THE ASYMPTOTIC BEHAVIOUR OF EQUIDISTANT PERMUTATION ARRAYS

S. A. VANSTONE

1. Introduction. An equidistant permutation array (EPA) $A(r, \lambda ; v)$ is a $v \times r$ array defined on a set V of r symbols such that every row is a permutation of V and any two distinct rows have precisely λ common column entries. Define $R(r, \lambda)$ to be the largest value of v for which there exists an $A(r, \lambda ; v)$. Deza [2] has shown that

$$
R(r, \lambda) \leqq \max \left\{n^{2}+n+1, \lambda+2\right\}
$$

where $n=r-\lambda$. Bolton [1] has shown that

$$
\begin{equation*}
R(r, \lambda) \geqq 2+\left\lfloor\frac{\lambda}{\left\lceil\frac{n}{3}\right\rceil}\right\rfloor . \tag{*}
\end{equation*}
$$

In this paper, we show that equality holds in $\left(^{*}\right)$ for $\lambda>\lceil n / 3\rceil\left(n^{2}+n\right)$. In order to do this we require several more definitions.

An (r, λ)-design D is a collection B of subsets (called blocks) of a finite set V of elements (called varieties) such that any two distinct elements of V are contained in precisely λ common blocks and every variety is contained in exactly r blocks of D. An (r, λ)-design D is said to be resolvable or contain a resolution R if the blocks of D can be partitioned into classes (called resolution classes) such that every variety of D is contained in precisely one block of each resolution class. We say that an (r, λ)-design D is orthogonally resolvable (denoted OD (r, λ)) if D contains resolutions R and R^{\prime} and $R_{1}, R_{2}, \ldots, R_{r}$ and $R_{1}{ }^{\prime}, R_{2}{ }^{\prime}, \ldots, R_{r}{ }^{\prime}$ are the resolution classes of R and R^{\prime} respectively such that for all i and $j(1 \leqq i, j \leqq r) R_{i}$ and R_{j}^{\prime} have at most one labelled block in common. (Note: We consider all blocks of D as labelled so that a given subset can occur repeatedly as distinct blocks.)

The following result of Deza, Mullin and Vanstone appeared in [3].
Theorem 1.1. There exists an $A(r, \lambda ; v)$ if and only if there exists an $\mathrm{OD}(r, \lambda)$-design having v varieties.

Theorem 1.1 shows the connection between EPAs and (r, λ)-designs. Using results on (r, λ)-designs, we will deduce asymptotic results for $R(r, \lambda)$.

Let D be an (r, λ)-design defined on a set V of v symbols. A block of D is said to be complete if it contains all of the varieties. D is said to contain a complete set of singletons if D contains v blocks each of size one whose union is V. An (r, λ)-design which contains λ complete blocks is called trivial. Let $v_{0}(r, \lambda)$

Received July 27, 1977 and in revised form, April 4, 1978.
be the smallest positive integer such that if D is any (r, λ)-design on $v>v_{0}(r, \lambda)$ varieties then D must be trivial. It has been shown [2] that

$$
v_{0}(r, \lambda) \leqq \max \left\{\lambda+2, n^{2}+n+1\right\} .
$$

For $\lambda>n^{2}+n-1$, Mullin [5] has proven that any (r, λ)-design with $v \geqq v_{0}(r, \lambda)$ varieties only has block sizes $1, v-1$ and v. Such designs are called near-trivial. We will make use of this result in the following section.
2. Main result. Let D be an $\mathrm{OD}(r, \lambda)$-design having $v>n^{2}+n+1$ varieties for $n \geqq 3$ and such that v is a maximum. Since D is an (r, λ)-design, Mullin's result implies that D is near-trivial. Hence, D contains only blocks of size $1, v-1$, and v. Call the blocks of size $v-1$ in D the body of the design. Clearly, the body of the design can be partitioned into t copies of all $(v-1)$ subsets of a v-set for some non-negative integer t.

Suppose D has no blocks of size $v-1$. Then D must be trivial and must contain at least v complete sets of singletons if it is to be orthogonally resolvable. This is impossible since $v>n$. We then deduce that $t \geqq 1$.

Since D is an $O D(r, \lambda)$-design, it must be resolvable and thus, for each component of the body there must be a complete set of singletons to form v resolution classes of D. (This follows since each block of cardinality $v-1$ in the body requires a singleton block to form a resolution class). Hence, D must have at least t complete sets of singletons and we easily deduce that $t \leqq\lfloor n / 2\rfloor$ where $\lfloor x\rfloor$ is called the floor function of x and denotes the greatest integer less than or equal to x. Denote these t complete sets of singletons by $S_{1}, S_{2}, \ldots, S_{t}$. Suppose D contains s other complete sets of singletons denoted $T_{1}, T_{2}, \ldots, T_{s}$ and these are resolution classes in a resolution R of D.

Each component of the body of the design and each complete set of singletons contributes one to n. However a complete block contributes zero to n. Thus, $n=2 t+s$.

Lemma 2.1. For $S_{1}, S_{2}, \ldots, S_{t}, T_{1}, T_{2}, \ldots, T_{s}$ and D as defined above we have $s \leqq t$.

Proof. Since D is an $\mathrm{OD}(r, \lambda)$-design, it contains a second resolution R^{\prime} which is orthogonal to R. R^{\prime} must contain $T_{1}{ }^{\prime}, T_{2}{ }^{\prime}, \ldots, T_{s}{ }^{\prime}$ complete sets of singletons and $S_{1}{ }^{\prime}, S_{2}{ }^{\prime}, \ldots, S_{t}{ }^{\prime}$ complete sets of singletons associated with the body of D.

Consider $T_{i}{ }^{\prime}, 1 \leqq i \leqq s . T_{i}{ }^{\prime}$ can contain at most s blocks from $T_{1}, T_{2}, \ldots, T_{s}$ (at most one from each). Thus $T_{i}{ }^{\prime}$ contains at least $v-s$ singletons from $S_{1}, S_{2}, \ldots, S_{t}$. For this to be possible, for all $i, 1 \leqq i \leqq s$,

$$
s(v-s) \leqq t v
$$

This implies

$$
\begin{align*}
& s \leqq \frac{v-\sqrt{v^{2}-4 t v}}{2} \text { or } \tag{1}\\
& s \geqq \frac{v+\sqrt{v^{2}-4 t v}}{2}
\end{align*}
$$

Since $t \leqq\lfloor n / 2\rfloor$, it is easy to see that

$$
\frac{v-\sqrt{v^{2}-4 t v}}{2}<t+1 .
$$

Moreover, it readily follows that

$$
\left\lfloor\frac{v-\sqrt{v^{2}-4 t v}}{2}\right\rfloor=t
$$

Since $n=2 t+s$, and $t \geqq 1$,

$$
s<n
$$

Thus, if (2) is true

$$
\frac{v \pm \sqrt{v^{2}-4 v t}}{2}<n
$$

which is impossible since $v>n^{2}+n+1$. This completes the proof of the lemma.

Now, if we let $S_{1}{ }^{\prime}=T_{1}, S_{2}{ }^{\prime}=T_{2}, \ldots, S_{s}{ }^{\prime}=T_{s}, S_{s+1}{ }^{\prime}=S_{1}, \ldots, S_{t}{ }^{\prime}=$ $S_{t-s}, T_{1}{ }^{\prime}=S_{t-s+1}, \ldots, T_{s}{ }^{\prime}=S_{t}$ then it is easily seen that R and R^{\prime} are orthogonal resolutions. Since $t \geqq s$ and $t+s \geqq 2$, the above is always possible.

By Lemma 2.1, we have

$$
n=2 t+s \leqq 3 t
$$

which implies that $t \geqq n / 3$. Since t must be an integer

$$
t \geqq\lceil n / 3\rceil
$$

where $\lceil x\rceil$ is called the roof function of x and means the least integer greater than or equal to x. It now follows that
(3) $\lceil n / 3\rceil \leqq t \leqq\lfloor n / 2\rfloor$.

If D contains c complete blocks then

$$
\begin{align*}
r & =t(v-1)+n-t+c \text { and } \tag{4}\\
\lambda & =t(v-2)+c
\end{align*}
$$

where $c<t$. The restriction that $c<t$ follows from the fact v is maximum. If $c>t$ then it is possible to construct an $\mathrm{OD}(r, \lambda)$-design having more than v varieties.

Since $r=n+\lambda$, (4) becomes
(5) $v-2=(\lambda-c) / t=\lfloor\lambda / t\rfloor$.

Since v is a maximum, (5) implies that t must be a minimum and from (3) we get that $t=\lceil n / 3\rceil$. Therefore,
(6) $v=2+\left\lfloor\frac{\lambda}{\left\lceil\frac{n}{3}\right\rceil}\right\rfloor$.

But (6) is true whenever $v>n^{2}+n+1$ which implies that

$$
\lambda>\lceil n / 3\rceil\left(n^{2}+n\right)
$$

This proves the following theorem.
Theorem 2.1. $R(r, \lambda)=2+\left\lfloor\frac{\lambda}{\left\lceil\frac{n}{3}\right\rceil}\right\rfloor$
whenever $\lambda>\lceil n / 3\rceil\left(n^{2}+n\right)$.
3. Conclusion. Theorem 2.1 provides an asymptotic evaluation of $R(r, \lambda)$. Thus, for any value of n, there are only a finite number of values of $R(r, \lambda)$ to determine. This appears to be a difficult problem. For some of the known results in this area, the reader is referred to $[\mathbf{4 ; 6}$; and 7$]$.

References

1. D. W. Bolton, unpublished manuscript.
2. M. Deza, Matrices dont deux lignes quelconques coincident dans un nombre donne de positions communes, Journal of Combinatorial Theory, Series A, 20 (1976), 306-318.
3. M. Deza, R. C. Mullin and S. A. Vanstone, Room squares and equidistant permutation arrays, Ars Combinatoria 2 (1976), 235-244.
4. K. Heinrich, J. van Rees, and W. D. Wallis, A general construction for equidistant permutation arrays, (preprint).
5. R. C. Mullin, An asymptotic property of (r, λ)-systems, Utilitas Math, 3 (1973), 139-152.
6. P. J. Schellenberg, and S. A. Vanstone, Some results on equidistant permutation arrays, Proc. 6th Manitoba Conference on Numerical Math (1976), 389-410.
7. S. A. Vanstone, Pairwise orthogonal generalized Room squares and equidistant permutation arrays, Journal of Combinatorial Theory, Series A, 25 (1978), 84-89.

St. Jerome's College,
University of Waterloo, Waterloo, Ontario

