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Abstract

We extend the evolution equation for weak nonlinear gravity–capillary waves by
including fifth-order nonlinear terms. Stability properties of a uniform Stokes gravity–
capillary wave train is studied using the evolution equation obtained here. The region of
stability in the perturbed wave-number plane determined by the fifth-order evolution
equation is compared with that determined by third- and fourth-order evolution
equations. We find that if the wave number of longitudinal perturbations exceeds a
certain critical value, a uniform gravity–capillary wave train becomes unstable. This
critical value increases as the wave steepness increases.
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1. Introduction

There has been considerable development in the study of the evolution of weakly
nonlinear surface gravity–capillary waves. Many authors [2, 5, 8, 15, 21, 22] have
contributed towards the understanding of the evolution of surface gravity–capillary
waves. Djordjevic and Redekopp [5] studied the motion of a two-dimensional gravity–
capillary wave packet on water of finite depth. They obtained evolution equations in
the form of a coupled system of partial differential equations correct up to third order in
wave steepness. They showed that the Stokes gravity–capillary wave train for several
distinct wave bands becomes unstable due to modulational perturbations. They also
found the existence of a resonant interaction between a gravity–capillary wave and a
long gravity wave.

Dysthe [6] derived an evolution equation for a weakly nonlinear surface gravity
wave packet which is correct up to fourth order in wave steepness. He showed that
a band of waves remains stable up to fourth order. Dysthe also pointed out that
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the results of stability analysis of Stokes waves made from fourth-order evolution
equations agree very well with the exact numerical computational results of Longuet-
Higgins [13, 14], for waves of steepness up to 0.25. However, if the stability analysis
is made from a third-order evolution equation, then the results differ from the exact
results of Longuet-Higgins [13, 14], when wave steepness exceeds the value 0.15.
Considering the importance of fourth-order nonlinear terms in the evolution equation,
Hogan [8] derived an evolution equation for a weakly nonlinear deep water gravity–
capillary wave packet, which is correct up to fourth order in the wave steepness. The
evolution equation of Hogan [8, equation (2.20)] was derived under the assumption
that the wave packet was of narrow bandwidth for which the order of the bandwidth,
|∆~k|/|~k|, was same as the order of the smallness of the wave steepness |~k|a. Here |~k| and
a denote the characteristic wave-number and characteristic amplitude, respectively,
and |∆~k| is the modulational wave number.

Zhang and Melville [21] investigated the stability of weakly nonlinear gravity–
capillary waves in resonant triad and quartet interactions by numerically solving
an eigenvalue system. They found that the triad and quartet instabilities which
are separated in the wave-number plane for infinitesimal waves may merge for
weakly nonlinear waves. Later on, Zhang and Melville [22] presented a modified
numerical scheme for investigating the three-dimensional instability properties of
gravity–capillary waves in deep water. Evolution of a weakly nonlinear gravity–
capillary wave packet was also studied by Debsarma and Das [2] in the presence
of a thin thermocline in deep water. They obtained evolution equations in the form
of a coupled system of two equations which are correct up to fourth order of wave
steepness.

It is interesting to see the effect of the fifth-order nonlinear interaction terms on
the modulational instability properties of uniform Stokes wave trains. In this paper,
we have extended the analysis of Hogan [8] to include the fifth-order nonlinear terms.
Equation (2.20) of Hogan [8, Section 2] describes the evolution of a weakly nonlinear
gravity–capillary wave packet for which the bandwidth is of order O(ε), ε being the
order of smallness of wave steepness, and the equation is correct up to O(ε4). In
this paper, we consider the evolution of a weakly nonlinear gravity–capillary wave
packet which follows the narrow bandwidth constraint of Hogan [8]. The evolution
equation derived here is correct up to O(ε5), and it is employed here to study the
stability properties of uniform Stokes wave trains (see the work by Djordjevic and
Redekopp [5]). We have plotted stable–unstable regions (Figures 1 to 3) and growth
rates of instability curves for uniform Stokes wave trains (Figures 4 to 7).

For the derivation of the evolution equation, we have used the Zakharov integral
equation [20]. Crawford et al. [1] gave an expression of the Zakharov kernel for
surface gravity waves. Later on, Hogan et al. [9] derived the corrected form of the
Zakharov kernel for gravity–capillary waves. However, these kernels fail to conserve
the Hamiltonian structure [11] of the original water wave equations. Krasitskii [11]
first obtained an expression for the interaction coefficient that enjoys a number of
symmetry conditions and leads to the Hamiltonian form of the evolution equation.
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Figure 1. Stable–unstable region in the perturbed wave-number plane; S denotes stable region and U
denotes unstable region; m = 0.05.

Figure 2. Stable–unstable region in the perturbed wave-number plane; S denotes stable region and U
denotes unstable region; m = 1.0.

Krasitskii and Kalmykov [12] performed an investigation in order to compare the
consequences obtained from the Hamiltonian and non-Hamiltonian forms of the
Zakharov equation. They found that as far as modulational instability of a uniform
Stokes wave train and the long time evolution of a discrete wave system are concerned,
the differences in solutions are revealed only for sufficiently large nonlinearity of the
wave system. Gramstad and Trulsen [7] derived the fourth-order modified Schrödinger
equation for surface gravity wave packets which conserves the momentum and, hence,
is in Hamiltonian form. In the current paper, we have compared our result with that
obtained by the Hamiltonian evolution equation for the case of gravity waves.
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Figure 3. Stable-unstable region in the perturbed wave-number plane; S denotes stable region and U
denotes unstable region; m = 0.

Figure 4. Contour plot of growth rate of instability in the (K, L)-plane; m = 0.05, a0 = 0.15. Left: at fifth
order; right: at fifth order of nonlinearity including higher-order linear dispersive terms.

Ocean water wave packets are not always of narrow bandwidth. Keeping this in
mind, Trulsen and Dysthe [18] considered the evolution of a broad band surface gravity
wave packet for which the bandwidth is of O(ε1/2). The evolution equation derived by
them is correct up to O(ε7/2). When the stability of Stokes waves is studied using
this evolution equation, the stable/unstable regions are in better agreement with the
exact regions obtained by McLean et al. [16] and McLean [17] as compared to that
for a narrow bandwidth wave packet. Debsarma and Das [3] modified the evolution
equation of Trulsen and Dysthe [18] by including O(ε4) nonlinear terms. A further
relaxation in bandwidth was considered by Debsarma and Das [4]. They studied
evolution of a gravity wave packet whose order of bandwidth is of O(ε1/3). Stable–
unstable regions obtained by Debsarma and Das [3, 4] fit very nicely with those
obtained by McLean et al. [16]. Encouraged by these results, here we have derived
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Figure 5. Contour plot of growth rate of instability in the (K, L)-plane; m = 1.0, a0 = 0.15. Left: at fifth
order; right: at fifth order of nonlinearity including higher-order linear dispersive terms.

Figure 6. Growth rate of instability Gr against perturbation wave-number K, m = 0.05.

Figure 7. Growth rate of instability Gr against perturbation wave-number K, m = 1.0.
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a fifth-order evolution equation for surface gravity–capillary waves. Trulsen et al. [19]
carried out stability analysis with an evolution equation for weakly nonlinear gravity
waves, in which a complete expression for linear dispersive terms was used. In this
paper, we have also considered the effect of higher-order linear dispersive terms on the
stability properties of a uniform Stokes wave train.

2. Derivation of evolution equation

To derive the evolution equation we start with Zakharov’s [20] integral equation

i
∂B(~k, t)
∂t

=

$ ∞

−∞

T (~k,~k1,~k2,~k3)B∗(~k1, t)B(~k2, t)B(~k3, t) × δ(~k + ~k1 − ~k2 − ~k3)

× exp{i{ω(~k) + ω(~k1) − ω(~k2) − ω(~k3)}t} d~k1 d~k2 d~k3, (2.1)

where δ() is the Dirac delta function and B(~k, t) is related to the free surface elevation
ζ(~x, t) by

ζ(~x, t) =
1

2π

∫ ∞

−∞

[
|~k|

2ω(~k)

]1/2
[B(~k, t) exp{i(~k · ~x − ω(~k)t)} + c.c.] d~k. (2.2)

Here ~k = (k, l) is the wave number vector, ~x = (x, y) is horizontal variable vector, c.c.
denotes the complex conjugate of the previous term and ω is the wave frequency
corresponding to the wave number vector ~k. The linear dispersion relation for
the gravity–capillary waves is given by ω = ω(|~k|) = [g|~k| + γ|~k|3]1/2, where g is the
gravitational acceleration, and γ = T (s)/ρ with T (s) being the surface tension and
ρ, the density of water. In equation (2.1), we have used the interaction coefficient
T (~k,~k1,~k2,~k3), known as the Zakharov kernel, given by Hogan et al. [9].

We consider the propagation of a broad band gravity–capillary wave packet having
central wave number ~k0 = (k0, 0), and consider the vectors ~k, ~k j, j = 1, 2, 3, as ~k =

~k0 + ~χ, ~k j = ~k0 + ~χ j, ~χ = ( χ, λ), and ~χ j = ( χ j, λ j).
We assume that the spectral widths |~χ|/|~k0|, |~χ j|/|~k0| are of O(ε), where ε is the order

of smallness of the wave steepness. We also assume that the wave packet is sufficiently
narrow, so that the triad solutions ~k0 = ~k1 + ~k2 and ω(|~k0|) = ω(|~k1|) + ω(|~k2|) are not
satisfied for some ~k0. Introducing a new variable

A(~χ, t) = B(~k, t) exp[−i{ω(~k) − ω(~k0)}t], (2.3)

we rewrite equation (2.1) as

i
∂A(~χ, t)
∂t

− {ω(~k) − ω(~k0)}A(~χ, t) =

$ ∞

−∞

T (~k0 + ~χ,~k0 + ~χ1,~k0 + ~χ2,~k0 + ~χ3)

× A∗(~χ1, t)A(~χ2, t)A(~χ3, t) × δ(~χ + ~χ1 − ~χ2 − ~χ3) d~χ1 d~χ2 d~χ3.
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Inserting (2.3) into equation (2.2) and keeping terms up to second order in spectral
width

ζ(~x, t) =
1
2

[a(~x, t) exp[i{~k0 · ~x − ω(k0)t}] + c.c.], where

a(~x, t) =
1

2π

∫ ∞

−∞

[ 2|~k0|

ω(|~k0|)

]1/2
f ( χ, λ)A(~χ, t) exp(i~χ · ~x) d~χ,

f ( χ, λ) = 1 +
1 − m

4k0(1 + m)
· χ −

3 + 18m − 5m2

32k2
0(1 + m)2

· χ2 +
1 − m

8k2
0(1 + m)

· λ2, m = γk2/g.

To derive the evolution equation we have followed the same procedure as in Debsarma
and Das [3]. Finally, we obtain the desired evolution equation for a narrow band
gravity–capillary wave packet correct up to fifth order in wave steepness as

i
∂a
∂t

+ iεβ0
∂a
∂x

+ ε2
(
β1
∂2a
∂x2 + β2

∂2a
∂y2

)
+ iε3

(
β3
∂3a
∂x3 + β4

∂3a
∂x∂y2

)
+ ε4

(
β5
∂4a
∂x4 + β6

∂2a
∂x2∂y2 + β7

∂4a
∂y4

)
= Λ1a2a∗ + iεΛ2aa∗

∂a
∂x

+ iεΛ3a2 ∂a∗

∂x
+ εΛ4a

∂

∂x
H[aa∗]

+ ε2
(
µ1aa∗

∂2a
∂x2 + µ2aa∗

∂2a
∂y2

)
+ ε2

{
µ3a∗

(
∂a
∂x

)2
+ µ4a∗

(
∂a
∂y

)2}
+ ε2

(
µ5a

∂a
∂x

∂a∗

∂x
+ µ6

∂a
∂y
∂a∗

∂y

)
+ ε2

(
µ7a2 ∂

2a∗

∂x2 + µ8a2 ∂
2a∗

∂y2

)
+ iε2µ9a

∂

∂x
H

[
a∗
∂a
∂x

]
+ iε2µ10a

∂

∂y
H

[
a∗
∂a
∂y

]
+ iε2µ11a

∂

∂x
H

[
a
∂a∗

∂x

]
+ iε2µ12

∂a
∂x

∂

∂x
H[aa∗] + iε2µ13

∂a
∂y

∂

∂y
H[aa∗] + ε2µ14a

∂3

∂x3 P[aa∗]. (2.4)

The coefficients βi, Λi, µi appearing in equation (2.4) are given in the Appendix A. In
equation (2.4), H denotes the two-dimensional Hilbert transform operator [10] and P
is another integral operator, defined as

HΨ(x, y) =
1

2π

" ∞

−∞

(ξ − x)Ψ(ξ, η)
[(ξ − x)2 + (η − y)2]3/2 dξ dη, (2.5)

PΨ(x, y) =
1

2π

" ∞

−∞

(ξ − x)Ψ(ξ, η)
(ξ − x)2 + (η − y)2 dξ dη.

Equation (2.4) is written here in dimensionless form with the dimensionless variables

a′ = k0a, x′ = k0x, y′ = k0x, t′ = ω(k0)t,

and later the primes are dropped for simplicity.
The coefficients β0, β1, β2, β3, β4, Λ1, Λ2, Λ3, Λ4 in equation (2.4) are in

agreement with the corresponding coefficients of the evolution equation of Hogan
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[8, equation (2.20)]. Also, by setting m = 0 in the coefficients of the evolution equation
(2.4), we can recover the evolution equation of Debsarma and Das [3, equation (2.15)].
This provides a check on our computation.

The coefficients Λ1, Λ3, µi, i = 1, . . . , 8, appearing in equation (2.4) contain a factor
(1 − 2m) in the denominator. As a result, the evolution equation (2.5) does not remain
valid when m = 1/2. This is the case for a second harmonic resonance, when the wave
travels at the same speed as one of its harmonics. McGoldrick [15] made a detailed
study of this case in the context of Wilton’s ripples.

Note that all the fourth- and fifth-order nonlinear terms in equation (2.4) emerge as
a result of the narrow spectral width assumption, and none of these terms is of fourth
or fifth order in the wave steepness itself. To examine the effect of higher-order linear
dispersive terms on the stability properties of a uniform wave train, we have to include
the following terms in the left-hand side of the evolution equation (2.4):

iε5
(
β8
∂5a
∂x5 + β9

∂5a
∂x3∂y2 + β10

∂5a
∂x∂y4

)
+ ε6

(
β11

∂6a
∂x6 + β12

∂6a
∂x4∂y2 + β13

∂6a
∂x2∂y4 + β14

∂6a
∂y6

)
.

(2.6)
We show the effect of the terms in (2.6) in the next section.

3. Stability analysis

The uniform Stokes wave solution of equation (2.4) is given by

a = a0 exp(−it∆ω) ≡ ζ(0), (3.1)

where a0 is a real constant and the nonlinear frequency shift

∆ω = −Λ1a2
0.

For the purpose of stability analysis of the uniform wave solution (3.1), we introduce
the following infinitesimal perturbation to this solution:

a = ζ(0)[1 + a′(~x, t)]. (3.2)

We now substitute the perturbed solution (3.2) into the evolution equation (2.4) and
then linearize with respect to a′. Taking a′ = a′r + ia′i , with a′r, a′i being real, we
separate the real and imaginary parts. Thereby, we get a system of two coupled linear
equations in a′r and a′i . Finally, assuming the space-time dependence of a′r and a′i to be
in the form exp[i(Kx + Ly −Ωt)], where (K, L) is the perturbation wavenumber and Ω

denotes frequency, we obtain

i(Ω + E)a′i − Fa′r = 0, (3.3)
Ga′i + i(Ω + H)a′r = 0, (3.4)

where

E = β0K − (β3K3 + β4KL2) − (Λ2 − Λ3)Ka2
0 +

(µ9K3 + µ10KL2 − µ11K3)a2
0

√
K2 + L2

,
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F = (β1K2 + β2L2) − (β5K4 + β6K2L2 + β7L4) + 2Λ1a2
0 −

2Λ4K2a2
0

√
K2 + L2

− {(µ1 + µ7)K2 + (µ2 + µ8)L2}a2
0 +

2µ14K4a2
0

(K2 + L2)
,

G = (β1K2 + β2L2) − (β5K4 + β6K2L2 + β7L4) − {(µ1 − µ7)K2 + (µ2 − µ8)L2)}a2
0,

H = β0K − (β3K3 + β4KL2) − (Λ2 + Λ3)a2
0K +

(µ9K3 + µ10KL2 + µ11K3)a2
0

√
K2 + L2

.

Thus, the uniform Stokes wave given by (3.1) becomes unstable when the following
condition is satisfied:

(E − H)2 + 4FG < O. (3.5)

Since (E − H)2 > 0, condition (3.5) holds only when FG < 0. At the fourth order of
nonlinearity, this implies that instability is impossible when m lies within the range
2/
√

3 − 1 < m < 1/2. In Figures 1 and 2, we have shown the stable and unstable
regions in the perturbed wave number plane, that is, the (K, L)-plane for two different
values of m, namely, m = 0.05 and m = 1.0. In these figures, we can also observe how
the region of stability gets modified as we incorporate higher-order nonlinear terms
in the evolution equation. We find that for small values of m (m < 1/2), the region
of stability decreases as we include higher-order nonlinear terms in the evolution
equation. However, for m > 1/2, the region of stability slightly increases as a result of
including higher-order nonlinear terms.

In Figure 3 we have shown stable–unstable regions as obtained from condition (3.5),
and also that obtained from the fourth-order evolution equation in Hamiltonian form
for the case of surface gravity waves. When the instability condition (3.5) is satisfied,
the growth rate of instability of the uniform wave train (3.1) is given by

Gr = 1
2 [−(E − H)2 − 4FG]1/2. (3.6)

In Figures 4 and 5, we have shown contour plots of the growth rate of instability, taking
m = 0.05 and m = 1.0, respectively. In these figures, we observe the growth rates of
instability curves as obtained from the fifth-order evolution equation, and also when
higher-order linear dispersive terms are taken in the fifth-order evolution equation. We
observe that the effect of higher-order linear dispersive terms is to increase the growth
rate of instability very slightly for m < 1/2 and to reduce the same slightly for m > 1/2.

We can recover the results of the stability analysis for unidirectional perturbations
by setting L = 0 in equations (3.3)–(3.6). We have plotted the growth rates of instability
curves against perturbation wave-number K in Figures 6 and 7 for unidirectional
perturbations. In these figures we find that a uniform gravity–capillary wave train
becomes unstable when the wave number of the longitudinal perturbations exceeds a
certain critical value. This critical value increases with the increase in wave steepness.
For m = 3, 7 and for a0 = 0.05, Zhang and Melville’s [21] full calculation found the
values of the perturbation wave-number corresponding to the onset of stability of
gravity–capillary waves to be K = 0.042 and 0.037, respectively. The corresponding
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values of K obtained by Hogan [8] are K = 0.040 and 0.034, respectively. Using
condition (3.5), we have found the corresponding values to be K = 0.0411 and 0.036.
These values are closer to the estimates of Zhang and Melville [21] than the estimates
obtained from the fourth-order evolution equation of Hogan [8].

4. Conclusions

The evolution equation of a weakly nonlinear water wave packet can be derived in
a number of ways. If one starts with the Zakharov equation, the Krasitskii kernel [11]
should be the first choice for studying matters related to the space-time evolution of
weakly nonlinear waves, especially for phenomena that rely on the conservative and
Hamiltonian form. Here, starting with the Zakharov integral equation, we have derived
an evolution equation for a weakly nonlinear gravity–capillary wave packet, under the
assumption that the wave packet is sufficiently narrow. The evolution equation derived
here is correct up to fifth order of nonlinearity. Thus, this equation is a modification
of the evolution equation obtained by Hogan [8], which is correct up to fourth order of
nonlinearity. Using this evolution equation, we have studied stability properties of a
uniform gravity–capillary wave train. We find that the region of stability as computed
from the fifth-order evolution equation is smaller than that from the fourth-order
evolution equation for the case when m < 1/2. However, we see the opposite effect
when m > 1/2. For longitudinal perturbations, we observe that a uniform gravity–
capillary wave train becomes unstable when the perturbed wave-number exceeds a
certain critical value, which increases as the wave steepness increases.

Appendix A. Coefficients of the evolution equation

β0 =
1 + 3m

2(1 + m)
, β1 = −

1 − 6m − 3m2

8(1 + m)2 , β2 =
1 + 3m

4(1 + m)
,

β3 =−
1 + 5m − 5m2 − m3

16(1 + m)3 , β4 =
3 + 2m + 3m2

8(1 + m)2 ,

β5 =
5 + 20m + 70m2 − 28m3 − 3m4

128(1 + m)4 , β6 = −
15 + 35m + 5m2 + 9m3

32(1 + m)3 ,

β7 =
3 + 2m + 3m2

32(1 + m)2 , β8 =
7 + 3m + 54m2 + 210m3 − 45m4 − 3m5

256(1 + m)5 ,

β9 =
35 + 120m + 150m2 + 15m4

64(1 + m)4 , β10 =
21 + 45m + 15m2 + 15m3

64(1 + m)3 ,

β11 =
21 + 118m + 271m2 + 132m3 + 1295m4 − 42m5 + 21m6

1024(1 + m)6 , β12 =
315 + 1405m
512(1 + m)5 ,

β13 =
189 + 624m + 690m2 + 120m3 + 105m4

256(1 + m)4 , β14 =
7 + 15m + 5m2 + 5m3

128(1 + m)3 ,
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Λ1 =
8 + m + 2m2

16(1 + m)(1 − 2m)
, Λ2 = −

24 + 93m + 15m2 + 96m3 − 60m4 − 48m5

16(1 + m)2(1 − 2m)2(1 + 4m)
,

Λ3 =−
(1 − m)(8 + m + 2m2)
32(1 + m)2(1 − 2m)

, Λ4 =
1
2
.

µ1 =−(40 + 219m + 1724m2 + 3899m3 + 4398m4 + 1888m5 + 6928m6 − 4992m7

− 3328m8)/64(1 + m)3(1 − 2m)3(1 + 4m)2,

µ2 =
35m + 149m2 + 48m3 + 32m4 − 64m5

32(1 + m)2(1 − 2m)2(1 + 4m)
,

µ3 =−(36 + 343m + 1616m2 + 5319m3 + 6638m4 − 6440m5 − 1728m6

− 896m7 + 512m8)/64(1 + m)3(1 − 2m)3(1 + 4m)2,

µ4 =−
20 + 91m + 113m2 + 300m3 + 136m4 + 32m5

32(1 + m)2(1 − 2m)2(1 + 4m)
,

µ5 =−
4 − 13m − 58m2 + 131m3 − 124m4 + 1268m5 + 592m6

32(1 + m)3(1 − 2m)2(1 + 4m)
,

µ6 =
4 + 29m + 25m2 + 18m3

16(1 + m)2(1 − 2m)
, µ7 =

16 + 33m + 108m2 + 337m3 + 138m4

128(1 + m)3(1 − 2m)
,

µ8 =
16 + 51m + 51m2 + 34m3

64(1 + m)2(1 − 2m)
, µ9 = −

1
2
, µ10 = −

1
2
,

µ11 =−
1 − m

4(1 + m)
, µ12 = −

1
2
, µ13 = −

1
2
, µ14 = −

(1 + 3m)2

8(1 + m)
.
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