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1. Introduction. Recently there have appeared papers ([7], [8]; also see [9]) in
which integral equations with kernels involving the confluent hypergeometric function

i F i ( a ; c ; z ) = A w : ^ ' where {a)n=

have been studied. These equations are mainly Volterra equations of the first kind except
that they have infinite domain (0, °°). The rest are of the related type with integrals over
(x, °°) instead of (0, x); and all are convolution equations.

The equation solved in this paper is a Fredholm equation of the first kind except for
infinite domain:

f ^ t = ̂ \ forallx>0,
T{a)

where / is the unknown function and the parameters a and c have positive real parts.
Formally the relationship of this equation to those in [7] and [8] is similar to that of the
equation in [5] to those in [3] and [4]. However, the equations in [3], [4] and [5] have
Gauss's hypergeometric function 2Fi in place of the confluent function.

Preliminary work on the Weyl fractional integral and derivative is set out in §§2 and 3.
This augments the treatments given in [4] and [6], neither of which is adequate for the
present purpose.

2. Weyl Fractional Integrals. We use the customary definition

J"f(x)=\ r / . f(t)dt=\ — f(x + t)dt, (1)
Jx r(v) I T{v)

where re v > 0 and the integral is Lebesgue. But, following Lighthill [3] and Miller [5], we
restrict / to belong to a class E defined by:

(a) / is a complex-valued infinitely diflferentiable function on (0, °°),
(b) xkfr)(x)-+0 as x-»°° for each fixed k and r, r>0 .

Thus if / e E and n is a positive integer, then fn) € E.

LEMMA 1. If feE,Tev>0, n is a positive integer and D = d/dx, then J"f(x), DnJvf{x)
and J"Dnf(x) exist for all x >0 and

DnJ"f{x) = JvDnf{x).

Proof, (i) For fixed [a, ft]c(0, oo); f is continuous in [a, b + l]; so

Ir-VCx + OI^Mr1-1 for a<x<b and 0<f<l .
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The improper integral

f tv-xf{x +1) dt

is therefore absolutely and uniformly convergent on a s x < i .
A similar argument applies if a derivative f-r) replaces /. So

—
dx ^ f

for a < x < 6 , and consequently for all x>0 .

(ii) There is T > 1 such that |sre"+1/(s)|<l for all s>T. So

| f~7(x + 01 = r2r-+1|/(x + 01 s r\x + 0re"+1l/(x + 01 < r 2

whenever x > 0 and t > T. So the infinite integral

tv f(x + 0 dt

is absolutely and uniformly convergent on x >0. Similarly when / is replaced by fr\ Thus
as in (i) we obtain, for all x > 0,

— V j r "(x + 0 dt = t"~lfr\x + 0 dt.
dx Jt J,

(iii) These integrals, being absolutely convergent, can be replaced by Lebesgue
integrals. Thus we have existence of J"f{x), and

dx JL X I
for all x > 0, and the lemma follows.

THEOREM 2. Ifrev>0andfeE then JvfeE.

Proof. Requirement (a) for Jvf to be in E follows from Lemma 1. To prove that
requirement (b) is satisfied, it is enough to consider positive k. Given k > 0 and e > 0,
there is X > 0 such that

x k + r e v + 1 | /W|<e whenever x>X.

II, Jo (x + 0r e"+ 1

v e v + 1edr if x>X,

— du by t = xu,

io° re v — 1

7 \—71 du,

this integral being convergent. Thus xkJ"f{x)^>0 as x-»<».

=« ^rev—1
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Similarly with / replaced by fr). So, using Lemma 1,

xkDTf(x) = xkrDrf(x)-^O as x-^°°.

THEOREM 3. If re ju, > 0, re v > 0 and feE, then for all x > 0

Proof. By Theorem 2, J"-feE, J"J»f&E, and J»+vfeE; so both sides of the desired
equation exist for all x > 0.

= r0i) f

= f r-1

= f f^

= f / (u + x ) d

this proves the theorem provided that the change of order of integration in the second-last
step is justified. For this we prove absolute convergence of the repeated integral as
follows. Let g(s) = \f(s)\. We have

,00 , „ ,=» , u

| / ( u + x ) | d u \(u-t)* V 1 | d f = g(u + x)du\ (u-t)Te* t r e " dt

T(re fi)r(re v)
. „ sg(x + u)du.

I (re fi + re v) ^
To prove the last integral convergent, we have that g(x + u) is a continuous function of u
in (-x,00), and so in [0,00) since x>0. So g(x + u) is bounded on 0 ^ u < l , and the last
integral is convergent at the lower terminal. It is also convergent at the upper terminal
because, for fixed x > 0,

u-2(x + u)reti+rei'+1|/(x + u)| = o(u-2) as u ^ ~ .

This proves the required absolute convergence.

LEMMA 4. If feE, re v>0, n is a positive integer and D = d/dx, then for all x > 0

Proof. This is obvious for n = 0, the existence being assured by Lemma 1. Assume it
true for n = 1 , . . . , r. The nth derivative exists for all n by Lemma 1, and by Theorem 3

(-D)r+1/v+r+1/(x) = (-D)r+1/v+r/7(x) = (-
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by the assumed case n = r, since J 1 / G E by Theorem 2. So, by Theorem 3 again, and then
by the assumed case n = 1,

(-D)r+1r+r+1f(x) = -DJv+1f{x) = rf(x), as required.

3. Weyl Fractional Derivatives. Our definition of ath derivative is suggested by
Lemma 4; it is

J-af(x) = (-D)"J"-af(x), (2)

where re a > 0 and n is any integer such that n > re a.
The right side exists for each x > 0 and integer n>rea , by Lemma 1 or Theorem 2.

But we need to prove consistency—that it is the same for all such n.

LEMMA 5. If feE, re 02O and x>0 then (-D)"J"~af(x) is the same for all integers
n>rea; andJ~afeE.

Proof, (i) Let m be the least such integer n, and let n be any integer greater than m.
Then by Lemma 4 with v and n replaced by m-a and n-m,

{-D)nJ"-af(x) = (-D)m(-D)n~mJn-af(x) = (-D)mJm~af(x).

(ii) Using the definition and Lemma 1,

J-af(x) = (-D)nJn'af(x) = (-l)nJn-aDnf(x). (3)

Since DnfeE, Theorem 2 gives that Jn~aD"feE; consequently J'afeE, as required.

THEOREM 6. If feE and n is a positive integer or zero, then for all x>0 we have

Proof. For the case n = 0 the definition gives

f(t)dt = f(x). (4)

For n > 0 the definition, with a and n replaced by n and n + 1, gives

rnf(x) = (-D)"+1/("+1)-n/(x)

the last step using the calculation made in (4).

LEMMA 7. // re a > 0, re b > 0 and feE, then for all x > 0

J-bJ-af(x) = ra-bf(x).

Proof. Let m and n be positive integers such that m > re a and n > re b. By the
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definition, and (3),

j-bj-af = (-D)nJ"-braf

= (-D)"J"~bJm~a(-D)mf

= (-D)"/m +"-a"b(-D)m/ (5)

= (-D)n(-D)mJm+n-a'bf (6)

For (5) we have used Theorem 3 and the fact that (-D)mfeE. For (6) we have used
Lemma 1. The first and last steps use Lemma 5 implicitly.

THEOREM 8. If a and b are any complex numbers, and feE, then for all x > 0 we have
J"Jaf(x) = Ja+bf(x).

Proof, (i) Suppose that re a < 0 < r e b and let m be an integer such that m >re(-a).
By Theorem 2,Jm+afeE; so, by definition, Lemma 1 and Theorem 3,

jbjaf = jb(-D)mJm+af = (-D)mJbJm+af = (-D)mJm+a+bf.

If re(a + b) > 0 the last expression is equal to Ja+bf, by Lemma 4; while if re(a + 6)^0 the
same is true by definition, since m > r e ( - a ) > r e ( - a - b ) .

(ii) Suppose that r e a > 0 > r e b , and let n be an integer such that n>re(-fe). By
definition and Theorem 3,

jbj"f = (-D)nJn+bJaf = (-D)nJ"+b+af.

If re(a + b) > 0 the last expression is equal to Ja+bf by Lemma 4; while if re(a + b) < 0 the
same is true by definition, since n>re(— b)>re( — a — b).

(iii) The remaining cases are covered by Theorem 3 and Lemma 7:

4. An Integral Transform. The transform occurring in our integral equation in-
volves the confluent hypergeometric function lF1, defined by

for all complex a, c, z with c^O, - 1 , - 2 , As usual (a)0= 1 and

-. (8)

LEMMA 9. // a, c, k, z are complex, re fc>re c > 0 and t>0, then

•' (t-s)k-c~1se-1 . w f*"1 . , .
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Proof. Provided the term by term integration at (9) is correct, the left side is equal to

• ds (9)
T(c)

ds
r(fc-c) T(c + n)

(10)

To justify the term by term integration it is enough to show that (9), or equally (10),
is convergent when every factor is replaced by its modulus. For this, write a, y, K for the
real parts of a,c,k; then

\k— c — 1 _c+n —1

r(fc-c) T{c + n)
ds

nl n! |r(fc-c)||r(c + n
n) r ( f -

= O(na~K\zt\nln\).

This proves the required convergence, and so establishes the lemma. The restriction that
« > 7 > 0 ensures convergence of the integral in (10), and is also used similarly in the
justification.

THEOREM 10. If a,c,k are complex, re k>re c>0 , x>0 , feE and fk"70)eL(0,1),
then

f ^ 1 F 1 ( a ; k ; -

Proof. Using Lemma 9 with z = - x, the left side is formally

'(t-s) k-c~1se-1

c - 1c 1 f0off-s')

1F1(a;c;-xs)ds\ \ y
J

lc"c~1

f(t)dt (12)

and this by (1) is equal to the right side. It remains only to prove the existence and
equality of (11) and (12); and these are assured if we prove the absolute convergence of
(11). The inner integral in (12) exists a.e. by this argument, but everywhere by Lemma 1.

By [1:6.13(3)], and by continuity,

1F1(a;c;-xs) =

for xs>\,

for |xs|<l
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If re a s 0, this function is O(l) for all s > 0, and consequently the absolute integral
corresponding to (11) is majorized by

J
rt rt_y-y-i y-i1/(01 dt V ^ w^ ds =

o 4 T(K-Y) r(y)
dt'

where 7 and K again denote the real parts of c and fc. The last integral is finite; for the
part of it on (0,1) is finite by hypothesis, and the part on (1,°°) is finite because

/(0(K-1 = o(r2) as t-»oo. (14)

Now suppose that a = r e a < 0 . Write m for min{f, l/x}. The absolute integral
corresponding to (11) is majorized, using (13), by

(t-s)"'"*'1 sy~*V (xs)"a ds(m(t-sY~y~1 s'*'1 C°° (' (t-s)"'"*'1 sy~*

1/(01 dt I u s) Tnds+\ 1/(01 dt V ^ ? n
^ T ( K - 7 ) T(7) JUx Jm T ( K - 7 ) T(7)

Jt L T ( K - 7 ) T(7) r(7) J1/x ^

f°° T"1 TC-v-a) f°° (K-c-i

= I 1/(01 f n dr + x - - ^ P 1/(01 ̂  : dt.
Ĵ  T(K) T(7) J1/x T(K-a)

Of these two integrals, the former is convergent as in the preceding paragraph, and the
latter as in (14), since feE and so

f(t)tK~a~l = o(C2) as *->«>.

Thus (11) is absolutely convergent and the proof is complete.

REMARK. The integrability hypothesis in Theorem 10 may seem a regrettable stray.
But it is inevitable for the existence of the integral on the left of the theorem, since the
integrand is asymptotic to f(t)tk~1/T(k) as r—»0.

LEMMA 11. / / re a>0, re c>0 , feE, and either
(i) re c>re a and r^/COel^O, 1), or
(ii) rea>rec and ta-1/c"7(0eL(0,1), or
(iii) re fc > max{re a, re c} and r^^^/CO e ̂ (0, D,

then for all x > 0

f ~1F1(a;c;-xt)f(t)dt=\ e~"^Jc~af(t) dt. (15)
Jo 1 \c) h l \a)

Proof, (i) In Theorem 10 replace fc and c by c and a.
(ii) In Theorem 10 replace fc and / by a and Jc~af. This fractional derivative exists in

E by Lemma 5. The left side in Theorem 10 becomes the right side of (15); and the right
side in Theorem 10 becomes

Jo He)1F1(a;c;-x0J°-eJe-o/(0dt,
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which is the left side of (15) by Theorem 8 (actually by case (i) of the proof of that
theorem) and (4).

(iii) In Theorem 10 replace / by Jc~kf, which exists in E by Lemma 5. This gives

f ^ ^ ( a ; k; -xt)Jc~kf(t) dt=\ ^-.F^c; -xt)f(t) dt
Jo i w Jo r(c)

because Jk~cJc~kf = J°f = f by Theorem 8 (again by case (i) of its proof) and (4).
In Theorem 10 replace c and / by a and Jc~kf. This gives

(16)

^ [\ dt. (17)
Jo T(fc) Jo T(a)

Equating the right sides of (16) and (17) we obtain (15), because Jk-aJc~kf = Jc~af by
Theorem 8.

REMARK. Cases (i) and (ii) of Lemma 11 may be regarded as limiting cases of case
(iii), with k = c for case (i) and k = a for case (ii). A similar remark may be made about
Theorem 12.

5. Solutions of the Integral Equation. We seek functions / satisfying

f ^-.1F1(a;c;-xt)f(t)dt = ̂ \ for all x>0, (18)
Jo l(c) H«)

the integral being Lebesgue. The factor t0"1, and the gamma functions, could of course be
absorbed into the unknown function /.

THEOREM 12. Let re a > 0, re c > 0, and let g be the Laplace transform of a function
g^geE. Then

f(x) = Ja-cx1-a£-1g(x) (19)

is a solution of (18) in E if either
(i) rt Ore a and xc-1Ja-cx1-a^'1g(x)eL(0,l), or (20)

(ii) re a > re c, or
(iii) there is k such that re k > max {re a, re c} and

Further, under (i) this is the only solution of (18) in E; under (ii) if is the only solution
of (18) in E satisfying

x^'f-WeLtCl); (22)

under (iii) it is the only solution of (18) in E satisfying

xk-1 / c - k /U)eL(0, l) . (23)

Proof. It is easily verified, from definition and Leibniz's rule, that the product of a
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power with a function in E is also in E; we use this fact frequently in this proof. In
particular, x1~ai?~1g(x)e£. By Theorem 2 or Lemma 5, / defined by (19) exists in E.

(i) Suppose re c>re a and (20) holds. Then xc~xf{x) is in L(0,1), and Lemma ll(i)
gives

; -xt)f(t) dt =
Y(a)

T(a) g W T(a)'

using (19) and Theorem 8 (case (i)). So / is a solution of (18) in E.
If there were more than one solution of (18) in E, let h be the difference of two of

them; then heE and

tc-\F1(a;c;-xt)h{t)dt = O, forallx>0. (25)

Since the integrand is asymptotic to (c~1h(0 as t—*0 and the integral is Lebesgue,
{'"^(OeLCO, 8) for 8 sufficiently small; and since r 0 " 1 ^ ) is continuous in (0,1], it is also
in L(0,1). So by Lemma ll(i), and (25), the Laplace transform of ta~1/c~ah(t) vanishes.
By [10: Theorem 6.3 p. 63] this function ta~lJc~ah(t) is zero almost everywhere in (0,=°),
and hence so is Jc~"h(t). Being in E by Theorem 2, Jc~ah(t) is zero everywhere.

By Theorem 6 and Theorem 8 (case (ii)),

h(x) = J°h(x) = J"-cJc-ah(x) = Ja~c0(x), (26)

where 0 is the zero function. Let n be an integer such that n > r e ( c - a ) . By (2), Lemma 5
and (1),

h(x) = Ja-c0(x) = (-D)nJn+a-c0(x) = 0

for all x > 0, which proves the uniqueness of solutions of (18) in E.
(ii) Suppose re a > re c. By (19) and Theorem 8 (case (ii)),

x a - 7 c ' 7 ( i ) = x a - 1 J c - a J a - c x 1 - a i r Jg(x) = xa-1J°x1-aif-1g(x) = i T ^ x ) , (27)

using also Theorem 6. Now Z£~xgeL{Q, 1) since it has a Laplace transform; so, with (27),
Lemma ll(ii) gives equations (24). Thus / is a solution of (18) in E; and further / satisfies
(22).

Let h be the difference of two solutions of (18) which are in E and also satisfy (22).
Then heE, (25) holds, and also xa"1/c-ah(x)6L(0,1). So by Lemma ll(ii), and (25), the
Laplace transform of ta~1/c~ah(O vanishes. As in (i), Jc~ah(t) is zero almost everywhere;
and, being in E by Lemma 5, it is zero everywhere.

By Theorem 6 and Theorem 8 (case (i)), (26) holds. But since r e (a -c )>0 , the
definition (1) gives that Ja~c0(x) = 0, and so by (26) h(x) = 0. This proves the desired
uniqueness.

(iii) Suppose there is k such that re fc>max{re a, re c} and (21) holds. By (19) and
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Theorem 8,

v Jc — 1 jc—k (28)

using (21); so, by Lemma ll(iii), equations (24) hold. So / is a solution of (18) in E; and
further / satisfies (23).

Let h be the difference of two solutions of (18) which are in E and also satisfy (23).
Then heE, (25) holds, and also xk~1Jc-kh(x)eL(0,1). By Lemma ll(iii), and (25), the
Laplace transform of «a"1Jc"ah(t) vanishes. As in (i), Jc~ah(t) is zero almost everywhere;
and, being in E by either Theorem 2 or Lemma 5, it is zero everywhere.

Finally h is proved to be the zero function, by the method of (i) associated with (26) if
re (c -a )>0 , and by the method of (ii) associated with (26) if r e (c -a )<0 .
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