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THE ASYMPTOTIC BEHAVIOUR OF EQUIDISTANT 
PERMUTATION ARRAYS 

S. A. VANSTONE 

1. I n t r o d u c t i o n . An equidistant permutation array (EPA) Air, X; v) is a 
v X r a r ray defined on a set V oir symbols such tha t every row is a permuta t ion 
of F and any two distinct rows have precisely X common column entries. Define 
R(r, X) to be the largest value of v for which there exists an A (r, X; v). Deza 
[2] has shown tha t 

R(r, X) ^ max {n2 + n + 1, X + 2} 

where n = r — X. Bolton [1] has shown tha t 

(*) R(r, X) ^ 2 + 

m 
In this paper, we show tha t equality holds in (*) for X > [n/3~](n2 + n). In 
order to do this we require several more definitions. 

An (r, X)-design D is a collection B of subsets (called blocks) of a finite set V 
of elements (called varieties) such tha t any two distinct elements of V are 
contained in precisely X common blocks and every var iety is contained in 
exactly r blocks of D. An (r, X)-design D is said to be resolvable or contain a 
resolution R if the blocks of D can be parti t ioned into classes (called resolution 
classes) such tha t every variety of D is contained in precisely one block of each 
resolution class. We say tha t an (r, X)-design D is orthogonally resolvable 
(denoted OD (r, X) ) if D contains resolutions R and R' and Ri, R2, . . . , Rr and 
Ri, R2', . . .', Rr

f are the resolution classes of R and R' respectively such tha t 
for all i and j (1 ^ i, j ^ r) i?2- and i ? / have a t most one labelled block in 
common. (Note: We consider all blocks of D as labelled so tha t a given subset 
can occur repeatedly as distinct blocks.) 

The following result of Deza, Mullin and Vanstone appeared in [3], 

T H E O R E M 1.1. There exists an A(r, X; v) if and only if there exists an 
OD(r , X)-design having v varieties. 

Theorem 1.1 shows the connection between EPAs and (r, X)-designs. Using 
results on (r, X)-designs, we will deduce asymptot ic results for R(r, X). 

Let D be an (/% X)-design defined on a set V of v symbols. A block of D is 
said to be complete if it contains all of the varieties. D is said to contain a 
complete set of singletons if D contains v blocks each of size one whose union is V. 
An (r, X)-design which contains X complete blocks is called trivial. Let z/0(r, X) 
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be the smallest positive integer such t h a t if D is any (r, X)-design on v > v0(r, X) 
varieties then D mus t be trivial. I t has been shown [2] t ha t 

Vo(r, X) S max {X + 2, n2 + n + 1}. 

For X > n2 + n — 1, Alullin [5] has proven tha t any (r, X)-design with 
v ^ v0(r, X) varieties only has block sizes 1, v — 1 and v. Such designs are called 
near-trivial. We will make use of this result in the following section. 

2. M a i n resu l t . Let D be an OD(r , X)-design having v > n2 + n + 1 
varieties for w ^ 3 and such tha t v is a maximum. Since .D is an (r, X)-design, 
Mullin 's result implies t ha t D is near-trivial. Hence, D contains only blocks of 
size 1, v — 1, and v. Call the blocks of size v — 1 in D the body of the design. 
Clearly, the body of the design can be part i t ioned into t copies of all (v — 1)-
subsets of a zJ-set for some non-negative integer /. 

Suppose D has no blocks of size v — 1. Then D mus t be trivial and must con
tain a t least v complete sets of singletons if it is to be orthogonally resolvable. 
This is impossible since v > n. We then deduce tha t t ^ I. 

Since D is an OD(r , X)-design, it must be resolvable and thus , for each com
ponent of the body there must be a complete set of singletons to form v resolu
tion classes of D. (This follows since each block of cardinal i ty v — 1 in the 
body requires a singleton block to form a resolution class). Hence, D mus t have 
a t least / complete sets of singletons and we easily deduce t h a t t ^ [_n/2j where 
L^J is called the floor function of x and denotes the greatest integer less than or 
equal to x. Denote these t complete sets of singletons by 5 i , 5 2 , . . . , St. Sup
pose D contains 5 other complete sets of singletons denoted 7"\, T2, . . . , Ts and 
these are resolution classes in a resolution R of D. 

Each component of the body of the design and each complete set of singletons 
contr ibutes one to n. However a complete block contr ibutes zero to n. Thus , 
n = 2t + s. 

LEMMA 2.1. For Si, S2, . . . , St, 7 \ , T2, . . . , Ts and D as defined above we 
have s S t. 

Proof. Since D is an OD (r, X)-design, it contains a second resolution R' which 
is orthogonal to R. R' must contain TV, T2 , . . . , TJ complete sets of singletons 
and Si , S2', . . . , S/ complete sets of singletons associated with the body of D. 

Consider T/, 1 ^ i ^ s. T{ can contain a t most 5 blocks from 
7 \ , T2, . . . , Ts (at most one from each) . T h u s T( contains a t least v — s 
singletons from Si, S2, . . . , St. For this to be possible, for a l H , 1 ^ i ^ s, 

s(v — s) S tv. 

This implies 
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Since / ^ L^/2J, it is easy to see tha t 

v — \/v2 — Mv 

2 
< t+ 1. 

Moreover, it readily follows tha t 

— \/v Mv 
= t. 

Since n = 2t + s, and t ^ 1, 

5 < n. 

Thus , if (2) is t rue 

v + \ A ' 2 — 4vt 
< n 

which is impossible since v > n2 + n 
lemma. 

1. This completes the proof of the 

Now, if we let Si = Tu S2' = T2, . . . , Ss' = Ts, Ss+1
f = Su . . . , S/ = 

St-Sy T\ = St-s+ij • • • , TJ = St then it is easily seen tha t R and Rf are 
orthogonal resolutions. Since t ^ s and t -\- s ^ 2, the above is always possible. 

By Lemma 2.1, we have 

n = 2t + s S 3t 

which implies tha t t è w/3. Since t must be an integer 

/ ^ r»/3i 
where M is called the roof function of x and means the least integer greater than 
or equal to x. I t now follows tha t 

(3) [n/3\ S t ^ ln/2j. 

If D contains c complete blocks then 

( , r = t(v — 1) + n — t + c and 
W X = t(v - 2) + c 

where c < t. The restriction tha t c < t follows from the fact v is maximum. 
If c > t then it is possible to construct an OD(>, X)-design having more than v 
varieties. 

Since r = n + X, (4) becomes 

(5) v - 2 = (X - c)/t = LX//J. 

Since v is a maximum, (5) implies tha t / must be a minimum and from (3) we 
get t ha t t = \n/S]. Therefore, 

(6) v = 2 + 

.mi 
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But (6) is true whenever v > n2 + n + 1 which implies that 

X > [n/3](n2 + n). 

This proves the following theorem. 

X 
THEOREM 2.1. R(r, X) = 2 + 

whenever X > f^/3l(w2 + w). nu 
3. Conclusion. Theorem 2.1 provides an asymptotic evaluation of R(r, X). 

Thus, for any value of n, there are only a finite number of values of R(r, X) to 
determine. This appears to be a difficult problem. For some of the known results 
in this area, the reader is referred to [4; 6; and 7]. 
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