-)
has the same bifurcation set as XX (resp. X^), at least up to a homeomorphism in
the parameter space. This bifurcation set is a cone with vertex in 0.

Let us analyse the phenomena happening in X~£. We first remark that the equation
for the critical points of XX is given by
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Hence XX has no critical points for /A > 0. The {/x = 0}-plane outside the origin is 
a bifurcation surface of saddle-node type: crossing it in the direction of decreasing 
fj,, one observes the creation of two singularities: a saddle and a node. The other 
surfaces of bifurcation are situated in the half space {/x < 0}. They can best be 
visualized by drawing their trace on the half-sphere 

S = {(fi, v 0 , »,) \fi < 0, / A 2 + V q + V\= e2} 

for e > 0 sufficiently small. We recall that the bifurcation set is a 'cone' based on 
its trace with S . 

Parameter space phase portrait for \i > 0 

FIGURE 2 

Trace of the bifurcation set of XX on 5 and codimension 0 phase portraits for fi < 0 
v1 

FIGURE 3 

This trace on S consists of 3 curves: a curve H of Hopf bifurcation, a curve C of 
saddle connexion and a curve L of generic coalescence of closed orbits. The curve 
L joins a point h2 on H to a point c2 on C, and in these points L is tangent to 
(resp.) H and C. On the other hand, the curves H and C both touch dS with a first 
order contact in the points bx and b2. In the neighbourhood of b, and b2 one finds 
back the unfolding of the cusp-singularity of codimension 2, studied by Bogdanov; 
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for instance, there exists a unique repelling closed orbit in between H and C in
the neighbourhood of bx and an unique attracting closed orbit in between H and
C in the neighbourhood of b2. Along the curve H, outside h2 occurs a Hopf
bifurcation with the appearance of a repelling closed orbit when crossing the arc
]bi, h2[ of H from right to left and the appearance of an attracting closed orbit
when crossing the arc ]h2, b2[ of H from left to right. The point h2 corresponds to
a Hopf bifurcation of codimension 2.

Along the curve C, outside c2, occurs a saddle connection of codimension 1.
When crossing the arc ]blt c2[ of C from left to right, 2 separatrices of the saddle
point at a certain moment coincide and a repelling closed orbit appears; the same
phenomenon happens giving rise to an attracting closed orbit, when crossing the
arc]c2, b2[ of C from right to left. The point c2 corresponds to a saddle connection
of codimension 2.

codimension 1 phase portraits ( ( i<0)

b,b2 lef t b-,d b1h2 h2d b-|b2 right

FIGURE 4

codimension 2 phase portraits

. d c2

FIGURE 5

The curves H and C intersect transversally in a unique point d representing a
parameter value of simultaneous Hopf bifurcation and saddle connection.

For parameter values in the curved triangle (d, h2, c2) there exist exactly two
closed orbits, of which the inner one is attracting and the outer one is repelling.
These two limit cycles coalesce in a generic way when crossing the curve L from
left to right. On L itself we have a unique semi-stable closed orbit. In terms of the
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subset 2 = 3 S u H u C u L of S, the bifurcation set of X+

K inside the ball Be = 
{/u,2+ v% + I ' f s e} is a cone homeomorphic to 

{ ( r 4 / I , ' 6 ? o , ' 4 ? i ) l < e [ 0 , e ] and (/Z, i,0, * , ) e Z } 

The bifurcation set of any generic family X A with X 0 e l 3

c % is homeomorphic to 
the bifurcation set of X A . In both cases the homeomorphism blows up to a C°° 
diffeomorphism in the coordinates ((/Z, v0, ?,), t) on S x [ 0 , e ] , at least outside the 
line corresponding to the point c 2 (for more explanation concerning this line, see 
the final remark in appendix 3). The topological type of X A in a fixed neighbourhood 
of OGR 2 is constant in each connected component of the complement of the 
bifurcation set (6 components) and is constant in each part of the bifurcation set 
(9 surfaces and 5 curves). It is then trivial to deduce that the families X A and X.\~ 
are topologically equivalent, if one does not demand the equivalence to depend 
continuously on the parameter; such an equivalence is called a fiber- C°-
equivalence (see [D]) . The analogous result for families X A with X0 G 2 C - is obtained 
by merely observing that the 2 types of families can be obtained one from another 
by the coordinate-, parameter-, and time change (x, y, fj,, v0, vx, ?)-> 
(x, ~y, -vQ,-vlt-t). 

The necessary definitions and useful notations can be found in § 2. In § 3, we 
calculate a usable normal form for the generic families X A . Finally, in § 4 we prove 
the theorem essentially by showing that all generic families X A have a bifurcation 
set as we come to describe. 

This paper grew out of different bilateral contacts, spread over a period of about 
10 years. Each step has its significance in the present result and for this the authors 
want to thank different institutes for their repeated hospitality and financial support: 
the Instituto de Matematica Pura e Aplicada in Rio de Janeiro, the University of 
Dijon and the Limburgs Universitair Centrum in Diepenbeek. We also thank the 
Banach Centre in Warsaw for the opportunity given to R. Roussarie to have 
interesting discussions. Especially some suggestions of H. Zoladek were helpful. 
We also learned from conversations with A. Chenciner, and surely too from the 
translation that J. C. Yoccoz made of some papers of R. Bogdanov. 

2. Definitions and notations 
A fc-parameter family of vector fields on R2, X A , where A e R k denotes the parameter, 
is defined to be a vector field 

X A = a ( m , A ) ^ - + b ( m , A ) ^ - , m = (x,y)eU2 (1) 
dX dy 

where the coefficient functions a and b are C°° with respect to (m, A ) e R 2 x R \ 
We will study local families around (0 ,0) e R2 x Rfc, this means families defined 

on some neighbourhood of (0 ,0) , or better germs of families in (0 ,0) , since the 
neighbourhood itself does not matter. Such a (local) family X A will be called a 
fc-parameter unfolding (or deformation) of X„. 

Between the vector fields on R2, we introduce the notion of topological (or C°) 
equivalence: 2 vector fields X and Y are C° equivalent if there exists a homeomorph-
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ism h on R2 sending X-orbits to Y-orbits in a sense-preserving way. This notion
extends to germs of vector fields in OGR2. Related to this is the notion of (fibre)
C°-equivalence for families of vector fields: 2 families XA and Y^ are called (fibre-)
C°-equivalent if there exists a homeomorphism /jL = (p(\) between the parameter
spaces (of the same dimension k) and a family of homeomorphisms of IR2 depending
on the parameters A: hK(m) such that for all A e Uk, hx is a topological equivalence
between XA and Y^w.

We remark that we do not ask the equivalence to depend continuously on A.
Although we believe this to be the case in the problem considered here, we do not
want to include this in our study.

We remark also that this relation induces an equivalence relation for local families
around (0,0) e U2 x Rk. It is a relation on the level of germs of families, and not of
families of germs.

Suppose now that a certain family XA is given. The bifurcation set of XA is the
smallest closed subset X <z Uk such that the topological type of the vector field XA

for Uk\I. is locally constant (for the notion of C°-equivalence). Clearly: if 2 families
are C°-equivalent, the change in parameters </> exchanges the respective bifurcation
sets. We denote by Vo the space of germs at 0 of vector fields on IR2, by ]£ V the
vector space of their N-jets at 0, by 7r P N : ]^V^]^ V (for P>7V>0) the natural
restriction mapping and by nN : Vo-> ]" V the mapping sending a germ to its iV-jet.

The natural algebraic structure of ] * V permits us to define the notion of submani-
fold or (semi-) algebraic subset in ]"V; for each Sc]0

NVwe will identify 2 with
its contra-images by irPN and irN in resp. ]£ V and Vo, denoting these contra-images
by the same symbol 1. Conversely, a submanifold or a (semi-)algebraic subset 2 of
codimension q in Vo is by definition the contra-image of a submanifold or a (semi-)
algebraic subset of codimension q contained in some ]™ V and which we also denote
1.

In the space of germs Vo, we consider the action of the group of germs of
diffeomorphisms fixing 0 in IR2 (C°° conjugacy) defined by g*X(x) = (dgx)~

1X(g(x))
as well as the action of the group of pairs (f g) consisting of the germ of a strictly
positive function and the germ of a diffeomorphism fixing 0 (C°° equivalence). This
last action is defined by ((f, g) • X)(x) =f(x)g*X(x), and the group operation by
</,g)-(/',g') = (/-(/ '°g),g '°g).

These differentiate actions on the germs induce algebraic actions on each space
of jets ]™ V. Precisely these actions will be used in § 3 to obtain simpler expressions
(normal forms). We hereby need the following observations: in a fixed ]^V the
subset of jets conjugate or equivalent to a certain given jet (this means an orbit of
one of the given group-actions) form a submanifold, the set of jets conjugate or
equivalent to the jets belonging to a given semi-algebraic subset form a semi-algebraic
subset (theorem of Tarski-Seidenberg) [Se].

We may also define the action of C°° conjugacy or C°° equivalence on the (local)
families, asking that <j> be a (local) diffeomorphism and that /iA(m)bea C00 family
of C°° diffeomorphisms (i.e. hx(m) depends in a C°° way on m and A). We'll use
these relations to obtain 'normal forms' for the families XA.
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At each point m e R 2 we identify the space of N-jets in m of vector fields on R2 

to the space ]o V. If X is a vector field on $ 2 we hence obtain the AT-jet mapping: 

JNX:R* + ]?V, m^JNX(m). 

If XK(m) is a fc-parameter family, we also consider the mapping 

R 2 x R " ^ ] ^ V , (m,\)^JNXi(m). 

This mapping will permit us to define the genericity conditions needed on the family 

3. Putting in normal form 
In this section, we will define the submanifolds S 3

c * c ] j v and we'll show that 
3-parameter families cutting 2 3

c ± transversally can be brought - up to C°° 
equivalence - in a sirriplified form called a normal form. A large part of this reduction 
is valid under rather general conditions. Therefore, we'll present the reduction to 
the normal form in successive steps, making precise each time the supplementary 
conditions which are required. To simplify calculations and presentation we associate 
to the family Xk a dual family of l-forms defined by 

a>i=Xx A{dxKdy) (1) 

(J denoting the interior product). For XK = aK d/dx+ bx d/dy we have wA = 
— bx dx + ax dy. 

On the l-forms one can transpose the notion of C°° equivalence (conjugacy by 
a diffeomorphism and multiplication by a non-zero function having a same sign as 
the determinant of the diffeomorphism) and the corresponding notion on the germ 
level. Two families of vector fields are C°° equivalent if and only if the dual families 
of l-forms are C°° equivalent. 

Let us now start with a fc-parameter family Xk with, as unique hypothesis: 

{Hyp 1) J1Xo(0) is linearly conjugate to yd/dx. 

So, up to linear conjugacy, we may suppose jlXo(0) = y d/dx. This condition defines 
an algebraic subset of codimension 4 in ] q V and as we know from [A2], [ B l ] , [T2] 
the family Xx can be put in the following normal form by C°° equivalence (even 
C°° conjugacy). 

X A ~y^- + [F(x, X) + yG(x, A)] j-+ Q,j-+ Q2f (2) 
dX dy dX dy 

where ~ is C°° equivalence, and Q2 are of order 0 ( ( | |m | | + ||A \ \ ) N ) for a certain 
N that one can choose arbitrarily big, m = (x, y); || || are any norms on R 2 and Uk. 

F(x, A) and G(x, A) are C°° functions in (x, A) and we may suppose that they 
are polynomials of degree N. The equation for the orbits of (2) is 

( * - ' + < ? ' (21 
[y = F(x,\) + yG(x,\) + Q2 

1st step: Reduction to a differential equation of 2nd order. 
Let us consider the A-dependent coordinate change 

Y = y + Ql, X = x (3) 
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Equation (2') transforms into:

' X = Y

x (4)

dy 1 2 2

This gives
X= Y

(5)
Y = F(X, \)+YG(X, X)+Q'2(X, Y, A)

where Q'2(X, Y, A) = O((||M|| + ||AH)^"1), M = (X, Y). Changing TV-1 to TV and
(X, Y) to (x, _y) we regain the expression (2') with (?, = 0.

Using C°° equivalence we changed the original family of differential equations
into a parameter dependent differential equation of second order.

x = F(x,A) + xG(x,A) + Q(x,x,A) (6)

where Q is of order TV, F(0,0) = 0, G(0,0) = 0, dF/dx(0, 0) = 0.

2nd step: Division of the term Q by y2.
We develop the function Q in powers of y:

Q(x, y,X) = F(x, X) + yG(x, X)+y2Q(x, y, A),

where F is of order TV, G of order TV — 1 and Q of order TV — 2. Changing TV — 2
to TV, and F+F, G+G, Q+ Q to resp. F, G and C? we obtain

x = F(x, \) + xG(x, \) + (x)2Q(x, x, A) (7)

where (? is of order TV and F(0, 0) = G(0, 0) = (dF/dx)(0, 0) = 0.
We now introduce the second hypothesis:

(Hyp 2) (d2F/dx2)(0, 0) * 0

The hypotheses (1) and (2) define the submanifold 2 C in the space of 2-jets.
In the next two steps we only pay attention to the vector field Xo which up to

now has the expression

( 0 ) )^(F(x,0) yG(x,0) yQ(x,y,0)) (8)
ox dy

3rd step: Reduction of F(x, 0) to x2.
The dual form w0 of Xo is

(x,y,0))dx. (9)

As d2F(0,0)/dx2 ^ 0 there exists a local diffeomorphism around the origin in the
x-axis: X = u{x), with w(0) = 0, so that

X2 dX = F{x, 0) dx. (10)

If du(0)/3x<0, we take simultaneously the change Y=—y otherwise we take Y = y.
The change (x, y) -> (X, Y) does not affect the form of the expression (7) but makes
F(x, 0) equal to x2. (We again change X, Y into x, y.)
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We now introduce the third hypothesis: 

(Hyp 3): ^ ( 0 , 0 ) = 0 
dx 

The hypotheses (1), (2) and (3) define the semi-algebraic set 13

c, having codimension 
5. We shall finally impose a last genericity condition on 13

c, defining 1c*u1c~-
Up to now the 4-jet of X 0 has the expression 

j4X0(0) = y^-+(x2 + y(ax2 + (3x3))-^. (11) ax ay 

4th step: Reduction of j4X0(0) to y-^+(x2 + yx3) 

LEMMA 1. Let X0 be a germ of a vector field with 

j4X0(0) = y^-+(x2 + y(ax2+Bx3))^-. 
dX dy 

Then X0 is C 0 0 equivalent to a germ of a vector field having as 4-jet: y d / d x + 
(x2 + Bx3y) d/dy (with the same value of B). 
Proof: We'll work with the dual form w 0 of X 0 : 

A > 0 ( 0 ) =ydy- (x2 + y(ax2 + Bx3)) dx (12) 

and we put H(x, y) = \y2-\x3; dH = ydy-x2 dx so 

yx2 dx = y2 dy-ydH (13) 

Substitute (13) into (12): 

A>o(0) = (1 + ay) dH - ay2 dy - By3 dx; (14) 

it follows that: 
W 0 JTT a y 2 j . . Py 3 ^ , | , , , 5x = dH — dy — x 3 d x + 0 ( | | m | | 5 ) (15) 

1 + ay 1 + ay 1 + ay 
A coordinate change of the form X = x, Y = y + - • • • can transform the exact 1-form 
dH -(ay2/l + ay) dy into dH while the 1-form yx3 dx remains unchanged up to 
terms of order 5. This proves the result. 

We can now define the subset 13

c+ as the set of germs X 0 whose 4-jet in 0 is C°° 
equivalent to 

y — + ( x 2 + y(ax2+8x3))— w i t h / 3 > 0 , 
dx dy 

and 13

c- as the set of germs X 0 whose 4-jet in 0 is C°° equivalent to the same jet, 
with B < 0. (One can also introduce the subset 1C of codimension 6 determined by 
the condition B = 0; 13

c = 13

c

+ u 13c~u^c) 
By a linear change of coordinates, we can now reduce, up to C°° equivalence, a 

4-jet of the form 

y — + ( x 2 + flyx3)— with B*0, 
dX dy 
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to an expression

y — + (x2±yx3) —ydx dy

(where ± depends on the sign of /8). Lemma 1 shows that XoeS3
c+ ifl j4X0(0)~

yd/dx + (x2 + yx3)d/dy while X0e23
c- ifi fXo(0) ~ y d/dx + (x2 -yx3) d/dy.

Our last hypothesis on Xo is precisely:

{Hyp 4): X0eS3
c . .

Performing on the family XA the changes made in lemma 1, we obtain, up to C°°
equivalence, the following expression for the family XA:

^(F(x,\) yK(y)G(x,A) yQ(x,y,\))^-, (16)
dx dy

with the following conditions:

F(x, 0) = x2, K(y) is a C°° function in y with K(0) = 1,
( 1 7 )

G(x, 0) = ±x3 + O(x4) and Q(x, y, A) has order N in (x, y, A).

5th step: Reduction of F{x, A) fo X2 + /A(A).
We already have F(x, 0) dx = d(x3/3) and the germ of the function x3/3 admits as
universal unfolding ( X 3 / 3 ) + /AX (fold). There hence exists a differentiable mapping
/A(A) and a family of diffeomorphisms depending on the parameter A:

uA(x) = x+O(x2) + O(||A||)

such that

ut(F(x,\) dx) = (x2 + ix(X)) dx withM(0) = 0.

Performing this same C°° equivalence (^i(A), (x, y) -» (MA(X), y)) to the dual family
wA, we get:

w A ~ j ' ^ - [ ( M ( A ) + x2) + >'X(j)G(x,A) + >'2Q(x,>',A)]dx (18)

As Gdx = ut(Gdx), Qdx = uf{Qdx), u(x, 0) = x+O(x2) and u(x,\) =
O((||x|| + || A |D), the functions G, Q have the same properties as G and Q in (16):
G(x, 0) = ±x3+ O(x4) and Q(x, y,X) = O((||m|| + |MI)")- So we obtain (simplifying
the notation).

((n() ) y ( y ) ( , ) yQ(m,\))-?-, (19)
dx dy

with G(x, 0) = ±x3+ O(x4), fi(0) =0 and Q of order Af.

6 th step: Genericity condition on the family XA.
Let us consider the expression (19). The function G(x, A) can be developed in
powers of x:

G(x, A) = vo(X)+v1(X)x+ y2(A)x2+ v3(k)x3 + x4h(x, A), (20)

where v0, vx, v2, v3 are C00 functions in A and h is C°° in (x, A). Because of our
hypotheses: vo(0) = f,(0) = ^(0) = 0 and ^(0) = ±1. Using a transformation of the
form X = u(A)x, Y= v(\)y it is easy to reduce P3(A) to ±1; from now on we take
this for granted.
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Let us now suppose that A e R 3 : A = ( A 1 , A 2 , A 3 ) . The transversality ofj4XA with

respect to 23
C* expresses itself as

Under this condition (being our genericity condition) we may choose A = (/A, V0, ^
after a change in the parameter space.
We finally obtain the definitive normal form: (obtained using C°° equivalence):

OX

+ x4h(x,\)) + y2Q(x,y,\)]-^-, (21)
8y

where A = (n, p0, v^) is the parameter, K{y, A) is a C°° function in (y, A) with
K{0, A) = l, a(A) is a C°° function in A with a(0) = 0, h(x,A) and Q(x, .y, A) are
C°° functions and <? is of order N in (c, y, A), where JV is arbitrarily high.

4. Sfudj' o/ the generic family XA

Consider a generic family of vector fields XA in the normal form (21) obtained in
§ 3. As we remarked in the introduction, it suffices to study the case: Xoel 3

c+ (i.e.
the case where the coefficient of yx3 8/8y is equal to +1).

First, it is very easy to study the bifurcation of the critical points (the zeros of
the vector fields XA). Indeed, a point m = (x, y) will be critical iff

y = 0, fj.+x2 = 0 (1)

Hence, the vector field XA has (locally) no critical points for /JL > 0 and two critical
points for /A < 0: ek = (—V—/z, 0) and sK = (y/—fi, 0). It is easy to verify that eA is a
node or a focus, while sA is a saddle point. We note also that the segment ]eA, sA[
is transverse to Xx.

The vector field XA for a value n < 0 close to \i = 0.

FIGURE 6

Possibly after modification of XA in the complement of some neighbourhood of
0 e R2 (which is irrelevant since we are interested in the germ of the family in (0,0)),
we may suppose that XA = Xo when || m || is sufficiently big and that there exists a
fixed neighbourhood A of OeR2 and a fixed neighbourhood B of OeR3 (parameter
space) which we may choose arbitrarily small, so that:

(1) A is diffeomorphic to a rectangle, XA = Xo in a neighbourhood of 8A, Xo is
tangent to 8A on two opposite sides of 8A and transverse with respect to 8A on the
two other sides, pointing resp. inward and outward.

https://doi.org/10.1017/S0143385700004119 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004119


3-parameter families of vector fields 387

A as a rectangle

FIGURE 7

choice of A

(2) The critical points of XA, if there exist critical points near 0 e R2, belong to A.
From now on we restrict the study of our family XA to A x B. When A e B n

{/A > 0} = B+ the topological type of XA inside A is trivial (XA | A is equivalent to a
'flow box'). When A e B n {/A < 0} = B_ there may exist a certain number of cycles
inside A. Each of these cycles will then transversally cut the segment ]eA, sA[ and
will border a disc containing eA in its interior and sA in its exterior. Let us also
remark that the topological type of XA, up to C° equivalence, only depends on the
number and the nature of the critical elements (critical points and cycles): as a
matter of fact, pinching down the biggest cycle - the one that borders a disc contain-
ing the other cycles - to the point eA, one obtains a vector field on A having as
unique critical elements the points eA and sA and satisfying condition (1) on 3A.
Such a vector field can only have one of the two topological types shown in figure

e. is a sink cA is a source

F I G U R E 8

In case the vector field has k cycles, which we suppose to be hyperbolic to fix our
ideas, then the topological type of XK will only depend on the number k and on
the nature of eA. For example, if ek is a source and k = 2, the smallest cycle will be
stable, the biggest one unstable and the C° phase portrait of XA will look like:

FIGURE 9
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The nature of the critical points ex and sA is very easy to determine in the expression

^ 2 2 ? (2)( , y , ) ] ,
dy

with G(x,X.) = vo+vlx + a(X)x2 + x3 + x4h{x, A).
Let xM = ±V-/x be the abscissa of the resp. critical points. We look for the 1-jet

of XA in the point mM = (xM, 0). Putting x = xM + X and y = V we get

^ ^ A ) ) - ^ . (3)

The representative matrix of j 'Xj(m^) is equal to:

l , , ) (4)
A)/

and the equation of the eigenvalues reads:

£ 2 -G(x M ,A)£ -2x M =0 . (5)

For the point sK = {\f-Ji, 0), the product of the eigenvalues is negative: sK is a saddle
point, as we mentioned before. For the point eK = (—V—/A, 0),this product is positive:
ek is a node or a focus. The nature of eK (sink or source) depends on the sign of
the trace T(A) = G(xM, A). We write y = -y/-fi. The trace T(A) admits a develop-
ment of the form

T(A) = ^0+ v l T + r
3 + T

2O(||A|i). (6)

The equation T( A) = 0 defines in B (if B is sufficiently small) a surface S H contained
in the half ball B_. Observe that this surface, at least outside 0, is tangent to the
plane {/JL = 0}, along the axis Oî  having a quadratic contact; on the other hand 1H

is transverse to the spheres ||A ||2 = e for e > 0 sufficiently small. It is hence a cone
on the intersection with one of those spheres. We will later on come back to this
surface. Let us for the moment merely observe that if one crosses this surface
transversally, that the trace at the point eK will annihilate in a regular way (the
eigenvalues in eA are complex conjugate and cross the imaginary axis regularly). In
other words we may expect that the point eA undergoes a Hopf bifurcation. We will
make this precise later on, but it is possible to prove it directly by calculating a
sufficient jet of Xk at eK.

The only difficult problem is the determination of the number and the nature of
the cycles, including their limit position as a saddle connection. In order to solve
this equation, we'll use a perturbation method after applying a blowing up in the
space IR2 of variables (x, y) as well as in the space R3 of parameters (/u, v0, vx). More
precisely, we use the following change of coordinates and of parameters

; x = 12x

[y=t3y [ ^ =

(7)

We put A = (/x, v0, ^i); if *e]0, T] for some T and AeS 2 , then the parameter A
describes a neighbourhood B of 0 in R3.
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Consider the dual form u>k of Xx:

wA = y dy - In + x2 + yK (y, A)[ v0 + vxx + ax2 + x3 + x4h] + y2Q] dx.

This 1-form is the sum of a Hamiltonian part, dH^, with

and a 'dissipative' part.
The change given in (7) transforms wA into:

dH t5(l

(8)

(9)

'; t,
i

+ t2ax2 + x3 + t2x*h) dx+ t2N+2fQ dx, (10)

where d(y, t, A) is a C°° function of order O(y), where h is a C°° function in x, t, A,
where a is a C°° function in A, t and Q is a C°° function in x, y, t, A.

We will use (10) to study wA in conic sectors around the axes 0/x and 0vr. In fact
we'll work with cD in fixed domains A in the space (x, y); when f^-0, the image
^A = ®m(A) has a diameter tending to 0 in the space of initial variables (x, y). This
could give problems since we need to study Xk in a fixed domain A; we'll come
back to this in § 4.5.

4.1. The behaviour of Xx in a sector around the axis 0/x. We take /2 = - l and
v = {v0, v{)eU2. The 1-form w, depending on v and t is

(5j,= dH — t$y(v0+ fjjc + x3) dx+ O{t6)ydx (11)

with

The symbol O(f6) in (11) stands for a C°° function in all variables and of order 6
in t. In the expression (11), the form d>p>, appears as a perturbation of order O(ts)
of the exact form dH. The function H is a Morse function with two critical points:
a centre at e = (-1,0) and a saddle point at s = (1, 0):

FIGURE 10

We fix a compact neighbourhood A of the singular disc denned by the saddle
connection (in s). Let X^, be the vector field dual to «*,,. For t = 0, this vector
field is the hamiltonian vector field of H:X = Xiifi. For any (v, t), the vector field
Xv,t is transverse to ]e, s[. Therefore, if one fixes any compact subset K of U2(i>),
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there exists some value T(K)>0 such that if (t, v)e [0, T{K)] x K, the vector field
X J;>( admits a first return mapping (or Poincare mapping) with respect to the segment
[ e , s ] :P M .

As a matter of fact either P^, is defined on the whole segment [e, s] or P^) is,
as we can see here:

P c , defined on [e, s] P^1, defined on [c, s]

FIGURE 11

The study of the cycles for small values of t can be done with the help of the
following well known lemma.

LEMMA 1 (Perturbation lemma). Let cop, be the l-form given in (11) and let K be
a compact subset of U2, the space of parameters v; then there exists a value T(K)> 0
such that for all (t, v) e [0, T(K)] x K we have the following properties:

(i) &5C, admits e, s as the only critical points inside A:e is a focus and s a saddle
point; the first return mapping Ps>, on [e, s] or its inverse P^\ is defined on the entire
segment [e, s].

(ii) If we parametrize [e, s] using the value of the function H we obtain a parametriz-
ation by be[-IJ] (H(e) = - | , H(s)=f) which is regular on ]-§,§[.
For this parametrization, the mapping Pit has the following development on its domain
of definition:

<oD+o(t5), (12)

where yb is the compact component of {H = b}, clockwise oriented for the integration,
wD = y(v0+ ptx + x3) dx, and o(ts) standsfora Cx function in b, v, t, of order o(t5).

In order to calculate \yb u>D we.introduce the 1-forms

coi=yxidx withi>0. (13)

By this: u>D = v0(o0+ vlu>l + o>3. For the corresponding integrals we use the notation:

<"i, (14)

and we write

) = v0I0(b)+vMb) + h{b). (15)

The mapping Pfi,{b) becomes:

P;>it{b) = b+tiG(b,v) + o{ti) (16)

The cycles contained in A cut [e, s] at the values of b which are fixed points of
Pa,f The equation of these fixed points is

0=P>,,(b)-b=t5G(b, p) + o(ts), (17)
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or otherwise said

G(b,v) + e(t) = 0, (18)

where e(t) is a C°° function in all variables, tending to zero when t-» 0. The limiting
position of the cycles, for t -» 0, is hence given by the solution of the equation:

G(b,v) = 0. (19)

We now first pay attention to this equation.

4.1(a). Study of the surface {G(b, i>) = 0}. Equation (19) defines a surface in the
space (b, v0, vx). For b = — §, the three integrals Io, 71; J3 become zero; however as
Io(b)>0 for b^—\ and as / i / / 0 and J3//o-»—1 for 6-> — f we can remove the
degeneracy of equation (19) at b = —\ by changing (19) into the equivalent equation:

) G 0r 0. (20)

The function G{b, v) is written as

(21)

with

= - - and <?(/>) = - - for fe^-§

. p ( - i ) = <?(-§) = 1 ( 2 2 )

We denote by 2 the ruled surface defined by G(b, v)=0 for b e [-§,§]. For each
value b, the equation (5 = 0 defines a line Ab in the space of parameters ? and the
surface £ is diffeomorphic to a strip [-§, §] x R embedded in R3. The limiting lines,
defined by b = — §, f are projections of the boundary of 2. Their respective equations
are:

for/i = A_a: ?0=»;i + l, (23)

forc = Ai: ?0 = f^ + W. (24)

(The coefficients in the equation of the line c can easily be calculated by integrating
w0, &>,, w3 on the saddle connection, but one can also obtain their value without
calculation as we'll see a bit later.)

We will now show that the surface 2 admits a critical locus of fold type, 1C, with
as projection on the ?-space a simple arc I joining a point fi2£A t o a point c2e c.
Recall that the critical locus 2C of 2 for the projecton on the P-plane has as equation:

is of fold type, if at all points of 2C:

db2" ' '

We are first going to express G as a function merely of P, using the fact that the 2
forms too and OJ, generate the cohomology of R2\{s, e} relative to dH. More explicitly,
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we have the following expression of a>3 (this expression was suggested to us by
H. Zoladek).

LEMMA 2.

^w3=-3Hw0 + ¥w1+|d(xy3)-lxydH. (25)

Proof. Recalling that H(x,y) =\f + x-\x3, we get

w3 = joe3 dx = -3Ha)0+3col + lf dx. (26)

Now

f dx = d(xf) -3xf dy. (27)
From dH = ydy + (l-x2) dx we obtain:

-3xy2dy = -3xy(x2-l)dx-3xydH, (28)

hence
-3xf dy = -3w2 + 3a)x-3xydH (29)

Combining the equalities (26), (27) and (29) we find:

a)3 = -3Hw0 + 3w1+|w1-lw3-lxydH + |d(jcy3) (30)

eventually giving the required formula. •

The lemma implies that
lih = -3blo +

 lil,, (31)

therefore
Q{b) = £b + \lP(b), (32)

and
G(b,i>)=i>0-P(b)vl-flb-?lP(b). (33)

From this formula for G(b, v) it follows that

8-£(b, v) = -P'{b)v, -fi-\lP'(b), (34)
db

d-§(b,i>) = -P"(b)-(i>,+\l), (35)
do

with P'(b) = dP(b)/db and P"(b)=d2P(b)/db2.
In his work on 2-parameter families, R. I. Bogdanov shows that for all be

[~l,l[- P'(b)<Q, (we'll also prove this a little later). Equation (34) permits us to
calculate vx along the critical locus:

6 1 15

^)=-7T^ri? (36)

At each point boe ]-f, f[ where

dG
(bi>) = —(bo,v) = 0, (37)

db
we have (bringing (36) into the expression (35)) that

d2G 6 P"(b0)
( v " ) ( 3 8 )
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Consequently, the critical locus Sc consists of fold-points if we can prove that
P"(b) ;*0 for all be ]-§,§[.

We remark also that if we differentiate the expression of i'i(b) given in (36), that
we get

~db(b)~U(""-2 { '

Hence, the same condition P"(b) ̂  0 for all b e ]-§, f[ ensures that the component
j>,(b) of Sc and henceforth the component ?,(b ) of / is regular: by this / is a regular
curve. (Later on, we'll show that / is the graph of a convex function vo(vi).) Let us
however first show that for all b e [ - §, §[: P"( b) < 0. We also recall that the analogous
result on the first derivative has been proven by Bogdanov [B2], and after that by
II' Yashenko [I] (see also [K, H]).

We prove the two properties of P simultaneously.

THEOREM 3. The function P{b) = -71(b)//0(b), where 7,, Io are the elliptic integrals
defined in (14) satisfies: P'(b)<0 and P"(b)<0for all b e [ - f , f [ .

Remark. Using the proof given below, one can easily demonstrate that P' and P"
tend to -oo for b -* +§.

Proof. The function P(b) is a solution of the differential equation

(9b2-4)P' = 7P2 + 3bP-5 , (40)

as we show in the appendix 1. Therefore the graph of P(b) belongs to an orbit of
the following vector field Z defined on the space R2 of coordinates (b, P):

4 ( 7 i + 3bP5)4 ; (41)
do 8"

This vector field has 4 critical points:

«„ = (-§, D, «> = (§,§), *o = (-!,-!), «; = (-§,-i);
and admits the lines A0 = {b = — §} and A1 = {b = §} as invariant lines. Along these
lines Z is normally hyperbolic and in restriction to Ao and A, the critical points are
also hyperbolic.

The 4 critical points are hence hyperbolic and one easily checks that a0 and a[
are saddle points, while a'o and a, are nodes, respectively unstable and stable. The
phase portrait of Z in the vertical strip B = {P>0, -f < b< |} can now easily be
obtained taking into account the value of the vertical component of Z when P = 0
and when P is big (figure 12).

In particular we notice the existence of a unique Z-orbit lying in the interior of
B and having the saddle point a o = ( -§ , 1) as an a-limit point; it is the unstable
separatrix F of a0, which tends to a, for t-*<x>.

As we noticed already that P{b)^> 1 for b ^ -f it follows that the graph of P(b)
is equal to F (of course, this implies that P(b)-»f for b-»§, giving the required
coefficients of the line c).
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oc0

L — b
- 2 / 3 2/3

Tentative drawing of the phase portrait of Z in B.

FIGURE 12

Let us show that P'(b) <0for allbe[-\, §[. For b = -\ we obtain P'(-j) = - | merely
by development of the formula (41). For the other values of b, we make the following
qualitative reasoning. We consider the equation: 7P2 + 3foP — 5 = 0, describing the
points where Z is horizontal. The equation defines a hyperbola, whose two connected
components are the graphs of functions. The part of this hyperbola contained in
the strip B is an arc 5, graph of P = £ ( - 3 6 + (9b2 +140)1/2), b e [-§,§]. Along S we
can solve b in terms of P: b = (5 — 7P2)/3P (since P ̂  0 on S). Hence Z is transverse
to S, along S, and directed to the right. Finally, the extremities of S are the points
ao,a1. We now study the position of S with respect to F. In a0, the tangent to S
has a slope equal to — \, which value is inferior to P'{—\) = —\. Also, in the
neighbourhood of a0, the separatrix F is above S. But as, along S, Z is transverse
to S and directed to the right, the orbit F is not permitted to cut S again for t -» oo:
the orbit is hence entirely situated in B, above S. But in this region, the vertical
component of Z is negative. It follows that P'(b)<0 for all be [-§,§[. (For b-» | ,
a local study in (f, 1) reveals that P'(b)-> -oo.)

Let us now s/iow f/ia< P"(b) < 0 for all b[-j, §[. First of all, using a development up
to order 2 of the equation (41) in b = -\, one obtains that P"(-f) = -2§54<0. Let
us for a moment suppose that P" would have a zero on [-§,§[ and let bo> -§ be
the minimum of such points: P"{b0) = 0 and P"{b) < 0 for all b e [-§, bo[- We show
that this is impossible since Z is a quadratic vector field. Therefore consider D, the
tangent line of F in the point mo = (bOy P(b0)). As P"(b0) = 0, the order of contact
between D and T is at least 2. Let t; be a vector orthogonal to D and D(u) a linear
parametrization of D. The function ip(u) = (Z(D{u)),v) {(•,•) denoting the
euclidean inner product on R2) has a zero of order at least 1 in u0, with D(u0) = m0

(see appendix 2). As P"{b)<0 for all fee[-f, bo[, the corresponding arc of F is
situated below D. The line D hence cuts A0 = {b = -f} at a point n0 above a0. At
this point, Z is directed downward. On the other hand, in the points of D with
abscissa <b 0 but near bQ, Z is directed towards the half plane above D. From this
it follows that the function t/*(u) needs to possess a zero at^some u, ̂  u0 with
D(w,)e]no, wo[.
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"o

FIGURE 13

However, the vector field Z being quadratic, the function «/»(«) is a polynomial of
second degree in M; the existence of a double zero at u0 and another zero at u1

implies then that ip = 0 and hence that F is a line segment. This is of course not
compatible with P" ( - f )<0 , ending the proof of the theorem. •

Let us come back to the study of the surface 1, by making precise a few supplementary
properties. First, along the line h with equation v0 = vx + 1 , we have P'(-f) = -\ so
that

dG

db
except at h2= (4, 3).

At the point h2:

and
d2G,

Second let us state - and this will be required later - the condition

da>D(i>)\s=0,

that is dwD(v) restricted to {x = 1}, defines a line (. Explicitly

dcjD = (i>o+ i'iX + x3) dy A dx

and

dwD(»;)|s = (?o+«7i + l) dy hdx.

The equation of the line t is

(42)

(43)

(44)

(45)

(46)

(47)

(48)

It cuts the line c transversally at the point

since the function vo+i>x + l restricted to c has a regular zero at c2.
Finally let us come back to the curve /. On /, the function ?!(£) = {—n)\/P -yf

(see (36)) goes from «'i(-|) = 3 to Vi(f) = —if so that / joins the points h2 and c2.
The curve / is the graph of a convex function ^ ( ^ I ) a n <i therefore situated above
the lines h and c. To prove this last point, we recall that / is the envelope of the
lines Ah defined by
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As P(b) is invertible, we can choose its values as a parameter so that the lines can
be parametrized by their slopes Pe[f, 1]:

Ab~AP: vo-Pv1-H{P) = Q (49)

where

{b(P) stands for the inverse function of P{b)). We calculate the second derivative
of H(P): H"(P)=fib"(P) with b"(P) = -P"(b)/(P'(b))3 so that H"{P)<0 for all
Pe ] f , l ] .

It is well known that the envelope of a family of lines like in (49), parametrized
by their slopes and defined by i>0 = Pv^ — (—H) for a convex function —H, is always
the graph of a convex function: ^o(^i) is the Legendre transform of the function
-H ([A3]).

FIGURE 14

4.1(b). From the surface 2 to the bifurcation set inside a conic neighbourhood of
0/x, /J. < 0. The perturbation lemma permits us to deduce the nature of the bifurcations
for the family X^t from the properties of the function G, established in § 4.1(a).
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THEOREM 4. Let K be a compact neighbourhood of the curved triangle (d, h2, c2) in
the v-plane\ let Abe a compact neighbourhood of the singular disc { H < | } n { x < l }
in the (x, y)-plane. There exists a value T(K)> 0 such that in C(K) = ]0, T(K)] xKc
U3 (with coordinates (t, i>)) the bifurcation set of X^,\A can be described as follows,
up to a diffeomorphism ofC(K) equal to the identity on t = 0:

(i) Bifurcations of codimension 1:
SH = ]0, T(K)[x(h\{h2}) is a surface of Hopf bifurcation;
Sc = ]0, T(K)[ x (c\{c2}) is a surface of generic saddle connection (when one crosses

Sc, two separatrices of s cross generically);
SL = ]0, T(K)[ x / is a surface of generic coalescence of 2 limit cycles.

(ii) Bifurcations of codimension 2:
]0, T(K)]x{h2} is a curve of Hopf bifurcation of codimension 2;
]0, T(K)] x{c2} is a curve of saddle connection of codimension 2;
SH fl 5L is a curve of simultaneous Hopf bifurcation and saddle connection.

Outside these bifurcation sets, the topological type of Xpt is constant in A.

Proof. We make use of the development of the Poincare mapping on [e, s], as given
in lemma 1:

Pf,,(6) - b = As,,(ft) where Aff,,(ft) = t\G(b, v) + e(t))

with e(t)a C°° function in all variables, tending to 0 for t ->0. For b = -\ (correspond-
ing to the point e) we have AM(~§) = 0. So this function is divisible by (b+\) and
hence also by I0(b) since V0(-\)*Q and / 0 ( b ) ^ 0 for foe]-f,|]. Using a new
function tending to 0 for f-»0 and which we denote by £(ft, t, v) we have

;) + f). (50)

In the 3-parameter family X P I , the set of Hopf bifurcation is given by:

(51)
db v 5I

On this set, the condition:

32AP

defines the Hopf bifurcation of codimension 2, while the condition

(52)

^ ( - 1 ) ^ 0 (53)
db

defines the set of Hopf bifurcation of codimension 1. Now, the Hopf bifurcation
of codimension 1, denned by (51) and (53), is generic if equation (51) has rank 1.
Also, the Hopf bifurcation of codimension 2 defined by (51) and (52) is generic if
the defining equations form a system of rank 2 and if moreover, in the points of
this bifurcation set:

^ H > * 0 . (54)
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Because of (50) we have:

In particular, for b = —\, as / 0 (- | ) = 0:

!,*) + £(-§,*,*))• (56)

Thus, for t^O, condition (51) is equivalent to:

(G + f)|6__i = 0. (57)

Equally, conditions (51) and (52) are equivalent to (57) and

+
db db

= 0. (58)
i

For f = 0, equation (57) defines the line h, the equations (57), (58) define the point
h2. Finally the condition (54) on the bifurcation set is equivalent to

^ ° " (59)

If one considers expression (33) given by G it is clear that equation (57) has rank
1 and that the equations (57), (58) have rank 2 in {v0, P^ for t = 0. By continuity,
this remains true for t sufficiently small. The conclusions of theorem 4 with respect
to the Hopf bifurcations hence follow if one uses the implicit function theorem.

In the same way we observe that the equations of the bifurcation set for the
coalescence of two cycles

dA

db' " — db2

are equivalent to the equations:

A = — = 0 and 771^0

dG d£ , d2G d2£
•-—- + -r- = 0 and —rr + ̂ r l ^ 0 - (60)
db db db2 db2

The equations have been studied for G in §4.1(a) , for t = Q. The study for f^O
follows because of the implicit function theorem and the fact that for every order
of derivation k

—f^O forf->0.
dbk

In an analogous way one deduces the bifurcation set of saddle connection of
codimension 1 from the properties of G along the line c. However the treatment in
the neighbourhood of the curve of saddle connection of codimension 2 is more
delicate and we postpone it to appendix 3.

Outside the described bifurcation sets, the vector field Xit only possesses hyper-
bolic critical elements (points and cycles) in A: it is hence a Morse-Smale field of
locally constant topological type. This ends the proof of the theorem. •
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The image of C(K) = ]0, T(K)]xK by the mapping <&p restricted to /x =
- 1 (fi = -t4, vo = t6v0, vx = t4v-i) is a cone C^(K), in a neighbourhood of the axis
0/x for fi < 0,

CM(K) = { ( - r 4 , t 6 ? 0 , ' 4 i ; i ) | f e ]0 , r ( K ) ] , ^ K } . (61)

The bifurcation sets in C^K) are the images by <£p of those described in theorem
4 and hence homeomorphic to cones on h, I,c,c2,h2,da U2 (cones with as generating
curves t -» ( -1 4 , t6 v0, t4 ?,) or, differently said, /x -»( /A, ( - /it )3/2 v 0, - /n vx) with /A < 0).

FIGURE 15

4.2. 77ie behaviour ofXK in a sector around the axis Qv^. We return to the expression
(10) for the 1-form a>\,. In order to make a study inside a cone in the neighbourhood
of O^, we fix vx = ±1 in (10), retaining (t, fi, i>0) as parameter. For vx = 1 we reach
a cone in the neighbourhood of 0 v,, vx > 0, and for vx = -1, a cone in the neighbour-
hood of Qvx, fi< 0. As both cases can be treated similarly, we only consider i>i = 1.
Expression (10) becomes:

di.^^dH^-t'iyivo + ̂  + ̂ ycP + f^dx, (62)

where <j> and ij/ are C°° functions in Jc, y, t, /I, i>0 and

Observe that for fixed t ¥=• 0, the 2-parameter family a) is a family of the kind studied
by R. Bogdanov. (With a minor difference in the choice of parameters, however not
affecting the genericity of the family.)

We will see that for a fixed value 7">0, one can apply the theory of Bogdanov
uniformly \nith respect to te ]0, T], in the region of the parameters /I, v0 where
traditionally the study can be made by 'perturbation of a Hamiltonian'. More
precisely, in the halfplane jl < 0 there exists a fixed compact subset B, diffeomorphic
to a disc, having a contact of order 1 in (0,0) with 0i>0 and such that the results of
Bogdanov (concerning the curves of Hopf bifurcation, saddle connection and unicity
of cycle in between the two curves of bifurcation for (/I, v) e B) are valid for any
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FIGURE 16

To prove this result, we use a secondary blowing up for each fixed t e ]0, T]. The
blowing up is defined by:

X = T X
(63)

For each TT^O, the expression of a> in the new coordinates (x, y) can be divided by T6:

&T,io = —6a = dH-\

where

po + x) + e(T))dx

X~3

(64)

and E(T) is a C°° function in all variables which tends to 0 for x-»0.
As in the preceding paragraph, the dual vector field ^T,p0 possesses a first return

mapping PTt,0(b) with a development:

P(b)-b = t5T(G(b, PQ) + S(T)), (65)

where

G = volo+ Ix. (66)

Again as in § 4.1, the study of the bifurcation is equivalent to the detection of the
zeros of the functions G + e ( r ) .

The results on the existence of bifurcation curves and on the unicity of the cycle
for (x, y) in a fixed neighbourhood A of the singular disc {H s §} n {x < 1} and for
v0 in a fixed compact K' are valid for T > 0 sufficiently small (0< T < T0 for a certain

To)-

Indeed, as e(r) is C°° in all variables, it tends to zero as well as all its derivatives
dke/dbk in a uniform way when (b, v0, x^y) belongs to a fixed compact set [—§,§] x
X ' x A a n d te[O, T]. The properties of G / / o = v0-P (e.g. 6/Io = 0=>d(G/Io)/db *
0) are still satisfied by (1/J0)(G+ e(r)) for small T, let us say r e ] 0 , T0]. The image
of the rectangle ATx]0, x0] in the (/I, ?o)-space contains a region B diffeomorphic
to a disc.

Finally, the result remains valid in the cone on B defined by

C ; = {(t4fi, t6v0, t4) 11 e ]0, T], (/I, i>0) e B}

for the vector field X,x in the region Ax=<&p- <$>'P(A) (depending on A). Similarly
we can obtain a cone C~t, around Qvx for vx <0 .
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4.3. Conclusions of 4.1 and 4.2. Let C ^ , C , be the two cones obtained in §4.2.
We can now choose the compact K in the ?-plane of § 4.1 in a way that the union
C M (X)uC~ contains a cone C(D) on a disc D belonging to a sphere 5Eo =
{/x2+ ^o+ »>i = e2,} with e0 sufficiently small. (The cone structure refers as before to
the mapping <t>p.) The disc is chosen inside the half sphere S = SEon{/u<0}, in
such a way that it contains the half circle {̂ o = 0} and that the boundary dD is
tangent with a contact of order 1, to dS in the points a ={vo= n=Q, vt = l} and

FIGURE 17

We moreover impose on the choice of D that in the interior of D, the curve of Hopf
bifurcation and the curve of saddle connection described in § 4.2 are connected
with the curves H = SH n D and C = Scr^D described in § 1 (inside C^K) n S).
We also ask D to contain the curve L= SLnS (see § 4.1).

The topological type of Xx is known in a region AA for each A e C(D). On the
boundary dC(D) = C(dD) the vector field XA has on [eK, sA] a first return mapping
without fixed points. As on the other hand XA has no critical points when \L > 0,
it only remains to handle the parameter values outside the cone C(D) with /x < 0
and in a neighbourhood of the origin.

4.4. The region in {/x < 0} without cycles. Take Bc = {(/LA, I'Q, y,) | û,2 + J>Q+ V\< e} for
e > 0 , and Se =3Be as above. The number e0 has been defined in § 3. We also go
on working with the disc D a S = SEfl n {fj, s 0} introduced in § 4.3.

THEOREM 5. / / e > 0 is sufficiently small and A =(/u,, v0, «/,) is such that \eBe,
A ^ B t n C ( D ) and /x < 0 , r/ien XA does nof admi7 a cycle in the neighbourhood A of
0 in R2, (A defined at the beginning of § 4, D the interior of D).

Proof. We resume the proof of Bogdanov [Bl]. (As a matter of fact, one may observe
that the normal form which we use for XA makes the proof even easier.) As we
have remarked in § 4.3, the disc D has been chosen in such a way that the first
return mapping of XK on [eA, sA] has no fixed points other than ek for A £ C(dD).
More precisely, this mapping has the following property: either P~\x)<x
(xe]eA,sA]) for ^ o >0 and the orbits coming from eA are expanding spirals, or
P(x)<x (xe ]eA, sA]) for J ' 0 < 0 and the orbits tending to eA are contracting spirals.
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vo>O
FIGURE 18

Let e > 0 be a number which we will make precise later on. We consider the set of
A = (fi, v0, i>,) with fj. < 0 a n d A G Be n C(D). Let us focus our attention to the region
{v0 > 0} as the {v0 < 0}-case can be studied in the same way. First of all, if A' e BC n
C(dD)n{vo>0}, there exists a positive semi-orbit starting in a point xAe]eA-, sx{
and tending to sA> without cutting ]eA, sA{ again (see the left-hand figure of figure
18). We denote-by D v the singular disc bounded by the piece of this orbit between
xA and v and the segment [x v , sA.]. For continuity reasons:

Sup{diamDA|A'GBEnC(aD)n{i / 0>0}} = O(e). (67)

Take now a value A s B n A £ Bs n C{D) with /i, < 0 and i ' 0
> 0 . We are going to

compare XA to XA< where A' = (/x, v'o, vx) (same values for /x, vx) is such that
A'e C{dD)n{vo>0}; A' is necessarily in Br.

d
Xx - X A = yK(y, A)((^o- i>'0)R(\, A', x,y))— (68)

dy
with

R(X, \',x,y)

\)h(x,k))x + (
*• (y, A )

(69)

Using the Taylor formula of order 1 with integral remainder term for a(A) — a(X'),

e t c . . . . , one obtains that for (x, y)e A:

R(\, A', x, y) = (PO-V'O)R(\, X', x, y) (70)

with R = O( || /n ||) for m = (x, y). We therefore can write XA — XA. in the form:

Xk-Xy = yK{y,\)(Vo-v'o)(l + R{\,\',x,y))—, (71)
dy

with i? = O(||m||). In particular if (x,y)eDy, the estimates (67) and (71) imply
that R(k, A', x, y) = O{e). Hence if e > 0 is chosen sufficiently small and if (x, y) e
DA., with A, A' related as before, one has:

K(y,\)(vo-v'o)(l + R)>0, (72)

Now fix such a value e; in the disc DA> we pass from XA- to XA by adding a
d/dj-component of the same sign as y. That this implies the impossibility for XA to
have a periodic orbit in A can be shown as follows: Let T be such an orbit; it cuts
]e\,Sk[ = ]ey,S\i a t a point wA. Let F be the XA-orbit through uA followed for
negative time until it reaches ] e v , sv[ again at the point vx. Necessarily t;A < uA and
the singular discs bounded by [uA, MA] and the piece of F" in between uA and vx is
contained in DA .
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FIGURE 19

We can see from formula (72), valid in D', that the orbit F, emerging from wA, for
t<0 enters the disc EK. As along F', between MA and t;A, the vector field XA is
transverse to F and points outward from EK except in the points of the x-axis and
as it is also transverse to [wA, uA] pointing outward from EA, the orbit F cannot
leave £A for negative times and hence cannot return to the point uA. •

4.5. Final remarks. XA being a generic family which we suppose to have the normal
form (21) of § 3, we have found in the preceding paragraphs:

(i) a fixed neighbourhood A of OeR2 (phase space);
(ii) a fixed neighbourhood Be in the parameter space;

(iii) a bifurcation set £<= BE, having a conic structure with base in dBe.
The following properties have been verified:

(iv) For each A e Bc, the vector field XA has resp. 0, 1 or 2 critical points in A,
depending on whether /i. > 0, /A = 0 or (JL < 0. The vector field is fixed (independently
of A) in a neighbourhood of 3A and has been described in § 4.1.

(v) The disc obtained by intersecting Be with the {/it = 0}-plane belongs to 2. In
this disc, outside 0, there occurs a saddle-node bifurcation. In the half disc B^ = Ben
{/A a 0} the vector field XA is trivial in A. On the other hand, we have proven in § 4
that in B~, outside a cone C(D), the field has no other critical elements than the
critical points: the topological type of XA in A is hence well determined there.

(vi) The other parts of the bifurcation set 2 are contained in C(D). If A e C(D)\L,
we have proven that the topological type of XA | AK, with AA c A a certain neighbour-
hood of OeR2 (see § 3) is well defined. A problem could be that the diameter of
AK tends to 0 for A -» 0. However, as we know, the vector field Xx has no critical
elements in so that XA \A has to be topologically equivalent to XA | Ax.

By all this, B,,\1 is divided into a finite number (exactly 6) of open connected
components, in which the topological type of Xx \ A is constant, and does not depend
on the family. Also on the different parts of 2 as described in §4.1 and §4.2
(9 surfaces and 5 curves) XX\A has a constant topological type, independent on
the family.

In order to prove that the family XA is (fibre) C° equivalent to the polynomial
family Xk defined in the introduction, one starts by choosing a homeomorphism of
Bc into itself sending the bifurcation set £ of Xx onto the bifurcation set 2 of XA.
The existence of such a homeomorphism has been shown in § 4.1 and § 4.2. From
now on we may hence suppose that XA and XA have the same bifurcation set S.
As we have observed that the topological type of XA and of XA in some fixed
neighbourhood of 0 is the same on each of the connected components of Be\S and
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r;(6) = j where c = c(b), c, = cx(b), R = R(w, b). 

On the other hand: J i = \ c

c ' (wiR2/R) dw and as / ? 2 = 2&-2H> + (2>V3/3) this implies: 

Ji = 2bJ'i-2J'i+l+\J'i+i f o r i > 0 (5) 

(ii) Partial integration leads to 

, r 1 - + i o l c ' 1 f'1 w ' + 1 ( l - w 2 ) . J. = \ W

, + 1 R + i - '-dw 
li+l J c i + l J c R 

hence 

J , = t ^ t ( / ; + I - / 5 + 3 ) for all i > 0 (6) 
j + 1 

(iii) We can eliminate J'i+3 between (5) and (6): 

(2i + 5)/i = - 4 / ; + 1 + 66/J. (7) 
In particular: 

f 5 / 0 = - 4 J i + 6Wi 
l 7 / , = 4 ^ + 6 W 1

 ( 

(iv) However, J2(b) = J0(b). Indeed: from dH = y dy + (1 -x2) dx we obtain 

(o0-m2 = y dH -y2 dy (9) 

on each of the different parts of 2 we obviously obtain a (fibre)-C°-equivalence 
between X A and X x . 

Appendix 1 
Differential equation for P(b). Let H(x, y) = ^y2 + x-x3/3. This function has two 
critical points e = ( - l , 0 ) and s = (1 ,0); H ( e ) = -f, H(s) = l , for all b e [ - § , § ] , 
{H = b} contains a compact connected component yh. We define <u,=yx'dx, for 
i > 0 , and /,-(b) = j w,, using clockwise orientation. The function P(b) is defined 
as P(b) = -Irib)/I0(b), extended to be 1 for b = - § . We intend to show that P(b) 
verifies the equation 

( 9 b 2 - 4 ) P ' ( b ) = 7 P 2 + 3 b P - 5 (1) 

For this, we will first establish some recurrence relations between the integrals 
Let us consider y£ = {(x,y)e yb\y>0}. The cycle yb cuts the x-axis at points of 
abscissa c (b)<C[(b) , roots £ l of the equation 

The half-cycle yt is the graph of y = (2b-2x + ( 2 x 3 / 3 ) ) 1 / 2 with xe [c(b), c^b)] . 
Introducing the radical 

R(w,b) = l2b-2w+—\ for w e [ c ( b ) , C l ( b ) ] (3) 

and Jj(b) = | / j ( b ) we get the expression 

J,(b)=\ w'R(w,b)dw. (4) 
Jc(b) 

(i) Derivation with respect to b gives us: 
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and integrating along yb gives:

J0(b) = J2(b) (10)

This relation permits us to eliminate J2 from (8), and to obtain the following
equations for Jo, Jt:

\lJx = -AJ'0 + 6bJ\

On the interval ]—§,§[ one can calculate J'o, 3\ in terms of Jo, Jy:

implying (1) since P'(b) = (J'0J,-J'1J0)/J
2
0.

Appendix 2
In the proof of theorem 3 in § 4 we have used the following result:

LEMMA. Let meU2 be a regular point of a C°° vector field Z on U2 (Z(m) ̂  0). Let
C : ] -e , e[ -> R2 {for e > 0) be a regular C°° path with C(0) = m. The Z-orbit through
m(Z(t, m)) has then a contact of order fc> 1 with C at m if and only if the function

"»•(£<->)'
has a zero of order k — 1 at u = 0. (( , ) denotes the euclidean inner product of U2 and
(dC/du)± is the vector obtained by rotating dC/du through an angle TT/2.)

Proof. The order of contact between two curves does not depend on the choice of
local coordinates around m nor on the regular parametrization of C. We hence
choose a coordinate system W(x, y) in which m = (0,0) and Z(x, y) = d/dx. As the
curve defined by C is tangent to the x-axis at (0,0), we may suppose that it is given
as the graph of a function c depending on the variable x. Finally, we may. as well
replace the euclidean inner product on U2 by any riemannian matrix g around m,
in order to define the function </>. Indeed, if

(1 being calculated with respect to g) one has i/fg(u) = £(w) • <p{u), where £(u) is
non-zero around 0, so that the 2 functions ipg and <p have at u = 0 a zero of the
same order. If for g we choose the euclidean inner product in the chart W and we
use the x-variable as parameter, then

d_ dcj dc\ (dc_yj_dc \
dx' dx V'dx)' \dx) V dx )'

hence

implying the result.
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Appendix 3. Study of the bifurcation set in the neighbourhood of the line of saddle
connection of codimension 2.
A3.1. Preliminary calculations. We want to study (see § 4.1):

dx dy dy dy

in some neighbourhood of the saddle connection through the saddle point s = (1, 0)
for te ]0, T[ and (v0, i>,)e V where T > 0 and V, a neighbourhood of c2 = (n . ~u),
are yet to be chosen.

We introduce the coordinates x = x - 1 , y = y in order to put the saddle point s
in the origin, and we write t5= e:

Xte = y — +(x + 2)x—+ey{i>0+i>l(l + x) + (l+x)i)-
dx dy dy

The linear panj1(Xi),,)(0) = yd/dx + [2x+e{v0+ v^ + l)y] d/dy and its eigenvalues
are

The ratio of the eigenvalues is - ( l + (D/2)e + o(e)) where D = (vo+vl

The hyperbolicity factor of the saddle point is

a(i>, e) = — e + o(e).

The hyperbolicity factor is defined to be the number a{v, e) such that

* u~
du

where ~* stands for linear equivalence. (This means a linear conjugacy and a
multiplication with a strictly positive constant.)

Let us call a(v, e) = (D/2)e the ' reduced hyperbolicity factor'. We can also evaluate
the integral G(b, v) (see §4.1)

In terms of b =\—b, vo= i}
0~T\, vi= i ' l+if:

while D = vo+vx. We develop I0(b) and 7,(6) as (see [R]):

"70= ao+ atb In

.7, = 0o + j3,fe In

For G this gives:

G= voao+ ^jSo + t^oai+^ijSiJfel

A direction calculation (based on the equations for 70, 7, in appendix 1) gives:

Hence:
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with

«(^o, vx) = -ax(v0+ vx) = -axD

We remark that /3(0,0) = n«o> 0.
This turns out to be the condition needed to prove the statements concerning the

bifurcation set in the neighbourhood of the line of saddle connections of codimension
2 (see theorem 4 of § 4.1(b)). The proof of this fact is part of a more general theorem
which will appear in [R]. Moreover the problem has been studied by Cherkas in
[C] for analytic vector fields. We hence will limit ourselves to a survey of the
complete elaboration, with emphasis on those calculations which concern our
specific problem.

A3.2. Final elaboration. Let F denote the separatrix loop (saddle connection) of
the saddle point s = (0,0) for the system

j-+Ey((j>0 + ±) + (P1-$)(l + x) + (l + x)i)~

at e = 0. We write A = (v, e). We want to study the limit cycles of XK = X^c in the
neighbourhood of F, for (?0, ^i) near (0,0) and e > 0 small. As we already calculated:

* M ^ ( l + a (A) ) iA
du dV

where a(A) = a(v, e) = (D/2)e + o(e) with D=vo+vx.
Let (u, v) denote C°° coordinates around s = (0, 0) in which {w = 0} represents

the stable separatrix, {v = 0} represents the unstable separatrix and the first quadrant
{u > 0, v > 0} represents the interior of the loop. Let a be a segment inside {v = v0, u >
0} for some v0 cutting the u-axis in (0, v0), and T a segment inside {u = w0, u>0}
for some u0, cutting the u-axis in (uo,O). We parametrize a by means of u(crn
{u = 0} = {(0, v0)}) and x by means of V(T n {v = 0} = {(u0, 0)}). We also denote by
o-, resp. T, the same segment in (x, ^-coordinates parametrized by u, resp. v.

FIGURE 20

Let us denote by DA the Dulac mapping of the saddle point from cr to T, while #A

denotes the Poincare mapping from cr to T along the regular part of the loop. We
express both mappings in terms of u and v.

v = Dx(u), v = Rx(u).
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( D A ( u ) - resp. R A ( u ) - i s the u-value of the point on T where the positive - resp. 
negative - semi-orbit of a point of a- with parameter value u cuts r for the first time.) 

Let us define A A (u) = D A ( M ) - Rx{u). Knowing that P A = D A ° R~k

x is the Poincaré 
mapping of T with respect to T (in terms of v), we see that A A (u) represents the 
distance ( P A - J ) ( i > ) in terms of u(u = Rx

i(v)). Let us define w(A) = 
( u ~ a ( A ) - l ) / a ( A ) for u > 0 . To simplify the notation w e - f o r a moment - change 
a(A) into a and w(A) into w. We now use a result which is proven in [R] and state 
it in terms of the notation introduced above. 

P r o p o s i t i o n , (i) A A (u ) = eA A (u ) . 
(ii) If A is sufficiently small, then 

-Àx(u) = ij(\) + d ( \ ) u ù ) + p(\)u + y(\)u2(o2+S(k)u2(o + ip(u, A), 

where eà(\) = a(A) is the hyperbolicity factor; rj, B, y and 8 are C°° functions in A, 

4> is C2 and is 2-flat with respect to u at u=0. (^(0, A) = dij/(0,\)/du = 0.) 

(Hi) 

- À A ( u ) = i 7 ( £ ) - ^ « In u + B(v)u + y(v)u2\n2 u + 8(v)u2 In u + tl/(u, v)+0(e), 

where eD/2 is the reduced hyperbolicity factor, TJ, B, y, 5 are C"30 functions in v, tp is 
C2 and is 2 flat with respect to u at u=0. 

From the 'perturbation lemma' in § 4.1 and in terms of § A3.1 we see that 

- À A ( u ( ò ) ) = G ( M ) + O U ) . 

(Here u(b) denotes the reparametrization on the segment cr from b to u; the minus 

sign before ÀA comes from changing b to b = l~b.) So -&(^0)(u(b)) = G(b, v), 

implying that 

G(b, i>) = r,(P)-^u(b) In u(b) + B(P)u(b) + y(P)[u(b) inu(b)]2 

+ 8(P)(u(b))2ìnu(b) + il/(u(b), P) 

and hence 

r)(v) = a 0 ( ^ o - f ^ i ) 

••*--?[>] 
> 0 + P0a2 + P,B2 = B(P)+^ | j | ( 0 ) • In 0f(O)) , 

so /?((0,0)) = n a o > 0 , (while T/(0, 0)) = 0 and D( (0 , 0)) = 0). Let us now go on with 
the study of the zeros of 

—À a (M) = TJ(A) + à(\)u(i) + /3(A)w + y(X.)u2a)2 + 8(\)u2a> + i/»(w, A), 

where rj, à, /3, y, 8 are C°°, <p is C 2 and 2-flat with respect to u in u = 0, 77(0) = 0, 

a ( 0 ) = 0 , /3(0) > 0 . As 

^(A) = a 0 ( 5 0 - ^ . ) + O ( e ) , 

à ( A ) = | ( 5 0 + v , ) + O ( f i ) , 
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for sufficiently small e > 0, we may as well describe the number of zeros of AA(u)
in terms of (a, rj) near (0,0) instead of (v0, ?,) near (0, 0). Put

£A = d(A)uw + /3(A)w + y(A)w2w2+S(A)«2w+ (£(«, A),

then -A A (K) = 0 « & = -T}(A).

Let / denote the derivative of a function f{u) with respect to u.

= io — u " = (1 — a)a> — 1 (since u ° =

(uV) = o(l) whenever i>2 andjsO.

a = ed and we take e > 0. So

(i) Case d > 0. x a - 1 > 0. Because of our hypotheses /3(0) > 0 and d(0) = 0 we see
that

3A>0, 3U>0, 3 £ > 0 such that

Ve e ]0, E[ and V(a, u) e [0, A] x [0, [/]: fx > 0.

(Indeed for d > 0: fA -» oo when u -* 0; for a = 0: Â -»/3 when u -» 0.)

a > 0 n a = 0

FIGURE 21

For 7j> M > 0 is solution of &(") =

solution of &(u) = -•»}.

The bifurcation diagram for d > 0 is:

0 cycles

1
1 stable cycle

FIGURE 22

For each d > 0 fixed we have the creation of 1 stable limit cycle when rj goes from
positive to negative values; {17 = 0, d > 0} is a half line of saddle connections with
non-zero divergence at the saddle point. (Remark: the cycle is a stable one since
3(AA(u))/dw<0 at the fixed point.)
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410 F. Dumortier, R. Roussarie and J. Sotomayar 

(ii) Case â < 0. 

(u2co ) = (2-2a)ucû2-2uco, 

(u o>) = (2 — a)uw — u. 

Hence 

& = - ( 1 - a ) ( M ~ a - l ) + ^ - 5 + y [ ( 2 - 2 a ) M « 2 - 2 M o ) ] + 5 [ (2 -a )Mw-M]+i / ; . 
e 

As ww2 = ( l - 2 a ) w 2 - 2 w : 

^ = - - ( l - a ) M - a - 1 + y [ f 2 - 2 a ) [ ( l - 2 a ) w 2 - 2 w ] - 2 ( l - a ) a > + 2] 
e 

+ 5 [ ( 2 - a ) ( l - a ) w - ( 2 - a ) - l ] + <£ 

¿1 = - - ( l - a ) w " ^ a + 2 - y ( l - a ) ( l - 2 a ) w 2 + ( l - a ) [ - 6 f + ( 2 - a ) 5 ] w 
e 

+ [ 2 y + ( a - 3 ) S ] + <£ 

We can find a certain bounded function O ( l ) so that: 

^ = - - ( l - a ) u - 1 - a + W

2 0 ( l ) 
e 

From this we will prove that 3 A ' > 0 , 3 t / ' > 0 , 3 £ ' > 0 such that for all e e ] 0 , E[ 
and for all ae]—A',0[ the graph of £A on [0, U'] looks like: 

FIGURE 23 

i.e. uA is a unique strict minimum: £ A (u A ) = 0, f ( u A ) > 0, £A > 0 on ]wA, {/'] and fA < 0 
on [0, u A [ with fA -» -oo for u -* 0. 

Therefore, consider: 

— ?A - - „..2..i+« + C , v l ) - . 2„1-|5| 

u - - l 1-»'"' „ , 
<a = = —•—:—s|ln u\ 

a \a] 
for U'< 1 and £ ' sufficiently small. Choosing some 5 > 0, taking - S / 2 < a < 0 , and 

I/' sufficiently small: 

—2^ ' „_ • i" l . l -« /2+ O ( l ) Q( l ) . 
w 2 ' A ( l n i i r u 
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Take M > 0 so that O ( l ) s - M on [0, l / ' ]x[-S,0], then:

—A^M if^>2M « i
\2M)

Let us write M S C • |a|M with C = ( l / 2 M ) 1 / a " 6 ) and /i = 1/(1 - 5). For these values
of C/', 5, M let us consider & on [C|a|M, f/']:

As a <0, the function aw = u'a -1 = e ~ a l n u - 1 j s strictly increasing and negative,
so that for all we[C|a|M, U']:

And

Hence

f A =( l - a )O |a | l n (C( | a r ) ) + j8 -a

For t/' sufficiently small: |o(l)|s/3/3; and for A' sufficiently small:

| - a + ( l - a )O( | a | l n (C |dn ) |< /3 /3 ,

implying that

(all this independent of the values of e).
As a conclusion we see that for — A ' < d < 0 fixed, there is a bifurcation value

(corresponding to a generic coalescence of limit cycles) for

This bifurcation occurs at 17 = T(a, e); F is a C°° function for a < 0 because of the
implicit function theorem applied to the Poincare mapping of the C°° vector field
XA in the neighbourhood of the semi-stable limit cycle.

FIGURE 24
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Taking T(0, e) = 0 we will now say something about the behaviour of T(a, s) in the
neighbourhood of a = 0:

wA isgivenby£A(uA) = 0,

i.e.

O | a | « ( w A ) =
1 — a

Now

- a I — a

And as |d||ln MA| >|d|<u(nA)>/3/2 for A' and U' sufficiently small we see that

MA s e ^ / 2 | a | .

Hence

meaning that T is oo-flat for d=0.

Final remark. In some neighbourhood Vx [0, £'] of (d, rj, e) = (0,0,0), the surface
{rj = 0} represents a C°° surface of bifurcation. Also r) = T(a, e) (with T(d, 0) denned
as the graph of the line / in § 4.1(a)) represents a surface of bifurcation. We proved
that T is C°° outside (0,0)x[0, £'], while along (0,0) x[0, £'] the surface is oo-
tangent to {rj = O} in the sense that there exists some C°° flat function f(d) with
0<T(d, e )<f(d) . We do not however know if T is C°°.

REFERENCES

[Al] V. Arnol'd. Lectures on bifurcations in versal families. Russian Mathematical Surveys V, 26,
1971.

[A2] V. Arnol'd. Chapitres Supplementaires de la Theorie des Equations Differentielles Ordinaires. Ed
Mir, Moscow, 1980.

[A3] V. Arnol'd. Methodes Mathematiques de la Mecanique Classique. Editions Mir, Moscow, 1976.
[Bl] R. Bogdanov. Versal deformations of a singular point of a vector field on the plane in the

case of zero eigenvalues. Seminar Petrovski, 1976. Se/. Math. Sov. 1(4), 1981.
[B2] R. Bogdanov. Bifurcation of a limit cycle for a family of vector fields on the plane. Seminar

Petrovski, 1976. Sel. Math. Sov. 1(4), 1981.
[C] L. A. Cherkas. Structure of a successor function in the neighbourhood of a separatrix cycle

of a perturbed analytic autonomous system in the plane. Translated from Differential' nye
Uravneniya 17, No. 3, pp. 469-478, March, 1971.

[D] F. Dumortier. Singularities of Vector Fields. Monografias de Matematica 32, I.M.P.A., Rio de
Janeiro, 1978.

[D, R] F. Dumortier & R. Roussarie. Etude Locale des champs de vecteurs a parametres. Asterisque
59-60, Societe Mathematique de France, 1978, 7-42.

[I] Yu. S. II' Jashenko. The multiplicity of limit cycles arising from perturbations of the forms
w' = P2/ Qi of a Hamilton equation in the real and complex domain. Amer. Math. Soc. Transl.
(2) 118, 1982; Translation from: Trudy Sem. Petrovsk. 3, 1978, 49-60.

https://doi.org/10.1017/S0143385700004119 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004119


3-parameter families of vector fields 413

[K, H] N. Kopell & L. N. Howard. Bifurcations and trajectories joining critical points. Advances in
Mathematics 18, 1975, 306-358.

[M] B. Malgrange. Ideals of Differentiate Function. Oxford Univ. Press, Oxford 1966.
[R] R. Roussarie. On the number of limit cycles which appear by perturbation of a separatrix loop

of planar vector fields. To be published in Bol. da Soc. Mat. Bras.
[Se] A. Seidenberg. A new decision method for elementary algebra. Ann. of Math. 60 (1954), 365-374.
[S] J. Sotomayor. Generic one-parameter families of vector fields on two dimensional manifolds.

Publ. Math. I.H.E.S. 43, 1974.
[Tl] F. Takens. Unfolding of certain singularities of vector fields. Generalized Hopf bifurcations.

J. Diff. Eq. 14, 1973, 476-493.
[T2] F. Takens. Forced oscillations and bifurcations. In Applications of Global Analysis I, Communi-

cations of Math. Inst. Rijksuniversiteit Utrecht 3, 1974.
[T3] F. Takens. Singularities of vector fields. Publ. math. I.H.E.S. 43, 1974.

https://doi.org/10.1017/S0143385700004119 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004119

