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1. Introduction

Let k be a fixed integer 2: 2. A positive integer n is called unitarily k-free,
if the multiplicity of each prime divisor of n is not a multiple of k; or equivalently,
if n is not divisible unitarily by the kth power of any integer > 1. By a unitary
divisor, we mean as usual a divisor d > 0 of n such that (d,(n/d)) = 1. The
integer 1 is also considered to be unitarily /c-free. These integers were first defined
by Cohen (1961; § 1). Let Q* denote the set of unitarily fc-free integers. When
k = 2, the set Q* coincides with the set Q* of exponentially odd integers (that is,
integers in whose canonical representation each exponent is odd) discussed by
Cohen himself in an earlier paper (1961; §1 and §6). Let x denote a real variable
5: 1 and let Q*(x) denote the number of unitarily fc-free integers ^ x. Cohen
(1961; Theorem 3.2) established by purely elementary methods that

(1.1) Q*(x) = akx+O(x1/klogx),

where

- yk + j
the product being extended over all primes p and £(&) denotes the Riemann
Zeta function. In the same paper Cohen (1961; Theorem 4.2) improved the
order estimate of the error term in (1.1) to O(x ^ ^ b y making use of the properties
of real Dirichlet series. Later, he (Cohen; 1964) proved the same result by purely
elementary methods eliminating the use of Dirichlet series.

The object of the present paper is to further improve the order estimate of
the error term in (1.1). In fact, we prove that

Af(x) = S?(x) - «** = O(x1/kexp{ - ^log3/5x(log log*) " 1 / 5 }),
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wehere A is a positive constant. Further, on the assumption of the Riemann 
hypothesis, we prove that A*(x) = 0 ( x 2 / ( 2 * + 1 ) exp{^llogx(loglogx)~ J } ), where 
A is a positive constant. 

2. Preliminaries 

In this section we introduce some notation and then prove some lemmas 
which are needed in our present discussion. 

Let /i(n) and <j)(ri) denote respectively the Möbius function and the Euler 
totient function. Let (j>(x, n) denote the number of positive integers ^ x which 
are prime to n. Let n*{n) denote the unitary analogue of the Möbius ^-function 
defined by n*(n) = ( — 1) <°(",) where co(n) is the number of distinct prime factors 
of n > 1, co(l) = 0. Let <r*(n) denote the sum of all the sth powers of the square-
free divisors of n. Let a(n) = n>r=i — A)» if « = YYi = i Pi* 1S ^ s canonical 
representation of n > 1 and a ( l ) = 1. Then we have the following: 

LEMMA 2.1. (Cohen (1960; Lemma 3.4)). Forx^l, 

(2.1) # x , n ) = x - ^ + O ( 0 ( i i ) ) , 

uniformly in x and n, where 6(n) = o0{n), the number of square-free divisors 
of n. 

REMARK 2.1. It is sometimes convenient to replace 6(n) in (2.1) by i(n), 
where x{n) is the number of divisors of n. Clearly, 0(n) ^ x(n). 

LEMMA 2.2. (Cohen (1961; Lemma 3.5)) r -> oo, 

(2.2) « t = = № 11 ( l - ? + ^ T T ) -

LEMMA 2.3. p*(n) = E d Ä = r a ( d ) ^ ( 5 ) . 

PROOF. Since a(n) and /((n) are both multiplicative, it follows that 
~Ldö=na(d)n{ö) is multiplicative. Also, n*(n) is multiplicative. Hence it is enough 
if we verify the identity for n = p*, a prime power. Now, 

I a(d)M<5) = « ( f > ( l ) + a ( p - V p ) 
<M = p« 

= (1 - a) - (2 - a) = - 1 = /i*G>°). 

Hence the lemma follows. 

LEMMA 2.4. I,nSx\a(n) \ = 0(x1/2). 
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PROOF. By Euler's identity (Hardy and Wright (1965; Theorem 280)), we
have

for s > 1. Hence

C(4s)nr! ns

(2.3) f=

= 2 —-s-, say.

Since

(Hardy and Wright (1965; Theorem 300)),
n = l «

where 2(n) denotes Liouville's function, we have by (2.3) for s > 1,

Hence

(2.4)

By (2.3), we see that the abscissa of absolute convergence a of

3 '
E — / i s given by a = - .

n 3
Hence, we have

S J - ^ y = 0(1) for every e > 0.
nil "

Now, by partial summation, we have

= O(x1/3+£).

In particular, taking e = 1/15, we have
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(2.5) Ј  |6 (n) | = 0 ( x 2 / 5 ) . 

Hence by (2.4) and (2.5), we have 

Ł \a(n)\ = Ј Ј  16(5) | = Ј  16(5) I 

Ј _ Ј  |6(5)l = o f X _ f e ) 2 / 5 ) 

= 0 ( x 2 / 5 I «T* ' S ) = 0 ( x 2 / 5 ( x 1 / 2 ) 1 / 5 ) 

= 0 ( x 1 / 2 ) . 

LEMMA 2.5. For every 0 < n < 1/2, we have 

(2.6) Ј = 0(1), x ->  oo 

and 

(2.7) Ј Ц 7 ^ = O(logx), x oo. 

PROOF. By partial summation and Lemma 2.4, we have 

n i l " 

Now, (2.6) follows since 0 < w < 1/2. 
Also, by partial summation, we see that 

\a(n) 

0(1) + O(logx), 

so that (2.7) follows. 

LEMMA 2.6. For s > 0 and 0 ^ u < 1, 

(2.8) E -^4^- = 0 ( x 1 - " ) , x -> oo. 
n ix n 

P R O O F . We have 
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y <r*s(n) _ y 1 y H2(d) _ y l*2(d)

^ U2(d) ^ 1

LEMMA 2.7. (Suryanarayana and Siva Rama Prasad (1973; Lemma 3.5)).
For x g 3 and for every e > 0,

(2.9) Mn(x)= E Km) = 0(<7*1 + £(n)x<5(x)),
mix

(m,n) = l

uniformly in x and n, where

(2.10) (5(x) = exp{- 41og3/5x(loglogx)-1/5},

A being a positive constant.

LEMMA 2.8. For x 2: 3 and for every e > 0,

(2.11) M*(x)= 2 v*(m) = 0(<r*1 +

(m,n) = 1

uniformly in x and n, where d(x) is given by (2.10).

PROOF. We have by Lemma 2.3,

Mn*(x)= S 2 0(rf)M<5)= 2
i»Si d6=m d<5gx

(m,n)=l (d,n)=(5,n) = l

(2.12) = 2 fl(d) X M^) = ^ a(m)Mm(—).
d£x SSx/d liS \ m /

(d.n) = l (*n) = l (m,n)

Hence by Lemma 2.7,

(m,n) = 1

where 0 < r\ < 1/2. Since x'^x) is monotonic increasing for large x, we have by

Mn*(x) = 0 (<7*1 + E(n)x<5(x) Z J ^ g

LEMMA 2.9. for x g 3 and for every e > 0,
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(2.13) £ n*(m)m = O((7*1+e(n)x2<5(x)),

(m,n) = l

uniformly, where 8(x) is given by (2.10).

PROOF. By partial summation and Lemma 2.8, we have

H*(m)m = Mn*(x)x - f
J n

= O(c*1 + E(n)x28(x)) + 0

Since x5(x) is monotonic increasing for large x, we have

f t8(t)dt ^ x<5(x) | dt = O(x2^(x)).

Hence the lemma follows.

LEMMA 2.10. (Estermann (1962; Theorem 41)). / / / («) is multiplicative and
= o\f(Pm)\} converges, then Z " = 1 / ( n ) converges absolutely and

f fin) = n ( 2

LEMMA 2.11. For s > ill,

w/iere 0(n) is as in Lemma 2.1 and y(n) is f/ie core (i/ie maximal square-free
divisor) of n.

PROOF. We have for s > 1/2,

L-o /

where the infinite product on the right is convergent. Hence by Lemma 2.10, it
follows that ^=1(9(n))l(y(n)ns) is absolutely convergent for s > 1/2.

Hence the lemma follows.

LEMMA 2.12.
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(d,i) = 1

PROOF. Since n*(n) and y(n) are multiplicative, it follows (Cohen
(1960; Theorem 61)), that

(<*.«) = 1

is multiplicative. Also, <j)(ri) is multiplicative. Hence, it is enough if we verify
the identity for n = p", a prime power. Now,

LEMMA 2.13. For x ^ 3,

(2.15)

where <5(x) is given by (2.10).

PROOF. We have by Lemmas 2.12 and 2.9,

where 0 < r\ < 1/2. Since x"'<5(x) is monotonic increasing for large x and
a* i+e(n) <; 0(n) for 0 < e < 1, we have by Lemma 2.11,

N*(x) = o(x2d(x) E . e^_n) = O(x2S(x)).

LEMMA 2.14. For x ^ 3 and s > 2,

where d(x) is given by (2.10).
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PROOF. Putting f(n) = ( I / O , we see that f(n + 1) - / ( « ) = O( l /n s + 1 ) .
Hence by partial summation and Lemma 2.13, we have

n>x

Since <5(x) is monotonic decreasing. Also, since s > 2, we have

Hence the lemma follows.

LEMMA 2.15. (Suryanarayana and Siva Rama Prasad (1973; Lemma 5.2)).

If the Riemann hypothesis is true, then for x ^ 3 and every e > 0,

(2.17) M n (x)= /

(m,n) = l

uniformly in x and n, where

(2.18) CD(JO = exp{41ogx(loglogx)"1},

4̂ foefn^ a positive constant.

LEMMA 2.16. If the Riemann hypothesis is true, then for x ^ 3 anrf every
e > 0,

(2.19) M*(x)s 2 n*(m) = O(cj*1/2+e(nW
m£x

(m,n) = l

uniformly in x and n, where co(x) is given by (2.18).

PROOF. By (2.12) and (2.17),

M*n(x)=
mix

(m,n) = l

11/2

(m n) = 1

https://doi.org/10.1017/S1446788700020425 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020425


[9] Unitarily &-free integers 137

since co(x) is monotonic increasing. Now, the lemma follows by (2.7).

LEMMA 2.17. / / the Riemann hypothesis is true, then for x S; 3 and
every £ > 0,

(2.20) Z fi*(m)m = O(al1/2 + E(n)x3'2 oo(x)logx),

(m,n) = 1

where mix) is given by (2.18).

PROOF. Following the same procedure adopted in proving Lemma 2.9 and
making use of Lemma 2.16 instead of Lemma 2.8, we get this lemma.

LEMMA 2.18. If the Riemann hypothesis is true, then for x 5: 3 and every
£ > 0,

(2.21) N*(x) = I fi*(n)<j)(n) = O(x3>2co(x)logx),

where co(x) is given by (2.18).

PROOF. Following the same procedure adopted in proving Lemma 2.13
and making use of Lemma 2.17 instead of Lemma 2.9, we get this lemma.

LEMMA 2.19. / / the Riemann hypothesis is true, then for x 2: 3 and
s > 2,

{222) L
where a>(x) is given by (2.18).

PROOF. Following the same procedure adopted in proving Lemma 2.14
and making use of Lemma 2.18 instead of Lemma 2.13, we get this lemma.

3. Main results

We are now in a position to prove the following:

THEOREM 3.1. For x ^ 3,

(3.1) Q*k(x) = atx + O(x llkS(x)l

where ak is given by (2.2) and d(x) is given by (2.10).

PROOF. Let q*(n) denote the characteristic function of the set Q* of uni-
tarily fe-free integers, that is, qk*(n) = l or 0 according as n is or is not a member
of Q*. We have (Cohen (1971), (3.7) and (3.1) as r -> oo)

</**(«)= I fi*(d).
dkd=n

(A 6) = 1
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Hence we have

G?00= 2 qk*(n)= I fi*(d).

Let z = x 1/j£ and 0 < p = p(x) < 1, where p(x) will be suitably chosen
later. If dk6 5S x, then both d > pz and 5 > p~k can not simultaneously hold
good, and so

Qtix) = Z ii*(d) + Z ^*(d) - I ^(<0

(3.2) = Si + S2 - S 3 , say.

By Lemma 2.1 and Remark 2.1, we have

S, = Z A**(d) Z 1 = Z /

= 2 fi*(d]

o( Z

n = l " n>pz "

since I n S i T (n ) = O(xlogx) (Hardy and Wright (1965; Theorem 320)).

Hence by Lemmas 2.2 and 2.14, we have

S1 = akx+ 0 ( 4 — £ T ) + O(pz log (pz )

(3.3) =

We have by Lemma 2.8,

S 2 = Z Z A**(d)= Z M* ( f c / j ) =
(<!,«) = 1

Since 5(x) is monotonic decreasing and ^/x/n ^ pz, we have 5(^/x/n) ^
Also, by Lemma 2.6,
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Hence

(3.4) S2 = 0(/-*z<5(pz)).

Also, by Lemmas 2.8 and 2.6,

S3 = S S /x*(d) = 2 M*(pz) = 2 M*(pz)
agp-fc <JSpz asp-k nip-*

(3.5) = O( I ff*1 + .(«)pz5(pz)) =O(^ 1 -^(pz)) .

Hence, by (3.2), (3.3), (3.4) and (3.5), we have

(3.6) Q*(x) = akx + Oip1 -kz5(pz)) + O(pzlogz).

Now, we choose

(3.7) p = p(x) = {Six1'2*)}1'",

and write

(3.8) f(x) = Iog3/5(.x1/2t){loglog(x1/2t)}-1/5

where U = logx and V = loglogx.
(3.9) For V ̂  21og2fc, that is U ̂  4k2, x ^ exp(4fc2), we have

and therefore

(3.10) (l/2)fc-3/5l/3/57-1/5 ^ f(x) ^ k-3/5U3/5V-1/s.

(3.11) We assume without loss of generality that the constant A in (2.10) is less
than unity.

By (3.7), (2.10) and (3.8), we have

(3.12) p

By (3.9), we have fc-8/5C/3/5F-1/5 ^ (t//2fc). Hence by (3.10), (3.11), (3.12) and
the above

p ^ exp{-^fc-8/5J73/5F-1/5} ^ exp{-/c-8 / 5 t /3 / 5F-1 / 5}
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/ U \ I logx\
^ exp ~ — = exp - -ZT— ,

\ *-K 1 \ z / t /
so that p ^ x"1/2*.

Hence pz 2: x1 / 2 t . Since 5(x) is monotonic decreasing, we have by (3.7), S(pz)
g 5(x1/2k) = pk. Hence by (3.10) and (3.12), we have

(3.13) Pl-kS(pz) ^ p ^ exp( - ^-k

so that each of the first and second O-terms in (3.6) is

logx).

Hence, if A*(x) denotes the error term in the asymptotic formula (3.6), then we
have

(3.14) A*k(x) = O(x1/fcexp{ - Blog3/5x(loglogx)-1/5}),

where B(0 < B < (A/2)&T8/5) is a positive constant. Hence Theorem 3.1 follows.

COROLLARY 3.1.1 (/c = 2). / / Q*(x) denotes the number of exponentially
odd integers ^ x, then for x ^ 3,

(3.15) g*(x) = ax + O(x1/2<5(x)),

2

and <5(x) is given by (2.10).

REMARK. 3.1. This is clearly an improvement in the order estimate of the
error term for Q*(x) obtained by Cohen (1960; Theorem 6.1).

THEOREM 3.2. / / the Riemann hypothesis is true, then for x ^ 3,

(3.16) Q*(x) = <xkx + 0{x2l2k + 1(o{x)),

where ak is given by (2.2) and co(x) is given by (2.18).

PROOF. Following the same procedure adopted in proving theorem 3.1
and making use of Lemmas 2.16 and 2.19 instead of Lemmas 2.8 and 2.14, we
get the following instead of (3.6):

(3.17) Qt{x) = akx + O(p1/2-*z1/2oj(pz)logz) + O(pz\ogz).

Now, choosing p = z~
1/2k+1, we see that 0 < p < 1 and p 1 / 2 ~ V / 2 = pz

= x2 / 2 t + 1. Since co{x) is monotonic increasing, we have (o(pz) % co(z). Hence
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the first and second O-terms in (3.17) are equal to O(x2/2k+l<o(xUk)logx)

= O(x2/2k + 1co(x)). Hence Theorem 3.2 follows.

COROLLARY 3.2.1 (k = 2). / / the Riemann hypothesis is true, then

for x S 3,

(3.18) Q*(x) = ax + O(x2/5a)(x)\

where cc is the constant given in Corollary 3.1.1 and co(x) is given by (2.18).
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