THE ASYMPTOTIC BEHAVIOUR OF EQUIDISTANT PERMUTATION ARRAYS

S. A. VANSTONE

1. Introduction. An equidistant permutation array (EPA) $A(r, \lambda; v)$ is a $v \times r$ array defined on a set V of r symbols such that every row is a permutation of V and any two distinct rows have precisely λ common column entries. Define $R(r, \lambda)$ to be the largest value of v for which there exists an $A(r, \lambda; v)$. Deza [2] has shown that

$$R(r, \lambda) \leq \max \{n^2 + n + 1, \lambda + 2\}$$

where $n = r - \lambda$. Bolton [1] has shown that

(*)
$$R(r, \lambda) \ge 2 + \left\lfloor \frac{\lambda}{\left\lceil \frac{n}{3} \right\rceil} \right\rfloor$$

In this paper, we show that equality holds in (*) for $\lambda > \lceil n/3 \rceil (n^2 + n)$. In order to do this we require several more definitions.

An (r, λ) -design D is a collection B of subsets (called *blocks*) of a finite set Vof elements (called *varieties*) such that any two distinct elements of V are contained in precisely λ common blocks and every variety is contained in exactly r blocks of D. An (r, λ) -design D is said to be *resolvable* or *contain a resolution* R if the blocks of D can be partitioned into classes (called *resolution classes*) such that every variety of D is contained in precisely one block of each resolution class. We say that an (r, λ) -design D is *orthogonally resolvable* (denoted OD (r, λ)) if D contains resolutions R and R' and R_1, R_2, \ldots, R_r and R_1', R_2', \ldots, R_r' are the resolution classes of R and R' respectively such that for all i and j ($1 \leq i, j \leq r$) R_i and R_j' have at most one labelled block in common. (Note: We consider all blocks of D as labelled so that a given subset can occur repeatedly as distinct blocks.)

The following result of Deza, Mullin and Vanstone appeared in [3].

THEOREM 1.1. There exists an $A(r, \lambda; v)$ if and only if there exists an OD (r, λ) -design having v varieties.

Theorem 1.1 shows the connection between EPAs and (r, λ) -designs. Using results on (r, λ) -designs, we will deduce asymptotic results for $R(r, \lambda)$.

Let D be an (r, λ) -design defined on a set V of v symbols. A block of D is said to be *complete* if it contains all of the varieties. D is said to contain a *complete set of singletons* if D contains v blocks each of size one whose union is V. An (r, λ) -design which contains λ complete blocks is called *trivial*. Let $v_0(r, \lambda)$

Received July 27, 1977 and in revised form, April 4, 1978.

be the smallest positive integer such that if D is any (r, λ) -design on $v > v_0(r, \lambda)$ varieties then D must be trivial. It has been shown [2] that

 $v_0(r,\lambda) \leq \max \{\lambda + 2, n^2 + n + 1\}.$

For $\lambda > n^2 + n - 1$, Mullin [5] has proven that any (r, λ) -design with $v \ge v_0(r, \lambda)$ varieties only has block sizes 1, v - 1 and v. Such designs are called *near-trivial*. We will make use of this result in the following section.

2. Main result. Let D be an $OD(r, \lambda)$ -design having $v > n^2 + n + 1$ varieties for $n \ge 3$ and such that v is a maximum. Since D is an (r, λ) -design, Mullin's result implies that D is near-trivial. Hence, D contains only blocks of size 1, v - 1, and v. Call the blocks of size v - 1 in D the *body* of the design. Clearly, the body of the design can be partitioned into t copies of all (v - 1)-subsets of a v-set for some non-negative integer t.

Suppose *D* has no blocks of size v - 1. Then *D* must be trivial and must contain at least *v* complete sets of singletons if it is to be orthogonally resolvable. This is impossible since v > n. We then deduce that $t \ge 1$.

Since D is an OD (r, λ) -design, it must be resolvable and thus, for each component of the body there must be a complete set of singletons to form v resolution classes of D. (This follows since each block of cardinality v - 1 in the body requires a singleton block to form a resolution class). Hence, D must have at least t complete sets of singletons and we easily deduce that $t \leq \lfloor n/2 \rfloor$ where $\lfloor x \rfloor$ is called the *floor function* of x and denotes the greatest integer less than or equal to x. Denote these t complete sets of singletons by S_1, S_2, \ldots, S_t . Suppose D contains s other complete sets of singletons denoted T_1, T_2, \ldots, T_s and these are resolution classes in a resolution R of D.

Each component of the body of the design and each complete set of singletons contributes one to n. However a complete block contributes zero to n. Thus, n = 2t + s.

LEMMA 2.1. For $S_1, S_2, \ldots, S_t, T_1, T_2, \ldots, T_s$ and D as defined above we have $s \leq t$.

Proof. Since D is an OD (r, λ) -design, it contains a second resolution R' which is orthogonal to R. R' must contain T_1', T_2', \ldots, T_s' complete sets of singletons and S_1', S_2', \ldots, S_t' complete sets of singletons associated with the body of D.

Consider T_i' , $1 \leq i \leq s$. T_i' can contain at most s blocks from T_1, T_2, \ldots, T_s (at most one from each). Thus T_i' contains at least v - s singletons from S_1, S_2, \ldots, S_i . For this to be possible, for all $i, 1 \leq i \leq s$,

$$s(v-s) \leq tv.$$

This implies

(1)
$$s \leq \frac{v - \sqrt{v^2 - 4tv}}{2}$$
 or

$$(2) \quad s \ge \frac{v + \sqrt{v^2 - 4tv}}{2}$$

Since $t \leq \lfloor n/2 \rfloor$, it is easy to see that

$$\frac{v - \sqrt{v^2 - 4tv}}{2} < t + 1.$$

Moreover, it readily follows that

$$\left\lfloor \frac{v - \sqrt{v^2 - 4tv}}{2} \right\rfloor = t.$$

Since n = 2t + s, and $t \ge 1$,

$$s < n$$
.

Thus, if (2) is true

$$\frac{v + \sqrt{v^2 - 4vt}}{2} < n$$

which is impossible since $v > n^2 + n + 1$. This completes the proof of the lemma.

Now, if we let $S_1' = T_1$, $S_2' = T_2$, ..., $S_s' = T_s$, $S_{s+1}' = S_1$, ..., $S_t' = S_{t-s}$, $T_1' = S_{t-s+1}$, ..., $T_s' = S_t$ then it is easily seen that R and R' are orthogonal resolutions. Since $t \ge s$ and $t + s \ge 2$, the above is always possible.

By Lemma 2.1, we have

 $n = 2t + s \leq 3t$

which implies that $t \ge n/3$. Since t must be an integer

 $t \geq \lceil n/3 \rceil$

where $\lceil x \rceil$ is called the *roof function* of *x* and means the least integer greater than or equal to *x*. It now follows that

(3) $\lceil n/3 \rceil \leq t \leq \lfloor n/2 \rfloor$.

If D contains c complete blocks then

(4)
$$r = t(v-1) + n - t + c$$
 and
 $\lambda = t(v-2) + c$

where c < t. The restriction that c < t follows from the fact v is maximum. If c > t then it is possible to construct an OD (r, λ) -design having more than v varieties.

Since $r = n + \lambda$, (4) becomes

(5)
$$v - 2 = (\lambda - c)/t = \lfloor \lambda/t \rfloor$$
.

Since v is a maximum, (5) implies that t must be a minimum and from (3) we get that $t = \lfloor n/3 \rfloor$. Therefore,

(6)
$$v = 2 + \left\lfloor \frac{\lambda}{\left\lceil \frac{n}{3} \right\rceil} \right\rfloor.$$

But (6) is true whenever $v > n^2 + n + 1$ which implies that

 $\lambda > \lceil n/3 \rceil (n^2 + n).$

This proves the following theorem.

THEOREM 2.1.
$$R(r, \lambda) = 2 + \left\lfloor \frac{\lambda}{\left\lceil \frac{n}{3} \right\rceil} \right\rfloor$$

whenever $\lambda > \lceil n/3 \rceil (n^2 + n)$.

3. Conclusion. Theorem 2.1 provides an asymptotic evaluation of $R(r, \lambda)$. Thus, for any value of *n*, there are only a finite number of values of $R(r, \lambda)$ to determine. This appears to be a difficult problem. For some of the known results in this area, the reader is referred to [4; 6; and 7].

References

- 1. D. W. Bolton, unpublished manuscript.
- 2. M. Deza, Matrices dont deux lignes quelconques coincident dans un nombre donne de positions communes, Journal of Combinatorial Theory, Series A, 20 (1976), 306-318.
- 3. M. Deza, R. C. Mullin and S. A. Vanstone, *Room squares and equidistant permutation arrays*, Ars Combinatoria 2 (1976), 235-244.
- 4. K. Heinrich, J. van Rees, and W. D. Wallis, A general construction for equidistant permutation arrays, (preprint).
- **5.** R. C. Mullin, An asymptotic property of (r, λ) -systems, Utilitas Math, 3 (1973), 139–152.
- P. J. Schellenberg, and S. A. Vanstone, Some results on equidistant permutation arrays, Proc. 6th Manitoba Conference on Numerical Math (1976), 389–410.
- 7. S. A. Vanstone, Pairwise orthogonal generalized Room squares and equidistant permutation arrays, Journal of Combinatorial Theory, Series A, 25 (1978), 84-89.

St. Jerome's College, University of Waterloo, Waterloo, Ontario